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Abstract. The federated cloud is the future generation of cloud computing, 
allowing sharing of computing and storage resources, and servicing of user tasks 
among cloud providers through a centralized control mechanism. However, a great 
challenge lies in the efficient management of such federated clouds and fair 
distribution of the load among heterogeneous cloud providers. In our proposed 
approach, called QPFS_MASG, at the federated cloud level, the incoming tasks 
queue are partitioned in order to achieve a fair distribution of the load among all 
cloud providers of the federated cloud. Then, at the cloud level, task scheduling 
using the Modified Activity Selection by Greedy (MASG) technique assigns the 
tasks to different virtual machines (VMs), considering the task deadline as the key 
factor in achieving good quality of service (QoS). The proposed approach takes 
care of servicing tasks within their deadline, reducing service level agreement 
(SLA) violations, improving the response time of user tasks as well as achieving 
fair distribution of the load among all participating cloud providers. The 
QPFS_MASG was implemented using CloudSim and the evaluation result 
revealed a guaranteed degree of fairness in service distribution among the cloud 
providers with reduced response time and SLA violations compared to existing 
approaches. Also, the evaluation results showed that the proposed approach 
serviced the user tasks with minimum number of VMs. 

Keywords: cloud computing; fair load distribution; federated cloud; service level 
agreement; task scheduling.  

1 Introduction 

Federated cloud computing is a recent trend in cloud computing, where a large 
cloud is formed by different cloud service providers who collaborate to provide 
better cloud services [1,2]. This federated cloud is coordinated by a Federated 
Cloud Broker (FCB), which interacts with the different cloud service providers 
[3]. The cloud service providers make an agreement with the FCB for sharing 
their resources with specific details of economical and technical aspects [4,5]. 
The economic as well as operational benefits of cloud computing encourage users 
to send complex applications and data to the cloud [6].  
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There is a tremendous growth in service requests so that the availability of 
resources at the right moment and optimal distribution of requests among the 
federated cloud providers as well as within the cloud while meeting the stringent 
service requirements become nontrivial [7].  

Load distribution promotes availability of cloud resources and enhances 
performance. Hence, optimal distribution of the workload among the federated 
cloud providers as well as within the cloud with changeable capacities and 
functionality are important and challenging research topics. Creating a fair load 
distribution in the federated cloud real-time is a huge challenge. To tackle this, 
researchers have focused on federated cloud architecture design and dynamic 
scheduling of tasks in the federated cloud, considering performance parameters 
such as quality of service (QoS), price, SLA, CPU utilization, elasticity, etc. [8,9]. 

This paper proposes a two-fold hierarchical scheduling approach, called 
QPFS_MASG. At the federated cloud level it uses the Queue Partitioned based 
Fair Load Distribution System (QPFS) for a fair load distribution among the 
cloud service providers, while at the cloud level it uses the Modified Activity 
Selection-based Task Scheduling by Greedy (MASG) technique to enhance the 
cloud performance by distributing the tasks to the most appropriate virtual 
machines (VMs), considering the task deadline as the key QoS factor while 
maintaining SLA as well as response time.  

The contributions of this paper are as follows: 

1. Introduction of the concept of queue partitioning at the federated cloud level, 
which treats all cloud providers equally and takes care of a fair distribution 
of the load.  

2. Optimal task scheduling among the VMs within the cloud inspired by the 
Activity Selection algorithm using the Greedy technique, considering the task 
deadline as the key QoS parameter, reducing SLA violations while 
maintaining quality of service.  

3. Providing an example that demonstrates the servicing of user tasks with the 
least number of VMs at any time t in the cloud compared to existing 
approaches. 

4. Systematic study with mathematical evidence to show task distribution based 
on a modified version of the Activity Selection algorithm using the Greedy 
technique in a cloud environment. 

5. Performance analysis of the QPFS_MASG approach with respect to existing 
algorithms.  
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The rest of this paper is organized as follows. Section 2 discusses related works 
on existing task distribution techniques and federated cloud architecture. Section 
3 describes the mathematical model of the proposed QPFS_MASG approach. 
Section 4 presents the proposed architecture and algorithms. Section 5 describes 
the experimental setup for the evaluation of the proposed method and Section 6 
discusses the performance evaluation that was carried out by comparing the 
performance of the proposed approach with that of existing approaches. Finally, 
the conclusion section highlights the main contributions of this paper.  

2 Literature Review  

Wei, et al. [10] have proposed an approach that chooses data centers based on a 
defined latency. This approach uses two techniques: K-means and Binary 
Quadratic Programming. Datacenters are classified based on their latency using 
the K-means technique. The proposed approach calculates the latency among 
several data centers and then finds the best low-latency data center. 

 Xu, et al. [11] have proposed contract-based resource sharing in federated 
clouds. This proposed model maximizes the revenue and also allocates the 
resources fairly among the cloud service providers. 

Zhao, et al. [12] presented a novel resource allocation mechanism. Under this 
model, the resources are divided equally among all users and no users claim the 
allocation of other users, improving their own allocation. The experimental result 
showed better resource utilization.   

Habibi, et al. [13] implemented an efficient approach for dispatching customer 
requests among multiple clouds in a federated cloud that decides the distribution 
of the requests by examining the use of the coefficient of variation and other 
associated statistical metrics. The behavior of individual’s request is checked at 
a single time frame, dispatching them among multiple cloud providers in one go. 

Taha, et al. [14] have proposed SLA based service selection, choosing a 
combination of services that satisfies the customer requirements optimally by 
assessing the service levels provided by various providers in a multi-cloud 
environment. The presented approach automatically detects conflicts resulting 
from dependencies among the selected services and provides an explanation of 
identified conflicts to the providers as well as the customers in order to resolve 
conflicts.  

Levin, et al. [15] implemented load balancing as service architecture for federated 
clouds. Applications are divided into smaller components and distributed across 
the clouds for appropriate load balancing. 
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Motwani, et al. [16] discussed three different implementations of service broker 
algorithms: 1) Service Proximity Service Broker Policy: the broker chooses the 
quickest path from the user’s site to the cloud; 2) Best Response Time Service 
Broker Policy: the broker monitors the responses of all clouds and directs requests 
to the cloud that gives the best response time; 3) Dynamic Service Broker Policy: 
not fully implemented.  

Kumar, et al. [17] discussed reliability issues of cloud providers. Hence, they 
designed a scheduling algorithm that balances the load dynamically among all 
VMs by scaling up and scaling down resource capacities dynamically on the basis 
of the last optimal k-interval. The developed deadline constrained algorithm 
maximizes the number of tasks, meeting the deadline and reducing the make span.  

Sharma, et al. [18] presented the novel Efficient VM Load Balancing algorithm. 
Upon receiving a request from the user, the algorithm estimates the expected 
response time at the different VMs and then selects the most appropriate VM.  

Shahidinejad, et al. [19] presented a model that uses the Imperialist Competition 
algorithm and the K-means algorithm for clustering the workload and a decision-
tree algorithm to decide on scaling for effective resource provisioning. The 
proposed model minimizes cost, response time and also increases CPU utilization 
and scalability. 

Aslanpour et al. [20] have proposed a 3D mechanism for resource provisioning. 
The resources are allocated based on SLA, resource and user behavior features. 
The presented mechanism uses a radial basis neural function network to provide 
flexibility and providence features. The proposed 3D mechanism minimizes the 
cost with guaranteed quality of service.    

Shahidinejad, et al. [21] have proposed a Colored Petri Nets (CPN) model and a 
queueing system to manage cloud infrastructures automatically. The Colored 
Petri Net model comprises three transitions and four places. The queueing system 
adjusts the number of VMs on the basis of current load automatically. The 
proposed system reduces the response time and also enhances resource utilization 
and scalability.   

Ghobaei-Arani, et al. [22] presented a framework for controlling the resource 
elasticity through buffer management and elasticity management. The input 
queue of user requests is controlled by a buffer manager and the elasticity of the 
cloud platform is controlled by an elastic manager using a learning automata 
technique. The proposed framework reduces the response time and also enhances 
the resource utilization and elasticity. 
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All these works have majorly concentrated on developing various scheduling 
algorithms to reduce the response time to user requests, as shown in Table 1. In 
this work, we propose fair load distribution among federated cloud providers and 
an efficient task scheduling algorithm to achieve a better response time to user 
requests in federated cloud environments, increasing the availability of resources.  

Table 1 Evaluation tools, workload type and limitations of existing work. 

Authors and 
Year 

Model/ 
Mechanism 

QoS 
Parameters 
Analyzed 

Evaluation 
Tools Used 

Workload 
Type 

Limitation 

Wei, et al. 
[10] 

K-Means and 
Binary Quadratic 

Programming 
Based Resource 

Allocation Model 

Latency, 
monetary 
overhead 

Simulation 
using 

Python 
with 

PyCharm 

Real-world 
datacenters 

trace 

 
Constraints such as task 

deadline and power 
consumption are not 

considered. 

Xu, et al. [11] 

Contract-Based 
Resource Sharing 

Model among 
Multiple Cloud 

Providers 

Resource 
utilization, 

response time, 
revenue 

maximization 
for cloud 
providers 

Trace-
driven 

simulation 
with 

realistic 
workload 

traces 

Google 
cluster 
trace 

Scheduling technique 
does not guarantee a 

balanced load. 
Reliability and fault-

tolerance requirements 
are not considered. 

Zhao, et al. 
[12] 

Dominant 
Resource with 
Bottlenecked 

Fairness 
Resource 

Allocation Model 

Resource 
utilization, 

fair resource 
allocation 

among users 

CloudSim 
simulation 

tool 

Request 
generated 

in a 
simulation 
scenario 

The technique 
is not able to provide an 

intuitively 
fair allocation, since 

some users with 
dominant resources 

may not able to increase 
their allocations. 

Habibi, et al. 
[13] 

Coefficient of 
Variation and 

Statistical 
Metrics Based 

Request 
Scheduling 

Model 

Resource 
utilization, 
efficient 
request 

distribution 
among 

multiple cloud 
providers 

Mathematic
al model 

and 
simulation 

Google 
Cloud 

tracelog 
data 

Constraints such as task 
deadline are not 

considered. 

Taha, et al. 
[14] 

Multi-Cloud 
Service Selection 
and Scheduling 

Model 

Efficient 
service 

composition 
from multiple 

cloud 
providers, 

SLA 
 

Evaluated 
by case 
study 

Real-world 
data with 

SLA 
structure as 

per the 
ISO/IEC 
19086 

standards. 

Scheduling technique 
does not give the 
guarantee of load 

balancing. 

Levin, et al. 
[15] 

Hierarchical 
Load Balancing 

Model 

Fair load 
distribution 

across 
multiple cloud 

providers 

Open stack 
ApacheBen

ch-based 
plan 

Constraints such as cost 
and heterogeneous 

virtual machines are not 
considered. 
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Authors and 
Year 

Model/ 
Mechanism 

QoS 
Parameters 
Analyzed 

Evaluation 
Tools Used 

Workload 
Type 

Limitation 

Motwani, et 
al. [16] 

Profit Based Data 
Center Service 
Broker Policy 

Minimizes the 
cost of 

running the 
resources over 

the cloud, 
providing 

QoS 

CloudSim 
Simulation 

tool 

Request 
generated 

in a 
simulation 
scenario 

Constraints such as task 
deadline are not 

considered. 
Scheduling technique 
does not guarantee a 

balanced load. 

Kumar, et al. 
[17] 

Deadline 
Constrained 

Based 
Scheduling 

Model 
 

Task deadline, 
make-span, 

load 
balancing, 
horizontal 
scalability 

 

CloudSim 
Simulation 

tool 

Request 
generated 

in the 
simulation 
scenario 

If threshold value and 
last k optimal interval 
value is changed, the 

simulation results of the 
model may vary. 

Does not consider cost 
for ensuring high 
priority requests. 

Sharma,  
et al. [18] 

Efficient VM 
Load Balancing 

Model 
Response time 

CloudSim 
Simulation 

tool 

Request 
generated 

in a 
simulation 
scenario 

Constraints such as task 
deadline and fault 
tolerance are not 

considered. 

Shahidinejad, et 
al. [19] 

Hybrid Resource 
Provisioning 

Model 

Cost, 
Response 
time, CPU 
utilization, 
scalability 

CloudSim 
Simulation 

tool 

Two real 
workload 
traces are 

used: FIFA 
traces and 

NASA 
traces 

Fairness and power 
consumption parameters 
in resource provisioning 

are not considered 

Aslanpour et 
al. [20] 

Autonomic 
Resource, SLA 

and User 
Behavior Aware 

Resource 
Provisioning 
Mechanism  

Cost, resource 
utilization, 

QoS, 
horizontal 

scaling 

CloudSim 
Simulation 

tool 

NASA’s 
real dataset 

Vertical scaling of the 
resources is not 

considered. 

Shahidinejad, 
et al. [21] 

An Elastic 
Controller using 

Colored Petri 
Nets System 

Response 
time, resource 

utilization, 
scalability 

CloudSim 
Simulation 

tool 

Three real 
workload 

traces: 
Google 
Cluster 
traces, 
Yahoo 
Cluster 
traces, 

Wikipedia 
traces  

Power consumption 
parameters in cloud 

infrastructure 
management are not 

considered. 

Ghobaei-
Arani, et al. 

[22] 

Controlling 
Resources 
Elasticity 
Approach 

 

Response 
time, resource 

utilization, 
scalability 

CloudSim 
Simulation 

tool 

Three types 
of real 

workloads: 
FIFA 

World Cup, 
Clark Net 
and NASA 

Power consumption 
parameters in cloud 

resource management 
are not considered. 



222 B.S.  Rajeshwari, et al. 

3 QPFS_MASG   Mathematical Model 

The federated cloud architecture considered for the proposed work is as shown in 
Figure 1. It consists of M multiple clouds {cloud1, cloud2…, cloudM} forming a 
federated cloud environment (FCE) that is managed centrally by a federated 
cloud manager (FCM). Each cloud provider dedicates m hosts {h1, h2… hm} of 
different hardware configurations to the FCE. Thus, the total infrastructure 
capacity (TIC) of the federated cloud is given by Eq. (1).   

 𝐹𝐶்ூ஼  ୀ ෍ ෍ ℎ௜
௖௣௨,௠௘௠,௕௪

௠

௜ୀଵ

ெ

஼ୀଵ

   (1) 

When the tasks of varied size arrive at the FCM, it needs to schedule all these 
tasks optimally among M clouds. Scheduling of all these tasks must be done in 
such a way that it accomplishes a fair load distribution among the federated cloud 
providers based on their resource contribution to the FCE, reduced waiting time 
and response time, with good service quality while maintaining SLA.  

The objectives of the proposed QPFS_MASG approach are:  

1. Fair distribution of the load among the multiple cloud providers of the FCE. 
 𝑪𝟏

𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍% ≃ 𝑪𝟐
𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍%≃ . . . 𝑪𝑴

𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍% 
2. Minimizing the response time 𝑹𝑻

𝒕  of user task t and reducing the SLA 
violation rate.  
                   Minimize 𝑹𝑻

𝒕  = 𝝎𝑻
𝒕  +  µ𝑻

𝒕   in such a way that 𝑹𝑻
𝒕 <= 𝑫𝑳𝒕       

3. Providing service to all user requests with the minimum number of VMs in 
the cloud. 

This work integrated cloud providers with different capacities, classified as large-
sized, medium-sized and small-sized providers, in a federated cloud. At the 
federated cloud level, the Queue Partitioned based Fair Service Distribution 
System (QPFS) is proposed to consider all these providers impartially and to 
assign the tasks fairly among them based on the resources they dedicate to the 
FCE. All the incoming tasks are directed through the main queue 𝑄ி௖  at the FCM.  

QPFS partitions this main queue and distributes the tasks among M clouds of the 
FCE based on the computed load level factor (LLF) at each cloud, such that the 
load is distributed fairly among all clouds. The Modified Activity Selection based 
Task Scheduling by Greedy (MASG) technique is adopted within the cloud for 
scheduling the tasks among VMs, considering the deadline as the main QoS 
parameter and minimizing the number of VMs running at any time t in the cloud 
to satisfy the user requests.   
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4 QPFS_MASG Architecture and Algorithms 

The proposed federated cloud-based QPFS_MASG architecture with M clouds 
{cloud1, cloud2…, cloudM}, each cloud with m hosts {h1, h2… hm} and varying 
hardware configurations works in collaboration with the FCM, the cloud broker 
and the users. The FCM controls and manages all the resources of the different 
clouds among multiple user requests in the FCE and represents the contact point 
for users to connect with the federated cloud. Each cloud is managed by a cloud 
broker, providing the required computing resources and services for the user 
tasks.  

At the federated cloud level, QPFS distributes the load by partitioning the task 
queue based on the calculated LLF, and at the cloud level, MASG schedules the 
tasks on the VMs based on the Activity Selection by Greedy technique, 
considering the deadline as the main QoS parameter.  

 

Figure 1 QPFS_MASG architecture. 

Figure 2 shows a sequence diagram of the interaction between the components of 
the QPFS_MASG architecture. 
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Figure 2 Sequence diagram of the QPFS_MASG architecture. 

4.1  Queue Partitioned based Fair Service Distribution System 
(QPFS) 

At the FCE, all cloud providers register with the FCM, offering their resources to 
the federated cloud. Each cloud provider provides the details of their total 
resources available and dedicated to the FCE, the current usage of these 
resources, the list of available services as well as other economic and technical 
aspects. Based on all these parameters, a weightage is assigned to each cloud 
[𝑾𝑪𝒊] as per Table 2. When the tasks arrive at the FCE, the FCM puts all the 
incoming tasks τ1, τ2, τ3 . . ., which are independent in nature, into the main queue, 
𝑸𝑭𝑪. Each task τi, has a deadline 𝑫𝑳𝒕 and has task length 𝛕𝐢

𝐋, defined in terms of 
MIPS (million instructions per second). 

QPFS utilizes the following two modules: i) a load level calculator module, ii) a 
queue partitioning module.  

The load level calculator module calculates load level factor [𝐶௜
௅௅ி] at each cloud, 

𝐶௜. This is the ratio between the present utilization of resources 𝐶௜
௉௎ோ allocated to 

the FCE and the total resources contributed 𝐶௜
்ோ஼  to the FCE, as specified in Eq. 

(2).  

  𝑪𝒊
𝑳𝑳𝑭=

𝑪𝒊
𝑷𝑼𝑹

𝑪𝒊
𝑻𝑹𝑪                                                  (2) 
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The queue partitioning module used in the proposed approach, which makes 
decisions on partitioning the complete set of user requests, balances and takes 
care of a fair distribution of the incoming load among the cloud providers based 
on their resource contribution to the FCE. The queue partitioner module analyzes 
the LLF at each cloud and partitions the incoming task queue 𝑄ி஼  into M sub 
queues according to the value of 𝐶௜

௅௅ி. 

𝑄௣ଵ, 𝑄௣ଶ, 𝑄௣ଷ,  . . .  𝑄௣ெ, where each sub queue 𝑄௣௜  has a different size 

 𝑸𝑭𝑪 =  ෍ 𝑸𝒑𝒊

𝑴

𝒊ୀ𝟏
 

  Algorithm 1: Queue Partitioning (Q) 
Input: Task queue 𝑸𝑭𝑪 at federated cloud level 
Output: M sub queues  𝑸𝒑𝟏, 𝑸𝒑𝟐, 𝑸𝒑𝟑,  . . .  𝑸𝒑𝑴 
1. Find a cloud with the largest load level factor at time t among M clouds 
       𝐶௅௥௅௅ி= C1 

       for each cloud Ci, where   i = 2 to M 
                    if (𝐶௜

௅௅ி  > =  𝐶௅௥௅௅ி) 

                     𝐶௅௥௅௅ி
   𝐶௜

௅௅ி
 

                   end if 
       end for 

2. Balance load level factor of the remaining clouds to equalize the load with the 
largest load level factor 

       for each cloud Ci   where   i = 1 to M 

             𝐶௜
஻௅௅ி    =   𝐶௅௥௅௅ி -  𝐶௜

௅௅ி    

       end for 
3. Partitioning the main queue 𝑸𝑭𝑪 with N number of tasks into M sub queues, one 

for each Ci. 𝑸𝒑𝒊 is assigned based on  𝑪𝒊
𝑩𝑳𝑳𝑭of   Ci and the weight of   Ci, except for 

the cloud with the largest load level such that the factors of all clouds are 
balanced.  
 

       for each cloud Ci where i = 1 to M 
             if ( 𝐶𝑖 ! = 𝐶௅௥௅௅ி

 ) 
                   Q୮୧

୘୒୘ Task allotment based on C୧
୆୐୐୊and 𝑊஼௜ 

             end if 

         end for 
4. If  𝑸𝑭𝑪 still has tasks, partition 𝑸𝑭𝑪 and add to 𝐐𝐩𝐢

  of all Ci based on 𝑾𝑪𝒊 such 
that the load level factors of all clouds are the same 

       if [ ∑ Q୮୧
୘୒ெ

௜ୀଵ   < N] 
              for each cloud Ci where i = 1 to M 
                     Q୮୧

୘୒୘ Task allotment based on 𝑊஼௜ 
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                 end for 
       end if 
5. End 

Thus, the FCM dispatches the set of N tasks among M clouds of FCE based on 
its defined weight and estimated LLF.   

4.2 Optimum Task Scheduling Using Modified Activity Selection 
Algorithm by Greedy Approach (MASG) 

The Activity Selection algorithm using Greedy technique is a combinatorial 
optimization technique for the selection of non-conflicting activities that always 
gives an optimal solution.  

At the cloud level, within each cloud an MASG is invoked for optimal scheduling 
of tasks among the VMs based on the deadline constraint of the tasks. MASG 
uses the concept of the Activity Selection algorithm using the Greedy technique. 
Here, FCM sends k tasks τ1, τ2, τ3. . . τk to the cloud queue for the execution of 
the tasks in that cloud.  

MASG schedules a task to the ith virtual machine VMi considering the finishing 
time of running task j at VMi [ft(runtaskj(VMi))]. However, the real difficulty is 
in choosing the maximum number of tasks that can be allotted to the VMs with 
the goal of getting all these tasks completed with the minimum number of VMs 
by the constraint that a VM can execute only one single task at a time [23].   

This MASG approach further calculates the processing time of task i [taski] on 
VMi [pt (taski (VMi))] and analyzes whether the task can be accomplished within 
the deadline on VMi. The processing time is calculated based on the CPU and 
memory configuration on VMi as well as the task requirements.  

Thus, the proposed MASG maintains two queues: QueueStart_Time and QueueDeadline. 
QueueStart_Time contains the start times of tasks τ𝐬𝐭 and QueueDeadline contains the 
deadlines of tasks 𝐷𝐿௧. On the basis of the defined deadlines, QueueDeadline is 
organized in increasing order in conjunction with QueueStart_Time. Hence, MASG 
starts mapping taski onto VMi such that  

 𝛕𝒊
𝒔𝒕(VMi) >= ft (runtaskj (VMi))  (3) 

and  

 ft (runtaskj) + pt (taski (VMi)) < = 𝑫𝑳𝒕
                                   (4) 

Once task taski is mapped onto VMi, the response time of taski becomes the finish 
time, which is used for mapping the next task in the queue, i.e. 
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 ft(runtaskj(VMi))  response_time(taski)                          (5) 

Eq. (3) ensures that the starting time of the next task i is greater than or equal to 
the finishing time of running task j on VMi. 

The processing time of taski on VMi is calculated considering the task size and 
the service rate of VMi as shown in Eq. (6): 

 pt (taski (VMi)) = 𝛕𝐢
𝐋/ Service_rate (VMi) (6) 

The main goal of MASG is that the users get good quality of service by servicing 
their tasks within the deadline, satisfying SLA, improving the response time and 
servicing the user tasks with the least number of VMs in the cloud at any time t. 

Algorithm 2: MASG (𝑸𝒑𝒊 , V) 
Input:   𝑄௣௜ with k tasks 𝜏= {, 𝜏1, 𝜏2, … 𝜏k} 

             Set of VMs V= {VM1, VM2, …VMV}  
Output: Subset of tasks mapped onto each VM  

1. for each task 𝜏i in 𝑄௣௜ has a deadline 

               QueueDeadline[i]Estimate deadline of task 𝜏i based on the priority of the task 
        end for 
 

2. for each VMi where i = 1 to V  
              for each task 𝜏i in 𝑄௣௜   
                    QueueStart_Time [i]Assess starting time of the task such that it can be serviced 

within its defined deadline on VMi.  
              end for 
           Sort QueueDeadline on the basis of the task deadlines  
               for each task 𝜏i 
                         if ( τ𝒊

𝒔𝒕(VMi) >= ft(runtaskj (VMi))) then   

                                   pt (taski (VMi)) = τ୧
୐/ Service_rate (VMi) 

                                      if (ft (runtaskj ) + pt(taski(VMi)) < = 𝐷𝐿௧)   then 
                                                Map 𝜏i  to VMi 

                                                                           Remove 𝜏i from 𝑄௣௜  

                                              ft(runtaski(VMi))  response_time(taski) 
                                     end if 
                        end if 
              end for  
        end for   
3. End 

The Activity Selection based Scheduling using Greedy always yields an optimal 
solution. Thus, MASG optimally maps all the tasks to the least number of VMs. 
Hence, the proposed technique not only completes the tasks within their 
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deadlines, but also reduces the response time using the minimum number of VMs 
in the cloud, leading to optimized resource utilization. 

4.3 Time Analysis of QPFS_MASG Approach 

The Queue Partitioning algorithm analyzes the load level factor at m individual 
clouds and partitions the incoming task queue into m sub queues, each with n 
number of tasks. Hence, the time complexity of the Queue Partitioning algorithm 
is O(mn). 

 Time Complexity (Queue Partitioning) = O (mn) 

The proposed MASG approach uses the Activity Selection based technique for 
selecting n tasks to a VM based on the start and the finish time of the tasks, which 
can be solved in O (n log n) time. 

Time Complexity (MASG) = O (n log n) 

5 Experimental Setup 

QPFS_MASG is operated in a federated cloud environment, which is hard to 
implement in practice due to the large size of the network [24]. Hence, the 
performance of the proposed approach was simulated using the CloudSim report 
toolkit, including CloudSim version 3.0.3 and NetbeansIDE8.0.  

The classes of CloudSim simulator were extended to simulate the proposed 
algorithms, implemented in Java [25]. The experiment was performed on an Intel 
Core i7-3770 with a 64-bit Windows 10 platform machine and 4 GB of DDR3 
SD RAM.  

The FCE setup was made by deploying a set of computational resources across 
multiple clouds. For the evaluation, three clouds configured with varying 
capacities were created to evaluate fairness in load distribution among them based 
on their resource capacity dedicated to the FCE. The cloud configuration settings 
made for the evaluation are shown in Table 2.  

The weight for the clouds was defined based on their resource contribution to the 
FCE. Three different VM instance types were considered at each cloud in the 
evaluation to process the incoming tasks, as shown in Table 3.  

As shown in Table 2, Cloud 3 had more capacity than Cloud 1 and Cloud 2 with 
respect to processing speed, memory capacity and storage capacity and hence 12 
VMs were created in this cloud. The VMs of type 1 had more capacity then the 
VMs of types 2 and 3 with respect to processing speed, memory capacity and 
storage capacity. 
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Table 2 FCE configuration. 

 
 

Table 3 VM instance configuration. 

VM Instance Type 
Computing 
Capacity in 

MIPS 

Memory Capacity in 
Megabytes 

Storage Capacity in 
Megabytes 

VM Instance Type-1 3000 1024 100000 
VM Instance Type-2 2000 800 10000 
VM Instance Type3 1000 512 10000 

6 QPFS_MASG Results and Discussion  

To show the effectiveness of the proposed approach, the results were compared 
with the Service Proximity Service Broker Policy (SPSBP) [10] at the federated 
cloud level and with Efficient VM Load Balancing (EVMLB) [12] at the cloud 
level. 

As shown in Figure 3, on average, QPFS_MASG dispatched 64.6%, 70% and 
66.6% of service tasks to Cloud 1, Cloud 2 and Cloud 3, while SPSBS provided 
73%, 34.3%, and 19.86% of service tasks to Cloud 1, Cloud 2 and Cloud 3 
respectively.  

To achieve a fair and balanced distribution of the load among multiple cloud 
providers, the QPFS_MASG approach dynamically calculates the LLFs of the 
individual clouds and partitions the incoming task queue on the basis of the 
calculated LLFs at time t. Thus, the proposed approach at the federated cloud 
level achieves fairness in the load distribution among multiple clouds in the FCE 
based on their resource contribution and avoids overloading of any cloud.   

In Figure 4, Task Deadline (denoted by the red line) indicates the deadlines of the 
tasks. QPFS_MASG Finishtime (denoted by the green line) indicates the finish 
time of the tasks from the QPFS_MASG approach, while SPSBP Finishtime 
(denoted by the blue line) depicts the finish time from the SPSBP approach. 
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Figure 3 Load distributions at different time slots. 

 

Figure 4 Comparison of task finish time with deadline. 

The curve shows that QPFS_MASG serviced the maximum number of tasks 
before the deadline comparatively. Here, the task deadline was taken as the key 
parameter. Thus, the task queue was organized in increasing order of deadline 
and mapped the tasks to the VMs considering the starting time of the next task 
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and the response time of the running task. Further, it analyzed whether the 
processing time of the task on that VM can be accomplished within its deadline. 
Thus, almost 90% of the tasks were finished within their deadline. 

In Figure 5, a comparison of SLA violations is shown. Figure 5 shows that the 
QPFS_MASG approach had 10% improvement in adhering to SLA compared to 
the SPSBP approach. The proposed QPFS_MASG framework improved the 
average response time of the tasks in the range of 31% to 40% on the different 
clouds, as shown in Figure 6. The QPFS_MASG framework distributed the tasks 
based on their resource contribution, so overloading of any cloud was avoided, 
which reduces the waiting time of the tasks at any cloud, as shown in the Figure 
7, and in turn reduced the response time.  

 

Figure 5 Comparison on SLA violation rate. 

 

Figure 6 Comparison of average response time.           
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Figure 7 Comparison of average waiting time. 

6.1 Example Demonstrating User Task Servicing with Least 
Number of VMs by MASG Approach Compared to EVMLB 
Approach 

Consider 3 virtual machines VM1, VM2, VM3 with a capacity of 1000 MIPS and 
8 tasks arriving at time t. The arrival time, deadline and assessed starting time of 
the task as well as the number of instructions in each task are shown in Table 4. 

Table 4 Arrival time, deadline and number of instructions of the tasks. 

Tasks T1 T2 T3 T4 T5 T6 T7 T8 

Arrival Time 1 1 1 1 1 1 1 1 
Starting Time 1 1 8 2 3 5 4 5 

Deadline 3 2 9 4 5 7 5 8 
Number of 

Instructions 
2000 1000 1000 2000 2000 2000 1000 3000 

The tasks in the queue are sorted as per the deadline, is shown in Table 5. 

Table 5 Tasks sorted based on deadline. 

Tasks T2 T1 T4 T5 T7 T6 T8 T3 

Arrival Time 1 1 1 1 1 1 1 1 
Starting Time 1 1 2 3 4 5 5 8 

Deadline 2 3 4 5 5 7 8 9 

Number of Instructions 1000 2000 2000 2000 1000 2000 3000 1000 

Schedule first task T2 to VM1  

3.21

6.25 6.47

12.10
11.08 10.10

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Cloud1 Cloud2 Cloud3

A
V

E
R

A
G

E
   

W
A

IT
IN

G
 

T
IM

E
   

IN
   

SE
C

O
N

D
S

AVERAGE WAITING TIME

QPFS_MASG

SPSBP



             Efficient Task Scheduling and Fair Load Distribution 233 

 ft(T2) = 1 + 1 = 2 

Next, schedule tasks to VM1 iff,   

st(task)>=ft(runtask ) and ft(runtask ) + pt(task ) <  dl(task )  

as shown in Table 6. 

Table 6 Tasks scheduled on VM1. 

Thus, tasks scheduled to VM1 are T2, T4, T7, T6, and T3. 

Step repeats for VM2. Schedule first task T1 to VM2  

ft(T1) = 1 + 2 = 3 

Next schedule tasks to VM2 iff, 

st(task)>= ft(runtask ) and ft(runtask ) + pt(task ) <  dl(task )  

as shown in Table 7. 

Table 7 Tasks scheduled to VM2. 

Tasks T5 T8 
Arrival Time 1 1 
Starting Time 3 5 

Deadline 5 8 
Number of Instructions 2000 3000 

𝛕𝐢
𝐬𝐭 >=ft(runtaskj ) ? 3>=3? Yes 5>=5? Yes 

ft(runtaskj ) + pt(taski ) 
< = 𝐃𝐋𝐭? 

3+2=5<=5? Yes 
ft(T5) =5 

5+3=8<=8? Yes 
ft(T8)=8 

Tasks T1 T4 T5 T7 T6 T8 T3 
Arrival Time 1 1 1 1 1 1 1 
Starting Time 1 2 3 4 5 5 8 

Deadline 3 4 5 5 7 8 9 
Number of 

Instructions 
2000 2000 2000 1000 2000 3000 1000 

𝛕𝐢
𝐬𝐭 

>=ft(runtaskj 
) ? 

1>2? 
No 

2>=2? 
Yes 

3>=4? 
No 

4>=4? 
Yes 

5>=5? 
Yes 

5>=7? 
No 

8>=7? 
Yes 

ft(runtaskj ) + 
pt(taski ) < = 

𝐃𝐋𝐭? 

2 + 
2=4<= 

3? 
No 

2+2=4<
=4? Yes 
ft(T4) 

=4 

4+2=6
<=5? 
No 

4+1=5
<=5? 
Yes 

ft(T7) 
=5 

5+2=7<
=7? Yes 
ft(T6) 

=7 

7+3=1
0<=8? 

No 

7+1=8<=
9?  

Yes 
ft(T3) =8 
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Thus, tasks scheduled to VM2 are T1, T5, and T8 

Using the EVMLB [12] approach, if the same tasks scheduled to VMs that offer 
the minimum expected completion time, then the tasks scheduled to the VMs 
takes place as follows: 

 VM1  T1, T6 

 VM2  T2, T4, T7 

 VM3  T3, T5, T8 

Figure 8 precisely illustrates the effectiveness of task allocation by the MASG 
approach compared to the EVMLB approach. The MASG approach optimally 
scheduled the tasks to VMs and services 8 tasks with 2 VMs within the deadline, 
whereas the EVMLB approach used 3 VMs to service the same number of tasks.  

MASG tries to assign tasks to a VM as long as the tasks can be finished within 
the deadline and also avoids creating and assigning tasks to a new VM. Thus, 
MASG consolidates the tasks onto the least number of VMs. 

 
Figure 8 Comparison on VM allocation. 

7 Conclusions 

In this paper, a hierarchical approach called QPFS_MASG was proposed for 
efficient distribution of user tasks among multiple cloud providers in an FCE as 
well as among VMs within the clouds. The proposed QPFS_MASG presents two 
scheduling approaches at two levels: Queue Partitioned based Fair Service 
Distribution for Federated Cloud (QPFS) at the federated cloud level and the 
Modified Activity Selection based Task Scheduling by Greedy (MASG) 
technique at the cloud level.  

Queue partitioned scheduling at the federated cloud level partitions the incoming 
queue aiming towards a fair distribution of the load among all participating cloud 
service providers of the federated cloud. MASG at the cloud level schedules tasks 
among VMs considering the task deadline as the key parameter.  
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The results obtained showed fairness in load distribution among multiple cloud 
service providers with an average of 64.6%, 70% and 66.6% of load to Cloud 1, 
Cloud 2 and Cloud 3, while SPSBP scheduled 73%, 34.3%, and 19.86% of load 
to Cloud 1, Cloud 2 and Cloud 3 respectively.  

The proposed framework also showed that 90% of the tasks were finished before 
their deadline ended, with an improvement in average response time between 
31% and 40%. The presented example demonstrated that the proposed MASG 
algorithm always consolidated tasks onto the least number of VMs. Thus, the 
proposed approach not only performed fair distribution of load among multiple 
clouds, but also enhanced the response time, servicing tasks within their deadline 
and consolidating tasks onto the minimum number of VMs. 

Nomenclature: 

Ci : ith cloud 

𝑅்
௧  : response time of task 𝑡 

µ்
௧  : execution time of task 𝑡 

𝜔்
௧  : waiting time of task 𝑡 

𝐷𝐿௧ : deadline of the task 𝑡 
𝐶௜

்ோ஼ : total resource capacity dedicated by Ci to FCE     

𝐶௜
௉௎ோ  : present usage of resources at Ci 

𝐶௜
௅௅ி    : load level factor at Ci           

𝐶୐୰୐୐୊
  : cloud with largest load level factor      

𝐶୧
୆୐୐୊ : balancing load level factor of Ci 

Q୮୧
୘୒୘ : queue with total number of tasks for Ci 

𝑊஼௜  : weight defined for Ci based on contribution of resources by the cloud 
provider to the FCE 

𝑄ி௖  : main queue at federated cloud level 
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