

 216 J. ICT Res. Appl., Vol. 15, No. 3, 2021, 216-238

Received July 8th, 2021, Revised September 8th, 2021, Accepted for publication October 4th, 2021.
Copyright © 2021 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2021.15.3.2

Efficient Task Scheduling and Fair Load Distribution
Among Federated Clouds

Rajeshwari B S1*, M. Dakshayini2 & H.S. Guruprasad3

1Department of CSE, B.M.S College of Engineering, Bangalore 560019, India
2Department of ISE, B.M.S College of Engineering, Bangalore 560019, India

*E-mail id: madurahr@gmail.com

Abstract. The federated cloud is the future generation of cloud computing,
allowing sharing of computing and storage resources, and servicing of user tasks
among cloud providers through a centralized control mechanism. However, a great
challenge lies in the efficient management of such federated clouds and fair
distribution of the load among heterogeneous cloud providers. In our proposed
approach, called QPFS_MASG, at the federated cloud level, the incoming tasks
queue are partitioned in order to achieve a fair distribution of the load among all
cloud providers of the federated cloud. Then, at the cloud level, task scheduling
using the Modified Activity Selection by Greedy (MASG) technique assigns the
tasks to different virtual machines (VMs), considering the task deadline as the key
factor in achieving good quality of service (QoS). The proposed approach takes
care of servicing tasks within their deadline, reducing service level agreement
(SLA) violations, improving the response time of user tasks as well as achieving
fair distribution of the load among all participating cloud providers. The
QPFS_MASG was implemented using CloudSim and the evaluation result
revealed a guaranteed degree of fairness in service distribution among the cloud
providers with reduced response time and SLA violations compared to existing
approaches. Also, the evaluation results showed that the proposed approach
serviced the user tasks with minimum number of VMs.

Keywords: cloud computing; fair load distribution; federated cloud; service level
agreement; task scheduling.

1 Introduction

Federated cloud computing is a recent trend in cloud computing, where a large
cloud is formed by different cloud service providers who collaborate to provide
better cloud services [1,2]. This federated cloud is coordinated by a Federated
Cloud Broker (FCB), which interacts with the different cloud service providers
[3]. The cloud service providers make an agreement with the FCB for sharing
their resources with specific details of economical and technical aspects [4,5].
The economic as well as operational benefits of cloud computing encourage users
to send complex applications and data to the cloud [6].

 Efficient Task Scheduling and Fair Load Distribution 217

There is a tremendous growth in service requests so that the availability of
resources at the right moment and optimal distribution of requests among the
federated cloud providers as well as within the cloud while meeting the stringent
service requirements become nontrivial [7].

Load distribution promotes availability of cloud resources and enhances
performance. Hence, optimal distribution of the workload among the federated
cloud providers as well as within the cloud with changeable capacities and
functionality are important and challenging research topics. Creating a fair load
distribution in the federated cloud real-time is a huge challenge. To tackle this,
researchers have focused on federated cloud architecture design and dynamic
scheduling of tasks in the federated cloud, considering performance parameters
such as quality of service (QoS), price, SLA, CPU utilization, elasticity, etc. [8,9].

This paper proposes a two-fold hierarchical scheduling approach, called
QPFS_MASG. At the federated cloud level it uses the Queue Partitioned based
Fair Load Distribution System (QPFS) for a fair load distribution among the
cloud service providers, while at the cloud level it uses the Modified Activity
Selection-based Task Scheduling by Greedy (MASG) technique to enhance the
cloud performance by distributing the tasks to the most appropriate virtual
machines (VMs), considering the task deadline as the key QoS factor while
maintaining SLA as well as response time.

The contributions of this paper are as follows:

1. Introduction of the concept of queue partitioning at the federated cloud level,
which treats all cloud providers equally and takes care of a fair distribution
of the load.

2. Optimal task scheduling among the VMs within the cloud inspired by the
Activity Selection algorithm using the Greedy technique, considering the task
deadline as the key QoS parameter, reducing SLA violations while
maintaining quality of service.

3. Providing an example that demonstrates the servicing of user tasks with the
least number of VMs at any time t in the cloud compared to existing
approaches.

4. Systematic study with mathematical evidence to show task distribution based
on a modified version of the Activity Selection algorithm using the Greedy
technique in a cloud environment.

5. Performance analysis of the QPFS_MASG approach with respect to existing
algorithms.

218 B.S. Rajeshwari, et al.

The rest of this paper is organized as follows. Section 2 discusses related works
on existing task distribution techniques and federated cloud architecture. Section
3 describes the mathematical model of the proposed QPFS_MASG approach.
Section 4 presents the proposed architecture and algorithms. Section 5 describes
the experimental setup for the evaluation of the proposed method and Section 6
discusses the performance evaluation that was carried out by comparing the
performance of the proposed approach with that of existing approaches. Finally,
the conclusion section highlights the main contributions of this paper.

2 Literature Review

Wei, et al. [10] have proposed an approach that chooses data centers based on a
defined latency. This approach uses two techniques: K-means and Binary
Quadratic Programming. Datacenters are classified based on their latency using
the K-means technique. The proposed approach calculates the latency among
several data centers and then finds the best low-latency data center.

 Xu, et al. [11] have proposed contract-based resource sharing in federated
clouds. This proposed model maximizes the revenue and also allocates the
resources fairly among the cloud service providers.

Zhao, et al. [12] presented a novel resource allocation mechanism. Under this
model, the resources are divided equally among all users and no users claim the
allocation of other users, improving their own allocation. The experimental result
showed better resource utilization.

Habibi, et al. [13] implemented an efficient approach for dispatching customer
requests among multiple clouds in a federated cloud that decides the distribution
of the requests by examining the use of the coefficient of variation and other
associated statistical metrics. The behavior of individual’s request is checked at
a single time frame, dispatching them among multiple cloud providers in one go.

Taha, et al. [14] have proposed SLA based service selection, choosing a
combination of services that satisfies the customer requirements optimally by
assessing the service levels provided by various providers in a multi-cloud
environment. The presented approach automatically detects conflicts resulting
from dependencies among the selected services and provides an explanation of
identified conflicts to the providers as well as the customers in order to resolve
conflicts.

Levin, et al. [15] implemented load balancing as service architecture for federated
clouds. Applications are divided into smaller components and distributed across
the clouds for appropriate load balancing.

 Efficient Task Scheduling and Fair Load Distribution 219

Motwani, et al. [16] discussed three different implementations of service broker
algorithms: 1) Service Proximity Service Broker Policy: the broker chooses the
quickest path from the user’s site to the cloud; 2) Best Response Time Service
Broker Policy: the broker monitors the responses of all clouds and directs requests
to the cloud that gives the best response time; 3) Dynamic Service Broker Policy:
not fully implemented.

Kumar, et al. [17] discussed reliability issues of cloud providers. Hence, they
designed a scheduling algorithm that balances the load dynamically among all
VMs by scaling up and scaling down resource capacities dynamically on the basis
of the last optimal k-interval. The developed deadline constrained algorithm
maximizes the number of tasks, meeting the deadline and reducing the make span.

Sharma, et al. [18] presented the novel Efficient VM Load Balancing algorithm.
Upon receiving a request from the user, the algorithm estimates the expected
response time at the different VMs and then selects the most appropriate VM.

Shahidinejad, et al. [19] presented a model that uses the Imperialist Competition
algorithm and the K-means algorithm for clustering the workload and a decision-
tree algorithm to decide on scaling for effective resource provisioning. The
proposed model minimizes cost, response time and also increases CPU utilization
and scalability.

Aslanpour et al. [20] have proposed a 3D mechanism for resource provisioning.
The resources are allocated based on SLA, resource and user behavior features.
The presented mechanism uses a radial basis neural function network to provide
flexibility and providence features. The proposed 3D mechanism minimizes the
cost with guaranteed quality of service.

Shahidinejad, et al. [21] have proposed a Colored Petri Nets (CPN) model and a
queueing system to manage cloud infrastructures automatically. The Colored
Petri Net model comprises three transitions and four places. The queueing system
adjusts the number of VMs on the basis of current load automatically. The
proposed system reduces the response time and also enhances resource utilization
and scalability.

Ghobaei-Arani, et al. [22] presented a framework for controlling the resource
elasticity through buffer management and elasticity management. The input
queue of user requests is controlled by a buffer manager and the elasticity of the
cloud platform is controlled by an elastic manager using a learning automata
technique. The proposed framework reduces the response time and also enhances
the resource utilization and elasticity.

220 B.S. Rajeshwari, et al.

All these works have majorly concentrated on developing various scheduling
algorithms to reduce the response time to user requests, as shown in Table 1. In
this work, we propose fair load distribution among federated cloud providers and
an efficient task scheduling algorithm to achieve a better response time to user
requests in federated cloud environments, increasing the availability of resources.

Table 1 Evaluation tools, workload type and limitations of existing work.

Authors and
Year

Model/
Mechanism

QoS
Parameters
Analyzed

Evaluation
Tools Used

Workload
Type

Limitation

Wei, et al.
[10]

K-Means and
Binary Quadratic

Programming
Based Resource

Allocation Model

Latency,
monetary
overhead

Simulation
using

Python
with

PyCharm

Real-world
datacenters

trace

Constraints such as task

deadline and power
consumption are not

considered.

Xu, et al. [11]

Contract-Based
Resource Sharing

Model among
Multiple Cloud

Providers

Resource
utilization,

response time,
revenue

maximization
for cloud
providers

Trace-
driven

simulation
with

realistic
workload

traces

Google
cluster
trace

Scheduling technique
does not guarantee a

balanced load.
Reliability and fault-

tolerance requirements
are not considered.

Zhao, et al.
[12]

Dominant
Resource with
Bottlenecked

Fairness
Resource

Allocation Model

Resource
utilization,

fair resource
allocation

among users

CloudSim
simulation

tool

Request
generated

in a
simulation
scenario

The technique
is not able to provide an

intuitively
fair allocation, since

some users with
dominant resources

may not able to increase
their allocations.

Habibi, et al.
[13]

Coefficient of
Variation and

Statistical
Metrics Based

Request
Scheduling

Model

Resource
utilization,
efficient
request

distribution
among

multiple cloud
providers

Mathematic
al model

and
simulation

Google
Cloud

tracelog
data

Constraints such as task
deadline are not

considered.

Taha, et al.
[14]

Multi-Cloud
Service Selection
and Scheduling

Model

Efficient
service

composition
from multiple

cloud
providers,

SLA

Evaluated
by case
study

Real-world
data with

SLA
structure as

per the
ISO/IEC
19086

standards.

Scheduling technique
does not give the
guarantee of load

balancing.

Levin, et al.
[15]

Hierarchical
Load Balancing

Model

Fair load
distribution

across
multiple cloud

providers

Open stack
ApacheBen

ch-based
plan

Constraints such as cost
and heterogeneous

virtual machines are not
considered.

 Efficient Task Scheduling and Fair Load Distribution 221

Authors and
Year

Model/
Mechanism

QoS
Parameters
Analyzed

Evaluation
Tools Used

Workload
Type

Limitation

Motwani, et
al. [16]

Profit Based Data
Center Service
Broker Policy

Minimizes the
cost of

running the
resources over

the cloud,
providing

QoS

CloudSim
Simulation

tool

Request
generated

in a
simulation
scenario

Constraints such as task
deadline are not

considered.
Scheduling technique
does not guarantee a

balanced load.

Kumar, et al.
[17]

Deadline
Constrained

Based
Scheduling

Model

Task deadline,
make-span,

load
balancing,
horizontal
scalability

CloudSim
Simulation

tool

Request
generated

in the
simulation
scenario

If threshold value and
last k optimal interval
value is changed, the

simulation results of the
model may vary.

Does not consider cost
for ensuring high
priority requests.

Sharma,
et al. [18]

Efficient VM
Load Balancing

Model
Response time

CloudSim
Simulation

tool

Request
generated

in a
simulation
scenario

Constraints such as task
deadline and fault
tolerance are not

considered.

Shahidinejad, et
al. [19]

Hybrid Resource
Provisioning

Model

Cost,
Response
time, CPU
utilization,
scalability

CloudSim
Simulation

tool

Two real
workload
traces are

used: FIFA
traces and

NASA
traces

Fairness and power
consumption parameters
in resource provisioning

are not considered

Aslanpour et
al. [20]

Autonomic
Resource, SLA

and User
Behavior Aware

Resource
Provisioning
Mechanism

Cost, resource
utilization,

QoS,
horizontal

scaling

CloudSim
Simulation

tool

NASA’s
real dataset

Vertical scaling of the
resources is not

considered.

Shahidinejad,
et al. [21]

An Elastic
Controller using

Colored Petri
Nets System

Response
time, resource

utilization,
scalability

CloudSim
Simulation

tool

Three real
workload

traces:
Google
Cluster
traces,
Yahoo
Cluster
traces,

Wikipedia
traces

Power consumption
parameters in cloud

infrastructure
management are not

considered.

Ghobaei-
Arani, et al.

[22]

Controlling
Resources
Elasticity
Approach

Response
time, resource

utilization,
scalability

CloudSim
Simulation

tool

Three types
of real

workloads:
FIFA

World Cup,
Clark Net
and NASA

Power consumption
parameters in cloud

resource management
are not considered.

222 B.S. Rajeshwari, et al.

3 QPFS_MASG Mathematical Model

The federated cloud architecture considered for the proposed work is as shown in
Figure 1. It consists of M multiple clouds {cloud1, cloud2…, cloudM} forming a
federated cloud environment (FCE) that is managed centrally by a federated
cloud manager (FCM). Each cloud provider dedicates m hosts {h1, h2… hm} of
different hardware configurations to the FCE. Thus, the total infrastructure
capacity (TIC) of the federated cloud is given by Eq. (1).

 𝐹𝐶்ூ஼ ୀ ෍ ෍ ℎ௜
௖௣௨,௠௘௠,௕௪

௠

௜ୀଵ

ெ

஼ୀଵ

 (1)

When the tasks of varied size arrive at the FCM, it needs to schedule all these
tasks optimally among M clouds. Scheduling of all these tasks must be done in
such a way that it accomplishes a fair load distribution among the federated cloud
providers based on their resource contribution to the FCE, reduced waiting time
and response time, with good service quality while maintaining SLA.

The objectives of the proposed QPFS_MASG approach are:

1. Fair distribution of the load among the multiple cloud providers of the FCE.
 𝑪𝟏

𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍% ≃ 𝑪𝟐
𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍%≃ . . . 𝑪𝑴

𝑳𝒐𝒂𝒅𝑳𝒆𝒗𝒆𝒍%
2. Minimizing the response time 𝑹𝑻

𝒕 of user task t and reducing the SLA
violation rate.
 Minimize 𝑹𝑻

𝒕 = 𝝎𝑻
𝒕 + µ𝑻

𝒕 in such a way that 𝑹𝑻
𝒕 <= 𝑫𝑳𝒕

3. Providing service to all user requests with the minimum number of VMs in
the cloud.

This work integrated cloud providers with different capacities, classified as large-
sized, medium-sized and small-sized providers, in a federated cloud. At the
federated cloud level, the Queue Partitioned based Fair Service Distribution
System (QPFS) is proposed to consider all these providers impartially and to
assign the tasks fairly among them based on the resources they dedicate to the
FCE. All the incoming tasks are directed through the main queue 𝑄ி௖ at the FCM.

QPFS partitions this main queue and distributes the tasks among M clouds of the
FCE based on the computed load level factor (LLF) at each cloud, such that the
load is distributed fairly among all clouds. The Modified Activity Selection based
Task Scheduling by Greedy (MASG) technique is adopted within the cloud for
scheduling the tasks among VMs, considering the deadline as the main QoS
parameter and minimizing the number of VMs running at any time t in the cloud
to satisfy the user requests.

 Efficient Task Scheduling and Fair Load Distribution 223

4 QPFS_MASG Architecture and Algorithms

The proposed federated cloud-based QPFS_MASG architecture with M clouds
{cloud1, cloud2…, cloudM}, each cloud with m hosts {h1, h2… hm} and varying
hardware configurations works in collaboration with the FCM, the cloud broker
and the users. The FCM controls and manages all the resources of the different
clouds among multiple user requests in the FCE and represents the contact point
for users to connect with the federated cloud. Each cloud is managed by a cloud
broker, providing the required computing resources and services for the user
tasks.

At the federated cloud level, QPFS distributes the load by partitioning the task
queue based on the calculated LLF, and at the cloud level, MASG schedules the
tasks on the VMs based on the Activity Selection by Greedy technique,
considering the deadline as the main QoS parameter.

Figure 1 QPFS_MASG architecture.

Figure 2 shows a sequence diagram of the interaction between the components of
the QPFS_MASG architecture.

224 B.S. Rajeshwari, et al.

Figure 2 Sequence diagram of the QPFS_MASG architecture.

4.1 Queue Partitioned based Fair Service Distribution System
(QPFS)

At the FCE, all cloud providers register with the FCM, offering their resources to
the federated cloud. Each cloud provider provides the details of their total
resources available and dedicated to the FCE, the current usage of these
resources, the list of available services as well as other economic and technical
aspects. Based on all these parameters, a weightage is assigned to each cloud
[𝑾𝑪𝒊] as per Table 2. When the tasks arrive at the FCE, the FCM puts all the
incoming tasks τ1, τ2, τ3 . . ., which are independent in nature, into the main queue,
𝑸𝑭𝑪. Each task τi, has a deadline 𝑫𝑳𝒕 and has task length 𝛕𝐢

𝐋, defined in terms of
MIPS (million instructions per second).

QPFS utilizes the following two modules: i) a load level calculator module, ii) a
queue partitioning module.

The load level calculator module calculates load level factor [𝐶௜
௅௅ி] at each cloud,

𝐶௜. This is the ratio between the present utilization of resources 𝐶௜
௉௎ோ allocated to

the FCE and the total resources contributed 𝐶௜
்ோ஼ to the FCE, as specified in Eq.

(2).

 𝑪𝒊
𝑳𝑳𝑭=

𝑪𝒊
𝑷𝑼𝑹

𝑪𝒊
𝑻𝑹𝑪 (2)

 Efficient Task Scheduling and Fair Load Distribution 225

The queue partitioning module used in the proposed approach, which makes
decisions on partitioning the complete set of user requests, balances and takes
care of a fair distribution of the incoming load among the cloud providers based
on their resource contribution to the FCE. The queue partitioner module analyzes
the LLF at each cloud and partitions the incoming task queue 𝑄ி஼ into M sub
queues according to the value of 𝐶௜

௅௅ி.

𝑄௣ଵ, 𝑄௣ଶ, 𝑄௣ଷ, . . . 𝑄௣ெ, where each sub queue 𝑄௣௜ has a different size

 𝑸𝑭𝑪 = ෍ 𝑸𝒑𝒊

𝑴

𝒊ୀ𝟏

 Algorithm 1: Queue Partitioning (Q)
Input: Task queue 𝑸𝑭𝑪 at federated cloud level
Output: M sub queues 𝑸𝒑𝟏, 𝑸𝒑𝟐, 𝑸𝒑𝟑, . . . 𝑸𝒑𝑴
1. Find a cloud with the largest load level factor at time t among M clouds
 𝐶௅௥௅௅ி= C1

 for each cloud Ci, where i = 2 to M
 if (𝐶௜

௅௅ி > = 𝐶௅௥௅௅ி)

 𝐶௅௥௅௅ி
  𝐶௜

௅௅ி

 end if
 end for

2. Balance load level factor of the remaining clouds to equalize the load with the
largest load level factor

 for each cloud Ci where i = 1 to M

 𝐶௜
஻௅௅ி = 𝐶௅௥௅௅ி - 𝐶௜

௅௅ி

 end for
3. Partitioning the main queue 𝑸𝑭𝑪 with N number of tasks into M sub queues, one

for each Ci. 𝑸𝒑𝒊 is assigned based on 𝑪𝒊
𝑩𝑳𝑳𝑭of Ci and the weight of Ci, except for

the cloud with the largest load level such that the factors of all clouds are
balanced.

 for each cloud Ci where i = 1 to M
 if (𝐶𝑖 ! = 𝐶௅௥௅௅ி

)
 Q୮୧

୘୒୘ Task allotment based on C୧
୆୐୐୊and 𝑊஼௜

 end if

 end for
4. If 𝑸𝑭𝑪 still has tasks, partition 𝑸𝑭𝑪 and add to 𝐐𝐩𝐢

 of all Ci based on 𝑾𝑪𝒊 such
that the load level factors of all clouds are the same

 if [∑ Q୮୧
୘୒ெ

௜ୀଵ < N]
 for each cloud Ci where i = 1 to M
 Q୮୧

୘୒୘ Task allotment based on 𝑊஼௜

226 B.S. Rajeshwari, et al.

 end for
 end if
5. End

Thus, the FCM dispatches the set of N tasks among M clouds of FCE based on
its defined weight and estimated LLF.

4.2 Optimum Task Scheduling Using Modified Activity Selection
Algorithm by Greedy Approach (MASG)

The Activity Selection algorithm using Greedy technique is a combinatorial
optimization technique for the selection of non-conflicting activities that always
gives an optimal solution.

At the cloud level, within each cloud an MASG is invoked for optimal scheduling
of tasks among the VMs based on the deadline constraint of the tasks. MASG
uses the concept of the Activity Selection algorithm using the Greedy technique.
Here, FCM sends k tasks τ1, τ2, τ3. . . τk to the cloud queue for the execution of
the tasks in that cloud.

MASG schedules a task to the ith virtual machine VMi considering the finishing
time of running task j at VMi [ft(runtaskj(VMi))]. However, the real difficulty is
in choosing the maximum number of tasks that can be allotted to the VMs with
the goal of getting all these tasks completed with the minimum number of VMs
by the constraint that a VM can execute only one single task at a time [23].

This MASG approach further calculates the processing time of task i [taski] on
VMi [pt (taski (VMi))] and analyzes whether the task can be accomplished within
the deadline on VMi. The processing time is calculated based on the CPU and
memory configuration on VMi as well as the task requirements.

Thus, the proposed MASG maintains two queues: QueueStart_Time and QueueDeadline.
QueueStart_Time contains the start times of tasks τ𝐬𝐭 and QueueDeadline contains the
deadlines of tasks 𝐷𝐿௧. On the basis of the defined deadlines, QueueDeadline is
organized in increasing order in conjunction with QueueStart_Time. Hence, MASG
starts mapping taski onto VMi such that

 𝛕𝒊
𝒔𝒕(VMi) >= ft (runtaskj (VMi)) (3)

and

 ft (runtaskj) + pt (taski (VMi)) < = 𝑫𝑳𝒕
 (4)

Once task taski is mapped onto VMi, the response time of taski becomes the finish
time, which is used for mapping the next task in the queue, i.e.

 Efficient Task Scheduling and Fair Load Distribution 227

 ft(runtaskj(VMi))  response_time(taski) (5)

Eq. (3) ensures that the starting time of the next task i is greater than or equal to
the finishing time of running task j on VMi.

The processing time of taski on VMi is calculated considering the task size and
the service rate of VMi as shown in Eq. (6):

 pt (taski (VMi)) = 𝛕𝐢
𝐋/ Service_rate (VMi) (6)

The main goal of MASG is that the users get good quality of service by servicing
their tasks within the deadline, satisfying SLA, improving the response time and
servicing the user tasks with the least number of VMs in the cloud at any time t.

Algorithm 2: MASG (𝑸𝒑𝒊 , V)
Input: 𝑄௣௜ with k tasks 𝜏= {, 𝜏1, 𝜏2, … 𝜏k}

 Set of VMs V= {VM1, VM2, …VMV}
Output: Subset of tasks mapped onto each VM

1. for each task 𝜏i in 𝑄௣௜ has a deadline

 QueueDeadline[i]Estimate deadline of task 𝜏i based on the priority of the task
 end for

2. for each VMi where i = 1 to V
 for each task 𝜏i in 𝑄௣௜
 QueueStart_Time [i]Assess starting time of the task such that it can be serviced

within its defined deadline on VMi.
 end for
 Sort QueueDeadline on the basis of the task deadlines
 for each task 𝜏i
 if (τ𝒊

𝒔𝒕(VMi) >= ft(runtaskj (VMi))) then

 pt (taski (VMi)) = τ୧
୐/ Service_rate (VMi)

 if (ft (runtaskj) + pt(taski(VMi)) < = 𝐷𝐿௧) then
 Map 𝜏i to VMi

 Remove 𝜏i from 𝑄௣௜

 ft(runtaski(VMi))  response_time(taski)
 end if
 end if
 end for
 end for
3. End

The Activity Selection based Scheduling using Greedy always yields an optimal
solution. Thus, MASG optimally maps all the tasks to the least number of VMs.
Hence, the proposed technique not only completes the tasks within their

228 B.S. Rajeshwari, et al.

deadlines, but also reduces the response time using the minimum number of VMs
in the cloud, leading to optimized resource utilization.

4.3 Time Analysis of QPFS_MASG Approach

The Queue Partitioning algorithm analyzes the load level factor at m individual
clouds and partitions the incoming task queue into m sub queues, each with n
number of tasks. Hence, the time complexity of the Queue Partitioning algorithm
is O(mn).

 Time Complexity (Queue Partitioning) = O (mn)

The proposed MASG approach uses the Activity Selection based technique for
selecting n tasks to a VM based on the start and the finish time of the tasks, which
can be solved in O (n log n) time.

Time Complexity (MASG) = O (n log n)

5 Experimental Setup

QPFS_MASG is operated in a federated cloud environment, which is hard to
implement in practice due to the large size of the network [24]. Hence, the
performance of the proposed approach was simulated using the CloudSim report
toolkit, including CloudSim version 3.0.3 and NetbeansIDE8.0.

The classes of CloudSim simulator were extended to simulate the proposed
algorithms, implemented in Java [25]. The experiment was performed on an Intel
Core i7-3770 with a 64-bit Windows 10 platform machine and 4 GB of DDR3
SD RAM.

The FCE setup was made by deploying a set of computational resources across
multiple clouds. For the evaluation, three clouds configured with varying
capacities were created to evaluate fairness in load distribution among them based
on their resource capacity dedicated to the FCE. The cloud configuration settings
made for the evaluation are shown in Table 2.

The weight for the clouds was defined based on their resource contribution to the
FCE. Three different VM instance types were considered at each cloud in the
evaluation to process the incoming tasks, as shown in Table 3.

As shown in Table 2, Cloud 3 had more capacity than Cloud 1 and Cloud 2 with
respect to processing speed, memory capacity and storage capacity and hence 12
VMs were created in this cloud. The VMs of type 1 had more capacity then the
VMs of types 2 and 3 with respect to processing speed, memory capacity and
storage capacity.

 Efficient Task Scheduling and Fair Load Distribution 229

Table 2 FCE configuration.

Table 3 VM instance configuration.

VM Instance Type
Computing
Capacity in

MIPS

Memory Capacity in
Megabytes

Storage Capacity in
Megabytes

VM Instance Type-1 3000 1024 100000
VM Instance Type-2 2000 800 10000
VM Instance Type3 1000 512 10000

6 QPFS_MASG Results and Discussion

To show the effectiveness of the proposed approach, the results were compared
with the Service Proximity Service Broker Policy (SPSBP) [10] at the federated
cloud level and with Efficient VM Load Balancing (EVMLB) [12] at the cloud
level.

As shown in Figure 3, on average, QPFS_MASG dispatched 64.6%, 70% and
66.6% of service tasks to Cloud 1, Cloud 2 and Cloud 3, while SPSBS provided
73%, 34.3%, and 19.86% of service tasks to Cloud 1, Cloud 2 and Cloud 3
respectively.

To achieve a fair and balanced distribution of the load among multiple cloud
providers, the QPFS_MASG approach dynamically calculates the LLFs of the
individual clouds and partitions the incoming task queue on the basis of the
calculated LLFs at time t. Thus, the proposed approach at the federated cloud
level achieves fairness in the load distribution among multiple clouds in the FCE
based on their resource contribution and avoids overloading of any cloud.

In Figure 4, Task Deadline (denoted by the red line) indicates the deadlines of the
tasks. QPFS_MASG Finishtime (denoted by the green line) indicates the finish
time of the tasks from the QPFS_MASG approach, while SPSBP Finishtime
(denoted by the blue line) depicts the finish time from the SPSBP approach.

230 B.S. Rajeshwari, et al.

Figure 3 Load distributions at different time slots.

Figure 4 Comparison of task finish time with deadline.

The curve shows that QPFS_MASG serviced the maximum number of tasks
before the deadline comparatively. Here, the task deadline was taken as the key
parameter. Thus, the task queue was organized in increasing order of deadline
and mapped the tasks to the VMs considering the starting time of the next task

16 16

66

83

68

83

73

83

100 100

25

8

75

25

75

25

75

25

100

91

27

9

63

4

68

9

75

18

100

59

0

20

40

60

80

100

120

Q
PF

S_
M

A
SG

SP
SB

P

Q
PF

S_
M

A
SG

SP
SB

P

Q
PF

S_
M

A
SG

SP
SB

P

Q
PF

S_
M

A
SG

SP
SB

P

Q
PF

S_
M

A
SG

SP
SB

P

L
O

A
D

 D
IS

T
R

IB
U

T
IO

N
 I

N
 P

E
R

C
E

N
T

A
G

E

COMPARISON ON LOAD DISTRIBUTION AT DIFFERENT TIME
SLOTS

C1

C2

C3

 Efficient Task Scheduling and Fair Load Distribution 231

and the response time of the running task. Further, it analyzed whether the
processing time of the task on that VM can be accomplished within its deadline.
Thus, almost 90% of the tasks were finished within their deadline.

In Figure 5, a comparison of SLA violations is shown. Figure 5 shows that the
QPFS_MASG approach had 10% improvement in adhering to SLA compared to
the SPSBP approach. The proposed QPFS_MASG framework improved the
average response time of the tasks in the range of 31% to 40% on the different
clouds, as shown in Figure 6. The QPFS_MASG framework distributed the tasks
based on their resource contribution, so overloading of any cloud was avoided,
which reduces the waiting time of the tasks at any cloud, as shown in the Figure
7, and in turn reduced the response time.

Figure 5 Comparison on SLA violation rate.

Figure 6 Comparison of average response time.

11%

21%

0

3

6

9

12

15

18

21

24

QPFS_MASG SPSBPS
L

A
 V

IO
L

A
T

IO
N

 R
A

T
E

 I
N

P

E
R

C
E

N
T

A
G

E

SLA VIOLATION

QPFS_MASG

SPSBP

9.38
7.82 8.50

13.68 13.07
12.51

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

Cloud1 Cloud2 Cloud3

A
V

E
R

A
G

E

R
E

S
P

O
N

S
E

T

IM
E

IN

S

E
C

O
N

D
S

AVERAGE RESPONSE TIME

QPFS_MASG

SPSBP

232 B.S. Rajeshwari, et al.

Figure 7 Comparison of average waiting time.

6.1 Example Demonstrating User Task Servicing with Least
Number of VMs by MASG Approach Compared to EVMLB
Approach

Consider 3 virtual machines VM1, VM2, VM3 with a capacity of 1000 MIPS and
8 tasks arriving at time t. The arrival time, deadline and assessed starting time of
the task as well as the number of instructions in each task are shown in Table 4.

Table 4 Arrival time, deadline and number of instructions of the tasks.

Tasks T1 T2 T3 T4 T5 T6 T7 T8

Arrival Time 1 1 1 1 1 1 1 1
Starting Time 1 1 8 2 3 5 4 5

Deadline 3 2 9 4 5 7 5 8
Number of

Instructions
2000 1000 1000 2000 2000 2000 1000 3000

The tasks in the queue are sorted as per the deadline, is shown in Table 5.

Table 5 Tasks sorted based on deadline.

Tasks T2 T1 T4 T5 T7 T6 T8 T3

Arrival Time 1 1 1 1 1 1 1 1
Starting Time 1 1 2 3 4 5 5 8

Deadline 2 3 4 5 5 7 8 9

Number of Instructions 1000 2000 2000 2000 1000 2000 3000 1000

Schedule first task T2 to VM1

3.21

6.25 6.47

12.10
11.08 10.10

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

Cloud1 Cloud2 Cloud3

A
V

E
R

A
G

E

W
A

IT
IN

G

T
IM

E

IN

SE
C

O
N

D
S

AVERAGE WAITING TIME

QPFS_MASG

SPSBP

 Efficient Task Scheduling and Fair Load Distribution 233

 ft(T2) = 1 + 1 = 2

Next, schedule tasks to VM1 iff,

st(task)>=ft(runtask) and ft(runtask) + pt(task) < dl(task)

as shown in Table 6.

Table 6 Tasks scheduled on VM1.

Thus, tasks scheduled to VM1 are T2, T4, T7, T6, and T3.

Step repeats for VM2. Schedule first task T1 to VM2

ft(T1) = 1 + 2 = 3

Next schedule tasks to VM2 iff,

st(task)>= ft(runtask) and ft(runtask) + pt(task) < dl(task)

as shown in Table 7.

Table 7 Tasks scheduled to VM2.

Tasks T5 T8
Arrival Time 1 1
Starting Time 3 5

Deadline 5 8
Number of Instructions 2000 3000

𝛕𝐢
𝐬𝐭 >=ft(runtaskj) ? 3>=3? Yes 5>=5? Yes

ft(runtaskj) + pt(taski)
< = 𝐃𝐋𝐭?

3+2=5<=5? Yes
ft(T5) =5

5+3=8<=8? Yes
ft(T8)=8

Tasks T1 T4 T5 T7 T6 T8 T3
Arrival Time 1 1 1 1 1 1 1
Starting Time 1 2 3 4 5 5 8

Deadline 3 4 5 5 7 8 9
Number of

Instructions
2000 2000 2000 1000 2000 3000 1000

𝛕𝐢
𝐬𝐭

>=ft(runtaskj
) ?

1>2?
No

2>=2?
Yes

3>=4?
No

4>=4?
Yes

5>=5?
Yes

5>=7?
No

8>=7?
Yes

ft(runtaskj) +
pt(taski) < =

𝐃𝐋𝐭?

2 +
2=4<=

3?
No

2+2=4<
=4? Yes
ft(T4)

=4

4+2=6
<=5?
No

4+1=5
<=5?
Yes

ft(T7)
=5

5+2=7<
=7? Yes
ft(T6)

=7

7+3=1
0<=8?

No

7+1=8<=
9?

Yes
ft(T3) =8

234 B.S. Rajeshwari, et al.

Thus, tasks scheduled to VM2 are T1, T5, and T8

Using the EVMLB [12] approach, if the same tasks scheduled to VMs that offer
the minimum expected completion time, then the tasks scheduled to the VMs
takes place as follows:

 VM1  T1, T6

 VM2  T2, T4, T7

 VM3  T3, T5, T8

Figure 8 precisely illustrates the effectiveness of task allocation by the MASG
approach compared to the EVMLB approach. The MASG approach optimally
scheduled the tasks to VMs and services 8 tasks with 2 VMs within the deadline,
whereas the EVMLB approach used 3 VMs to service the same number of tasks.

MASG tries to assign tasks to a VM as long as the tasks can be finished within
the deadline and also avoids creating and assigning tasks to a new VM. Thus,
MASG consolidates the tasks onto the least number of VMs.

Figure 8 Comparison on VM allocation.

7 Conclusions

In this paper, a hierarchical approach called QPFS_MASG was proposed for
efficient distribution of user tasks among multiple cloud providers in an FCE as
well as among VMs within the clouds. The proposed QPFS_MASG presents two
scheduling approaches at two levels: Queue Partitioned based Fair Service
Distribution for Federated Cloud (QPFS) at the federated cloud level and the
Modified Activity Selection based Task Scheduling by Greedy (MASG)
technique at the cloud level.

Queue partitioned scheduling at the federated cloud level partitions the incoming
queue aiming towards a fair distribution of the load among all participating cloud
service providers of the federated cloud. MASG at the cloud level schedules tasks
among VMs considering the task deadline as the key parameter.

 Efficient Task Scheduling and Fair Load Distribution 235

The results obtained showed fairness in load distribution among multiple cloud
service providers with an average of 64.6%, 70% and 66.6% of load to Cloud 1,
Cloud 2 and Cloud 3, while SPSBP scheduled 73%, 34.3%, and 19.86% of load
to Cloud 1, Cloud 2 and Cloud 3 respectively.

The proposed framework also showed that 90% of the tasks were finished before
their deadline ended, with an improvement in average response time between
31% and 40%. The presented example demonstrated that the proposed MASG
algorithm always consolidated tasks onto the least number of VMs. Thus, the
proposed approach not only performed fair distribution of load among multiple
clouds, but also enhanced the response time, servicing tasks within their deadline
and consolidating tasks onto the minimum number of VMs.

Nomenclature:

Ci : ith cloud

𝑅்
௧ : response time of task 𝑡

µ்
௧ : execution time of task 𝑡

𝜔்
௧ : waiting time of task 𝑡

𝐷𝐿௧ : deadline of the task 𝑡
𝐶௜

்ோ஼ : total resource capacity dedicated by Ci to FCE

𝐶௜
௉௎ோ : present usage of resources at Ci

𝐶௜
௅௅ி : load level factor at Ci

𝐶୐୰୐୐୊
 : cloud with largest load level factor

𝐶୧
୆୐୐୊ : balancing load level factor of Ci

Q୮୧
୘୒୘ : queue with total number of tasks for Ci

𝑊஼௜ : weight defined for Ci based on contribution of resources by the cloud
provider to the FCE

𝑄ி௖ : main queue at federated cloud level

References

[1] Assis, M.R.M, Bittencourt, L.F. & Tolosana-Calasanz, R., Cloud
Federation: Characterization and Conceptual Model, IEEE/ACM 7th
International Conference on Utility and Cloud Computing, pp. 585-590,
Dec. 2014. DOI: 10.1109/UCC.2014.90.

[2] Lokesh, V., Jayaraman, S., N, A., Soni, A., & Guruprasad, H.S., A Survey
on the Capabilities of Cloud Simulators, International Journal of
Engineering Research and General Science, 3(4), pp. 958-969, Aug. 2015.

[3] Rajeshwari, B.S. & Dakshayini, M., Optimized Bit Matrix-based Power
Aware Load Distribution Policy among Federated Cloud, Elsevier

236 B.S. Rajeshwari, et al.

Procedia Computer Science, 167, pp. 1771-1790, April 2020. DOI:
10.1016/j.procs.2020.03.387.

[4] Culhane, W., Eugster, P., Jayalath, C., Kogan, K. & Stephen, J., Cloud
Federation and Geo-Distribution, Encyclopedia of Cloud Computing, John
Wiley and Sons Ltd., pp. 178-190, May 2016.

[5] Sudhakara, S., Nithya, N.S. & Radhakrishnana, B.L., Fair Service
Matching Agent for Federated Cloud, Computers and Electrical
Engineering, Elsevier, 76, pp. 13-23, June 2019. DOI: 10.1016/
j.compeleceng.2019.03.002.

[6] Sindhu, K. & Guruprasad, H.S., A Performance Analysis on Cloud Based
Mobile Augmentation in Mobile Cloud Computing, McGraw-Hill
International Conference on Signal, Image Processing Communication and
Automation, JSSATE, Bangalore, pp. 398-403, 6th and 7th June 2017.

[7] Bhavani B.H. & Guruprasad, H.S., A Comparative Study on Resource
Allocation Policies in Cloud Computing Environment, Compusoft, An
International Journal of Advanced Computer Technology, 3(6), pp. 893-
899, June 2014.

[8] Rajeshwari B.S., Dakshayini, M. & Guruprasad, H.S., Service Level
Agreement-based Scheduling Techniques in Cloud: A Survey, International
Journal of Computer Applications, 132(5), pp. 20-26, Dec. 2015. DOI:
10.5120/ijca 2015907358.

[9] Ghobaei-Arani, M. & Shahidinejad, A., An Efficient Resource Provisioning
Approach for Analyzing Cloud Workloads: A Metaheuristic based
Clustering Approach, The Journal of Supercomputing, 77(1), pp. 711-750,
Jan. 2021. DOI: 10.1007/s11227-020-03296-w.

[10] Wei, J., Zhou, A., Yuan, J. & Yang, F., AIMING: Resource Allocation with
Latency Awareness for Federated-Cloud Applications, Hindawi: Wireless
Communications and Mobile Computing, pp.1-11, April 2018. DOI:
10.1155/2018/4593208.

[11] Xu, J., & Palanisamy, B., Cost-Aware Resource Management for
Federated Clouds using Resource Sharing Contracts, IEEE 10th
International Conference on Cloud Computing, pp. 238-245, June 2017.
DOI: 10.1109/CLOUD.2017.38.

[12] Zhao, L., Du, M. & Chen, L., A New Multi-Resource Allocation
Mechanism: A Tradeoff between Fairness and Efficiency in Cloud
Computing, China Communications, IEEE, 15(3), pp. 57-77, April 2018.
DOI: 10.1109 /CC.2018.8331991.

[13] Habibi, M., Fazli, M. A. & Movaghar, A., Efficient Distribution of Requests
in Federated Cloud Computing Environments Utilizing Statistical
Multiplexing, Future Generation Computer Systems, Elsevier, 90, pp. 451-
460, Jan. 2019. DOI: 10.1016/j.future.2018.08.032.

 Efficient Task Scheduling and Fair Load Distribution 237

[14] Taha, A., Manzoor, S. & Suri, N., SLA-Based Service Selection for Multi-
Cloud Environments, IEEE International Conference on Edge Computing,
pp. 65-72, June 2017. DOI: 10.1109/ IEEE.EDGE.2017.17.

[15] Levin, A., Lorenz, D., Merlino, G., Panarello, A., Puliafito, A. & Tricomi,
G., Hierarchical Load Balancing as a Service for Federated Cloud
Networks, Computer Communication, Elsevier, 129, pp. 125-137, Sept.
2018. DOI: 10.1016/j.comcom.2018.07.031.

[16] Motwani, A., Chaturvedi, R. & Shrivastava, A., Profit Based Data Center
Service Broker Policy for Cloud Resource Provisioning, International
Journal of Electrical, Electronics and Computer Engineering, 5(1), pp. 54-
60, 2016.

[17] Kumar, M. & Sharma, S.C., Deadline Constrained Based Dynamic Load
Balancing Agorithm with Elasticity in Cloud Environment, Computers and
Electrical Engineering, Elsevier, 69, pp. 395-411, July 2018. DOI:
10.1016/j.compeleceng.2017.11.018.

[18] Sharma, M. & Sharma, P., Performance Evaluation of Adaptive Virtual
Machine Load Balancing Algorithm, International Journal of Advanced
Computer Science and Applications, 3(2), pp. 86-88, 2012. DOI: 10.14569/
IJACSA.2012.030215

[19] Shahidinejad, A., Ghobaei-Arani, M., & Masdari, M., Resource
Provisioning using Workload Clustering in Cloud Computing
Environment: A Hybrid Approach, Cluster Computing, 24(1), pp. 319-342,
March 2021. DOI: 10.1007/s10586-020-03107-0.

[20] Aslanpour, M.S., Dashti, S.E., Ghobaei-Arani, M. & Rahmanian, A.A.,
Resource Provisioning for Cloud Applications: A 3-D Provident and
Flexible Approach, The Journal of Supercomputing, 74(12), pp. 6470-
6501, Dec. 2018. DOI 10.1007/s11227-017-2156-x.

[21] Shahidinejad, A., Ghobaei-Arani, M. & Esmaeili, L., An Elastic Controller
using Colored Petri Nets in Cloud Computing Environment, Cluster
Computing, 23(2), pp. 1045-1071, June 2020. DOI: 10.1007/s105 86-019-
02972-8.

[22] Ghobaei-Arani, M., Souri, A., Baker, T. & Hussien, A., ControCity: An
Autonomous Approach for Controlling Elasticity using Buffer Management
in Cloud Computing Environment, IEEE Access 7, Special Section on
Mobile Edge Computing and Mobile Cloud Computing: Addressing
Heterogeneity and Energy Issues of Compute and Network Resources, pp.
106912-106924, Aug. 2019, DOI: 10.1109/ACCESS.2019.2932462.

[23] Horowitz, E., Sahni, S. & Rajasekhara, Fundamentals of Computer
Algorithms, 2nd Edition, University Press Pvt. Ltd, 2009.

[24] Singh, D.A.A.G., Priyadharshini, R. & Leavline, E.J., Analysis of Cloud
Environment using CloudSim, Artificial Intelligence and Evolutionary
Computations in Engineering Systems, Springer, pp. 325-333, March 2018.

238 B.S. Rajeshwari, et al.

[25] Goyal, T., Singh, A. & Agrawal, A., CloudSim: Simulator for Cloud
Computing Infrastructure and Modeling, Procedia Engineering, Elsevier,
38, pp. 3566-3572, Sep. 2012. DOI: 10.1016/j.proeng.2012.06.412.

