

 J. ICT Res. Appl., Vol. 16, No. 2, 2022, 101-122 101

Received September 29th, 2021, Revised May 27th, 2022, Accepted for publication June 8th, 2022.
Copyright © 2022 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2022.16.2.1

Strengthening INORMALS Using Context-based Natural
Language Generation

Soni Yora & Ari Moesriami Barmawi*

Graduate School of Informatics, School of Computing, Telkom University, Kawasan
Pendidikan Telkom, Sukapura, Kec. Dayeuhkolot, Bandung 40257, Indonesia

*E-mail: mbarmawi@melsa.net.id

Abstract. The noiseless steganography method that has been proposed by
Wibowo can embed up to six characters in the provided cover text, but more than
59% of Indonesian words have a length of more than six characters, so there is
room to improve Wibowo’s method. This paper proposes an improvement of
Wibowo’s method by modifying the shifting codes and using context-based
language generation. Based on 300 test messages, 99% of messages with more
than six characters could be embedded by the proposed method, while using
Wibowo’s method this was only 34%. Wibowo’s method can embed more than
six characters only if the number of shifting codes is less than three, while the
proposed method can embed more than six characters even if there are more than
three shifting codes. Furthermore, the security for representing the number of code
digits is increased by introducing a private key with the probability of guessing
less than 1, while in Wibowo’s method this is 1. The naturalness of the cover
sentences generated by the proposed method was maintained, which was about
99% when using the proposed method, while it was 98.61% when using Wibowo’s
method.

Keywords: Baudot-Murray code; INORMALS; linguistic-based steganography; natural
language generation; sentence paraphrasing.

1 Introduction

Along with the increasing exchange of digital data in daily communication,
mainly in the form of texts, it is necessary to guarantee message confidentiality
and avoid message forgery. One method to guarantee message security
(specifically for message authenticity) is text steganography.

Desoky has proposed Mature Linguistic Steganography (Matlist) to hide secret
messages in documents that have certain domains based on random series data
[2]. Later, Desoky proposed NORMALS (Normal Linguistic Steganography) to
overcome vulnerabilities, linguistic flaws, and limitation issues of Matlist.
NORMALS employs natural language generation (NLG) to generate noiseless
(flawless) and legitimate cover texts by manipulating the non-random series input
parameters of the NLG system to camouflage the data in the generated text [1].

102 Soni Yora & Ari Moesriami Barmawi

Wibowo and Barmawi have proposed INORMALS to improve NORMALS using
a modified Baudot-Murray code to encode secret messages and represent the
generated code digits as answer sentences to questions in a questionnaire (e-
money).

The output of INORMALS is a cover text consisting of sentences and
timestamps. INORMALS can embed up to six characters in the cover text [3].
However, more than 59% of Indonesian words are longer than six characters, and
thus it is difficult to conceal secret messages in Indonesian, even for a single word
only. Hence, possibilities for an updated method that can accommodate longer
secret messages should be investigated. Furthermore, the number of code digits
used in the INORMALS method is written in plain text as part of the timestamp
[3]. The number of code digits should be concealed to reduce the risk of the secret
message being broken by attackers and improve the system’s robustness.

This paper proposes solutions to overcome these shortcomings of INORMALS.
The embedding capacity is increased by reducing the code digit representation to
sentences. In the proposed method, the security level for representing the number
of code digits is improved using a private key, while maintaining the naturalness
of the sentences using sentence paraphrasing based on contextual synonym
substitution [5] and sentence pattern transformation [6,7]. This method can be
used on any language, but in this research the Indonesian language was used,
because Wibowo’s study used the Indonesian language. Thus, the performance
of his method and our proposed method could be compared. In the case of other
languages, the language’s corpus along with its semantic and grammar rules must
be used.

This research also used external input in the form of a questionnaire consisting of
eighteen questions with five answers on a Likert scale as used by Wibowo. Since
the Indonesian language was used in this research, the cover text was in
Indonesian. Based on the experiment result, the proposed method generates more
natural sentences and increases the embedding capacity.

2 INORMALS

INORMALS is a modification of the Normal Linguistic Steganography method
that employs natural language generation (NLG) [9] techniques to generate
noiseless (flawless) and legitimate cover texts by using a questionnaire to
camouflage the data in the generated text. INORMALS uses an e-money
questionnaire with answers in five-point Likert-scale form [3]. The maximum
number of questions is eighteen. The INORMALS architecture is shown in
Figure 1.

 Strengthening INORMALS Using Context-based NLG 103

Figure 1 Overview of INORMALS.

The INORMALS Encoder converts the message’s text into a modified Baudot-
Murray code [3]. The modified Baudot-Murray code is an encoding system that
applies a quinary number system [12] consisting of 125 codes, with the left and
right columns mapping the bigrams to characters. For selecting the left or the
right side, shifting codes are used, represented by the number 444. The bigram
mapping to Baudot-Murray code uses filtering of a corpus containing 1,000
articles. An example of a Baudot-Murray code table is shown in Table 1.

The following is an example of generating a cover text with INORMALS. The
secret message is ‘PECAT’, with the length of the message is 4. The INORMALS
Encoder converts the secret message into Baudot-Murray code based on the
bigram column, which in this example resulted in the number of code digits is 3
(in code ‘024 414 444 431’). INORMALS represents one code digit by one
sentence derived from a questionnaire. When there are remaining questions, it is
always generated in full to avoid casting suspicion on the cover text. Another type
of sentence in the INORMALS cover text represents the number of code digits.
This number is represented by a timestamp.

INORMALS uses static template sentences to represent one code digit, which are
selected according to the number of code digits. One digit has three sentence
options that can be selected randomly [3]. Table 2 shows examples of the
template sentences.

104 Soni Yora & Ari Moesriami Barmawi

Table 1 Bigram-Baudot-Murray code map.

Code Left Right No. Code Left Right No. Code Left Right
000 AN IM 42 132 TE _G 84 314 TR AJ
001 N_ EP 43 133 SA OD 85 320 _E HW
002 NG _O 44 134 AH IG 86 321 ES UJ
003 _D AU 45 140 _A EY 87 322 RT RC
004 EN E_ 46 141 H_ _F 88 323 RU _W
010 A_ ID 47 142 MA IB 89 324 GG UB
011 DA _R 48 143 BE IF 90 330 GU VE
012 I_ LU 49 144 ON RD 91 331 RE RP
013 ER KI 50 200 IK PI 92 332 KU SP
014 KA MO 51 201 RI NU 93 333 RO FO
020 _P AB 52 202 HA LO 94 334 AY CO
021 _M IH 53 203 TI D_ 95 340 BI SK
022 AR P_ 54 204 _Y SY 96 341 JA SH
023 YA KS 55 210 NI FI 97 342 SU A
024 PE RK 56 211 U_ FA 98 343 NS B
030 LA TO 57 212 KE RM 99 344 _L C
031 ME PU 58 213 IT RH 100 400 BU D
032 AT EH 59 214 IA O_ 101 401 OR E
033 AK NO 60 220 AI VA 102 402 KT F
034 G_ RS 61 221 UA OS 103 403 UT G
040 _S DU 62 222 NT NC 104 404 UM H
041 _T GK 63 223 AM JI 105 410 AA I
042 RA NK 64 224 UK JE 106 411 ET J
043 TA IR 65 230 AD CE 107 412 _H K
044 SI UL 66 231 _U KN 108 413 AG L
100 DI PR 67 232 IS F_ 109 414 CA M
101 IN _C 68 233 LI RL 110 420 _J N
102 GA RB 69 234 NY GO 111 421 GI O
103 AL NJ 70 240 LE NN 112 422 _N P
104 BA OM 71 241 AP _V 113 423 US Q
110 _K UP 72 242 _I NF 114 424 OL R
111 UN Y_ 73 243 NE UI 115 430 MI S
112 _B HI 74 244 R_ RN 116 431 KO T
113 SE EG 75 300 DE IO 117 432 ST U
114 AS HU 76 301 M_ OT 118 433 MP V
120 NA UH 77 302 EB UG 119 434 UR W
121 K_ GE 78 303 S_ OG 120 440 JU X
122 TU DO 79 304 MB KR 121 441 WA Y
123 T_ UD 80 310 IL RJ 122 442 MU Z
124 EL PO 81 311 EK TK 123 443 ED _
130 EM IP 82 312 L_ AW 124 444 SHIFTING
131 PA EC 83 313 ND YE

 Note: ‘_’ is space.

 Strengthening INORMALS Using Context-based NLG 105

Table 2 Sentence templates.

Question Answer Sentence Pattern Sentences

0 0 0
Anda / sama sekali tidak merasa terbantu / dalam

mengelola aktivitas keuangan Anda / sejak
menggunakan e-money

0 0 1
Sejak menggunakan e-money / Anda / sama sekali
tidak merasa terbantu / dalam mengelola aktivitas

keuangan anda /

0 0 2
Sejak menggunakan e-money / Anda / sama sekali
tidak merasa terbantu / dalam mengelola aktivitas

keuangan Anda / sehari-hari /

The number of code digits is represented by a timestamp in seconds and
milliseconds. This process aims to let the receiver know what the number of code
digits is. The seconds and milliseconds represent the number of code digits using
Eq. (1):

second = hour + minute – numberOfCodeDigits

millisecond = random(0 − 499) if second < 0

millisecond = random(500 − 999) if second > 0

(1)

For example, the number of code digits is 12, and the current time is 17:17:27.
The second value of the result from Eq. (1) is 32 and the millisecond is 524. The
complete sentence is ‘Laporan ini dihasilkan secara otomatis oleh sistem pada
tanggal 2020-08-17 jam 17:17:32.524’. An example of a cover text from
INORMALS is shown in Figure 2.

Anda sama sekali tidak merasa terbantu dalam mengelola aktivitas keuangan Anda sejak menggunakan e-
money.
Anda terkadang bisa bertransaksi lebih cepat dengan e-money, walaupun Anda sangat jarang bertransaksi
lebih tepat dengannya.
Anda hampir tidak pernah membawa banyak uang tunai sejak menggunakan e-money.
Anda sering sekali mendapatkan manfaat khusus dari merchant sejak menggunakan e-money.
Keluarga Anda sangat menyarankan Anda menggunakan e-money, walaupun teman-teman Anda ragu-ragu
menyarankan Anda menggunakannya.
Orang-orang di lingkungan Anda menentang Anda menggunakan e-money.
Anda mengikuti komunitas dimana banyak anggotanya yang rutin menggunakan e-money.
Anda menilai besaran biaya layanan e-money tidak wajar.
Anda sangat berkeberatan dengan besaran biaya awal dari layanan e-money, walaupun Anda setuju dengan
besaran biaya transaksi dari layanannya.
Anda berpendapat layanan e-money memberikan manfaat yang sangat buruk dilihat dari besaran biaya yang
diperlukan.
Anda berpendapat layanan e-money memberikan nilai yang biasa saja dilihat dari besaran biaya yang
diperlukan.
Anda terkadang menggunakan layanan e-money untuk berbelanja.
Anda sering menggunakan layanan e-money untuk membeli pulsa telekomunikasi atau listrik prabayar.
Anda sering sekali menggunakan layanan e-money untuk membayar tagihan.
Anda terkadang menggunakan layanan e-money untuk transfer uang.
Anda sering menggunakan layanan e-money untuk tarik uang tunai.
Laporan ini dihasilkan secara otomatis oleh sistem pada tanggal 2020-08-17 jam 17:17:32:524.

106 Soni Yora & Ari Moesriami Barmawi

Figure 2 Example of cover text in INORMALS [3].

3 Proposed Method

In the proposed method, the number of code digits is concealed by a private key
that is generated using a pseudo-random generator [4], while the sentences are
generated by paraphrasing sentences using contextual synonym substitution [5]
and sentence pattern transformation [6,7]. An overview of the proposed method
is shown in Figure 3.

Figure 3 Overview of the proposed method.

To provide the data to be processed by the proposed method, preprocessing was
done, which consisted of bigram to Baudot-Murray code mapping, creating a
Likert scale for the answer choices; creating sentences as responses to the
questions in the questionnaire based on the answers by the user; creating
sentences to represent the shifting code; and creating synonym sets and grammar
rules.

 Strengthening INORMALS Using Context-based NLG 107

3.1 Pre-processing

Modified Baudot-Murray code is an encoding system that applies a quinary
number system [12] consisting of 125 codes, with left and right columns that map
bigrams to characters [3]. To select the left or the right column, shifting codes are
used, represented by the number ‘444’. In the proposed method, constructing the
bigram to Baudot-Murray code mapping was conducted using the INORMALS
method, which analyzes n-grams from a corpus containing 1,000 articles [11].
The pseudo-code for constructing the Baudot-Murray code table is shown in
Algorithm (1).

Algorithm 1
FUNCTION Construct-Ngram-Baudot-Murray-Table(corpus)
 Input: Indonesian corpus
 Output: modified n-gram Baudot-Murray mapping table
 //get 124 * 2 the-most-Ngram-collection
 the-most-Ngram-collection = Get-The-Most-NGram(corpus);
 //sort by descending (the most to the least)
 Sort-the-most-Ngram-collection-by-descending(the-most-Ngram-collection);
 //put Shifting Code (444) at the end of the-most-Ngram-collection
 the-most-Ngram-collection.ADD(‘444’);
 RETURN the-most-Ngram-collection;
END FUNCTION
FUNCTION Get-The-Most-NGram(corpus)
 Input: Indonesian corpus
 Output: n-gram in accordance with its frequency percentage value
 //compare frequency total-percentage value among n-gram chars type
 //start from 2-gram until 5-gram
 FOR n-gram-type = 2 to 5
 chars-with-percentage = Get-Ngram-Char-With-Frequency-Percentage(n-gram type);
 IF TOTAL(chars-with-percentage.percentage) > the-most-ngram THEN
 the-most-ngram = chars-with-percentage;
 END IF
 END FOR
 RETURN the-most-ngram;
END FUNCTION

FUNCTION Get-Ngram-Char-With-Frequency-Percentage(corpus, n-gram-type)
 Input: Indonesian corpus
 Output : n-gram chars with its frequency percentage value
 //collect n-gram-chars for every n-gram-type
 FOR every char of n-gram-type in the corpus
 n-gram-collection.ADD(chars of n-gram-type);
 END FOR
 //Counting the number of n-gram-type based on group of chars then
 //dividing by the number of all n-gram types in the corpus
 FOR every char in n-gram-collection
 //calculate the percentage of n-gram chars
 percentage = GROUPCOUNT(n-gram-collection) / LEN(n-gram-collection);
 n-gram-char-group.ADD(chars, percentage);
 END FOR
 RETURN n-gram-char-group;
END FUNCTION

108 Soni Yora & Ari Moesriami Barmawi

Answer choices are words or phrases represented by numbers, such that the
answer chosen by a user can be interpreted as a code. Furthermore, one answer
can be represented by more than one word or phrase, so that more sentence
variations can be generated to represent one answer. For example, if the answer
chosen by a user is ‘strongly disagree’ (sangat tidak setuju), then it can be
represented by ‘amat tidak setuju’, ‘sama sekali tidak setuju’, or ‘benar-benar
tidak setuju’. These answer choices are keywords that represent a code. The
pseudo-code for constructing the five-point Likert scale of answer choices is
shown in Algorithm (2).

Algorithm 2
FUNCTION Construct-Likert-Scale-Of-Answer-Choice(questionnaire)
 Input: e-money questionnaire
 Output: Likert scale of answer choice table
 //manual synonym analysis of Likert scale of answer choices
 //of each question in the questionnaire
 FOR every question in the questionnaire
 //1-5 Likert scale option
 FOR options-nth of Likert scale in a question
 answer-choices[options-nth].ADD(Get-Synonym-Of-Likert-Scale-ByLManually);
 END FOR
 Likert-scale-of-answer-choice-collection.ADD(answer-choices);
 END FOR
 RETURN Likert-scale-of-answer-choice-collection;
END FUNCTION

To generate sentences from the answer choices, where the context of the answers
has to be maintained, it is necessary to analyze the placement of the answers in a
sentence. The determination of the placement of an answer in a sentence is done
manually by considering the context of the sentence. The placement of the answer
is marked as ‘~’. For example, if the sentence is ‘Layanan e-money ~ membantu
saya dalam mengelola aktivitas keuangan saya sehari-hari’, then ‘~’ is placed
between the words ‘e-money’ and ‘membantu’ to represent the context of the
answer sentence. The pseudo-code for creating space for the placement of a
response to a question in a sentence is shown in Algorithm (3).

Algorithm 3
FUNCTION Create-Space-For-Response-Of-Questionnaire(questionnaire)
 Input: e-money questionnaire
 Output: list of sentences with space for the response to the questionnaire
 //manual space of response analyzing for each question in questionnaire
 FOR every question in questionnaire
 sentence-with-space = Manual-Space-Of-Response-Analyzing(question);
 list-of-sentence-with-space.ADD(sentence-with-space);
 END FOR
 RETURN list-of-sentence-with-space;
END FUNCTION

 Strengthening INORMALS Using Context-based NLG 109

Based on the bigram to Baudot-Murray mapping table, shifting codes are
represented by the code ‘444’. In the embedding process of the proposed method,
a shifting code can be represented by one sentence, while in Wibowo’s method it
is represented by three sentences. Because the shifting code is going to be used
after a code that consists of three digits, the sentence representing the shifting
code lies in the fourth or (multiple of four)-th sentence. Therefore, the maximum
number of shifting codes used in the cover sentence is six, since the maximum
number of codes that can be embedded in one cover sentence is six digits. Each
sentence that represents a shifting code has a keyword. Keywords are used to
identify whether a sentence in the cover text represents a shifting code or not.
Sentences that represent shifting codes are manually created while maintaining
the context of the sentences related to the sentences before and/or after it. The
pseudo-code for creating sentences for representing the shifting codes is shown
in Algorithm (4).

Algorithm 4

FUNCTION Create-Sentence-For-Representing-Shifting-Code(questionnaire)
 Input: e-money questionnaire
 Output: list of sentences to represent the shifting code of
 each 3rd sentence
 //manual list of sentences to represent shifting code analysis
 //for each 3rd sentence
 FOR every question in the questionnaire
 IF INDEX(question) modulo 3 == 0 OR INDEX(question) == 1 THEN
 sentence-shifting-code = Create-Manually-By-Context-Relation(question);
 list-of-sentence-shifting-code.ADD(sentence-shifting-code);
 END IF
 END FOR
 RETURN list-of-sentence-shifting-code;
END FUNCTION

For sentence paraphrasing, creating synonym sets was conducted using
contextual synonym substitution tools [5], while sentence pattern transformation
used three pattern transformations based on Indonesian grammar [6,7]. The
sentence pattern transformation rules is shown in Table 3.

Table 3 Table of sentence transformation rules.

Rule Sentence Pattern Transformation Type of Sentence

1 Subject – Predicate Predicate – Subject
Inverted or vice

versa

2 Subject – Predicate – Object Subject – Predicate - Adjunct
Active to passive or

vice versa

3

 Subject – Predicate –
Object – Adjunct

 Subject – Predicate –
Adjunct

 Adjunct – Subject –
Predicate – Object

 Adjunct – Subject –
Predicate

Adjunct position
changes

110 Soni Yora & Ari Moesriami Barmawi

Transforming a sentence while maintaining generality and formality has to refer
to sentence structures that are often used in formal sentences. This process is done
by analyzing the corpus. Fourteen sentences often appear in the Indonesian
language, as shown in Table 4, and the pseudo-code for creating sentence
structures often used in the corpus is shown in Algorithm (5).

Table 4 Structure of sentences often used in the corpus.

Syntactical No. Syntactical
A-C-S-P 8 S-P
A-S-P 9 S-P-A
A-S-P-O 10 S-P-O
S-A-P 11 S-P-O-A
S-A-C-P 12 S-P-O-C
S-CONJ-P-O-P-A 13 S-P-O-C-A
S-CONJ-P-O-P-O 14 S-P-C

Algorithm 5
FUNCTION Create-Structure-Of-Sentence-Often-Used(corpus)
 Input: corpus
 Output: structure of sentence often used table
 //do parsing for every sentence in corpus using PATR Tool [10]
 FOR every sentence in corpus
 pattern-of-sentence = PATR-Parsing(sentence);
 list-of-patterns.ADD(pattern-of-sentence);
 END FOR
 //Count each group of the same pattern in list-of-patterns
 list-of-patterns-used = Count-Grup(list-of-patterns);
 //we define threshold of percentage greater than 1% of pattern-sentences
 //that will be used as common and formal sentence in Indonesian
 FOR every pattern-of-sentence in list-of-patterns-used
 IF pattern-of-sentence.percentage >= 1% THEN
 list-of-frequently-used-sentence-patterns.ADD(pattern-of-sentence);
 END IF
 END FOR
 //sort the most to least
 RETURN Sort-By-Descending(list-of-frequently-used-sentence-patterns);
END FUNCTION

3.2 Message Concealment

The first process to conceal the secret message is encoding the message into codes
based on the Baudot-Murray code table. For example, the secret message
‘PECAT’ was encoded as 024 414 444 431, where the number of code digits is
twelve. The proposed method represents one non-shifting code by one sentence
derived from the questionnaire, while one shifting code is represented by one
sentence that is not derived from the questionnaire. The maximum number of
sentences representing non-shifting code digits is equal to the maximum number
of questions in the questionnaire. In this case, the maximum number of questions
was eighteen. As for the shifting codes, three shifting code digits are represented

 Strengthening INORMALS Using Context-based NLG 111

by one sentence. The maximum number of shifting codes used in a cover text is
six because the maximum number of codes that can be embedded in one cover
text is six digits. Therefore, six sentences representing shifting codes can
accommodate eighteen shifting code digits. Thus, the maximum number of code
digits that can be accommodated by the proposed method is 36.

Furthermore, in the embedding process, in the code that represents ‘PECAT’, the
first digit is 0, represented by the answer choice ‘benar-benar tidak’, and the
sentence that is generated as the first index is ‘Layanan e-money ~ membantu
saya dalam mengelola aktivitas keuangan saya sehari-hari’. Thus, the sentence
becomes ‘Layanan e-money benar-benar tidak membantu saya dalam mengelola
aktivitas keuangan saya sehari-hari’. Furthermore, ‘saya’ is substituted by
‘anda’ because, from the reader’s point of view, the first-person pronoun must be
substituted by a second-person pronoun. So the sentence becomes ‘Layanan e-
money benar-benar tidak membantu anda dalam mengelola aktivitas keuangan
anda sehari-hari’. Next, the words of the sentence will be substituted using
synonym sets excluding the keyword. For example, the sentence becomes
‘Fasilitas e-money benar-benar tidak menunjang anda dalam menjalankan
aktivitas keuangan anda sehari-hari’. The substitute word for ‘Fasilitas’ is
‘Layanan’, for ‘menunjang’ it is ‘membantu’, and for ‘menjalankan’ it is
‘mengelola’.

After conducting synonym substitution, the pattern sentence is transformed into
three possible sentence pattern transformations using the rules in Table 4. Finally,
the sentence is parsed using constraint-based formalism tools [10] to identify the
transformation possibilities. For example, the sentence is transformed into a
passive sentence, so it becomes ‘Anda benar-benar tidak ditunjang oleh layanan
e-money dalam menjalankan aktivitas keuangan anda sehari-hari’.

The last process to generate a sentence is checking the structure of the sentence
and whether the sentence structure is often used in Indonesian formal sentences.
If this is the case, then the sentence is included in the cover text/stego. Otherwise,
the sentence transformation is canceled. Finally, sentence generation based on the
questions and their answers is applied to all remaining questions that do not
represent code digits of the secret message. Thus, the sentences of the cover text
are complete, thus avoiding attacker suspicion.

The final sentence generation is used to generate a sentence that represents a
hidden number of code digits in the form of a timestamp, which consists of the
current date, hour, minute, second, and millisecond. The number of code digits is
hidden in the second and millisecond part. Since the second and millisecond parts
are concatenated, the variable representing the concatenation of the second and
millisecond part is called ‘secondmillisecond’. Because the maximum second

112 Soni Yora & Ari Moesriami Barmawi

value is 59 and the maximum millisecond value is 999, the maximum value of
secondmillisecond is 59999. Eq. (2) is used to calculate the secondmillisecond
values:

 𝑆𝑒𝑐𝑜𝑛𝑑𝑀𝑖𝑙𝑙𝑖𝑠𝑒𝑐𝑜𝑛𝑑 = 𝑅𝑎𝑛𝑑𝑜𝑚 + 𝑛𝑢𝑚𝑏𝑒𝑟𝑂𝑓𝐶𝑜𝑑𝑒𝐷𝑖𝑔𝑖𝑡𝑠 (2)

The random value is obtained using the Linear Congruential Random Number
Generator [4]. The random value synchronization pattern between the sender and
the receiver is based on a trigger when the sender creates the cover text and when
the receiver receives the cover text. The random value created by the sender and
the receiver is always the same because it is made by the pseudo-random
generator method based on a seed value that has been agreed upon before the send
and the receiver communicate with each other for the first time. Since both parties
synchronize the random value, it is necessary to check whether the receiver has
received the message transmitted by the receiver or not [13,14]. The pseudo-code
for embedding process is shown in Algorithm (6).

Algorithm 6
FUNCTION Message-Embedding(message, sentence-with-space-table,
 answer-choice-table, sentence-for-representing-shifting-code-table,
 Baudot-Murray-codes-table, synonym-list,
 frequently-used-sentence-pattern-table)
 Input: message is secret message to be hidden,
 sentence-with-space-table for selecting sentence with space for

inserting answer’s Likert scale,
answer-choice-table for selecting answer choice of Likert scale from
code list digit,
sentence-for-representing-shifting-code-table to represent shifting
code, Baudot-Murray-codes-table for encoding, synonym-list,
frequently-used-sentence-pattern-table for checking common and formal
sentence patterns during the tranformation process

 Output: cover text
 //get code-list
 code-list = Message-Encoding(message, Baudot-Murray-codes-table);
 sentences-of-digits = Get-Sentences(code-list, sentence-with-space-table,
 answer-choice-table, sentence-for-representing-shifting-code-table);
 synonymous-sentences = DoSynonymSubstitution(sentences-of-digits,synonym-list,
 answer-choice-table, sentence-for-representing-shifting-code-table);
 transformed-sentences = Transform-Sentences(synonymous-sentences,
 frequently-used-sentence-pattern-table);
 sentence-for-number-of-digits =
 Create-Sentence-For-Representing-The-Number-Of-Code-Digits(code-list);
 RETURN Concatenate(transformed-sentences, sentence-for-number-of-digits);
END FUNCTION

FUNCTION Get-Sentences(code-list, sentence-with-space-table,
 answer-choice-table, sentence-for-representing-shifting-code-table)

Input: code list as result message encoding, sentence-with-space-table for
 selecting sentence with space for inserting the answer’s Likert scale,
 answer-choice-table for selecting answer choice on Likert scale from

code list digit, sentence-for-representing-shifting-code-table to
represent shifting code

 Strengthening INORMALS Using Context-based NLG 113

 Output: list of new sentences with answer choices in accordance with quinary
 Likert scale or sentence from sentence-for-representing-shifting-code
//scanning for every quinary digit in code-list
//index-shifting for identifying index shifting position, set to first index = 1
 index-shifting = 1
 FOR every digit in code-list
 //Check if 3 digits are shifting code. If yes, then get sentence from
 //sentence-for-representing-shifting-code-table. If no, then get sentence from
 //sentence-with-space-table
 IF 3 digits are shifting code THEN
 new-sentence = Get-Sentence-For-Representing-Shifting-Code(index-shifting);
 index-shifting = index-shifting + 1;
 ELSE
 new-sentence = Get-From-Sentence-With-Space-For-Response-Table(digit);
 Likert-scale-answer = Get-From-Answer-Choice-Table(digit);
 new-sentence = Insert-Likert-Scale-Answer(Likert-scale-answer,new-sentence);
 END IF
 new-list-sentences.ADD(new-sentence);
 END FOR
 RETURN new-list-sentences;
END FUNCTION

FUNCTION DoSynonymSubstitution(list-of-new-sentences, synonym-list,
 answer-choice-table, sentence-for-representing-shifting-code-table)
Input: list-of-new-sentences after inserting the Likert scale of answer choice

 or sentence for representing shifting code, synonym list
Output: list of sentences after conducted synonym substitution
 //Parsing every word except keyword of Likert scale or
 //keyword of sentence for representing shifting codes.
 FOR every sentence in list-of-new-sentences
 FOR every word in a sentence
 //check if the phrase is a keyword
 //try to get the phrase
 phrase = Get-Phrase(word, list-of-new-sentences);
 IF phrase is not in the answer-choice-table AND phrase is not
 in the sentence for-representing-shifting-code-table THEN
 word-class = Get-Word-Class(word); //using PATR Tool [10]
 new-word = Get-Synonym(word, synonym-list);
 Replace-Word-By-Its-Synonym(new-word, *sentence);
 END IF
 END FOR
 sentences-after-synonym-substitution.ADD(sentence);
 END FOR
 RETURN sentences-after-synonym-substitution;
END FUNCTION

FUNCTION Message-Encoding(message, Baudot-Murray-table)
 Input: secret message to be hidden and Baudot-Murray table
 Output: list of Baudot-Murray code

 //collecting bigrams of the message
 current-code-position = LEFT //current-code-position to identify shifting code
 FOR every bigram in message
 //finding the bigram in Baudot-Murray-table
 code = Get-Code-From-Baudot-Murray-Table(bigram, Baudot-Murray-table);
 IF code is not found THEN //finding the unigram’s code
 unigram = bigram[0];

114 Soni Yora & Ari Moesriami Barmawi

 code = Get-Code-From-Baudot-Murray-Table (unigram, Baudot-Murray-table);
 END IF
 IF code.POSITION <> current-code-position THEN
 current-code-position = code.POSITION;
 code = Concatenate(‘444’, code.quinary); //add shifting code
 END IF
 list-codes.ADD(code.digit);
 END FOR
 RETURN list-codes;
END FUNCTION

FUNCTION Transform-Sentences(sentences-after-synonym-substitution,
 table-of-frequently-used-sentences)
 Input: sentences-after-synonym-substitution,

table-of-frequently-used-sentences for checking general and formal
sentence pattern while the transformation process

 Output: list of sentences after the transformation process

 //Scanning for every sentence in sentences-after-synonym-substitution
 FOR every sentence in sentences-after-synonym-substitution
 //check if the element of sentence only subject and predicate or vice versa
 //have a chance to be transformed into an inverted sentence

IF LEN(sentence-elements) are 2 THEN
 new-sentence = Inverted-Transformation(sentence, sentence-elements,
 table-of-frequently-used-sentences);
 ELSE
 //check if an active sentence can be transformed into a passive sentence
or vice versa
 sentence-elements = Get-Sentence-Elements(sentence);//using PATR Tool [10]
 verb = Get-Predicate(sentence-elements);
 prefix = Get-Prefix(verb);
 IF prefix is ‘me’ OR ‘di’ THEN //can be transformed
 new-sentence = Active-Passive-Transformation(sentence,
 sentence-elements, table-of-frequently-used-sentences);
 END IF
 //check if the adjunct position in the sentence can be changed
 adjunct = Get-Adjunct-Element(sentence-elements);
 IF adjunct is at the first OR at the end of sentence element THEN
 new-sentence = Adjunct-Position-Transformation(sentence,
 sentence-elements,
 table-of-frequently-used-sentences);
 END IF
 list-of-sentences-transformed.ADD(new-sentence);
 END FOR
 RETURN list-of-sentences-transformed;
END FUNCTION

FUNCTION Inverted-Transformation(sentence, sentence-elements,
 table-of-frequently-used-sentences)
 Input: sentence after synonym substitution process,
 sentence-elements are elements as a result parsing process to define

sentence transformation,
 table-of-frequently-used-sentences as transformation rule
 Output: sentence inverted or vice versa

 //swapping words based on their element

 Strengthening INORMALS Using Context-based NLG 115

 first-phrase = Get-First-Phrase(sentence-elements);
 second-phrase = Get-Second-Phrase(sentence-elements);
 IF first element of sentence-elements is predicate THEN
 new-sentence = Concatenate(second-phrase, first-phrase);
 ELSE
 new-sentence = Concatenate(first-phrase, second-phrase);
 END IF

 RETURN Check-Common-Structure(sentence, new-sentence, sentence-elements,
 table-of-frequently-used-sentences);
END FUNCTION

FUNCTION Active-Passive-Transformation(sentence, sentence-elements,
 table-of-frequently-used-sentences)
 Input: sentence after synonym substitution process,
 sentence-elements are elements as parsing result
 process to define sentence transformation,
 table-of-frequently-used-sentences as rule transformation
 Output: passive sentence or vice versa
 //get verb of predicate of sentence and check if it supports
 //active to passive transformation
 verb = Get-Verb-Of-Predicate(sentence);
 original-word = Get-Original-Word(verb);
 suffix = Get-Suffix(*verb, original-word);
 IF prefix of *verb is ‘me’ THEN
 new-verb = Concatenate(‘di’, original-word, suffix);
 ELSE
 new-verb = Concatenate(‘me’, original-word, suffix);
 END IF
 new-subject = Get-Object-Element(sentence-elements);
 new-object = Get-Subject-Element(sentence-elements);
 new-sentence = Concatenate(new-subject, new-verb, new-object);

 RETURN Check-Common-Structure(sentence, new-sentence, sentence-elements,
 table-of-frequently-used-sentences);
END FUNCTION

FUNCTION Adjunct-Position-Transformation(sentence, sentence-elements,
 table-of-frequently-used-sentences)
 Input: sentence after synonym substitution process,
 sentence-elements are elements as parsing result
 to define sentence transformation,
 table-of-frequently-used-sentences as transformation rule
 Output: sentence after adjunct position changes

 subject = Get-Subject-Element(sentence-elements);
 predicate = Get-Predicate-Element(sentence-elements);
 object = Get-Object-Element(sentence-elements);

 //swapping adjunct element position
 adjunct = Get-Adjunct-Element(sentence-elements);
 IF adjunct is first element of sentence THEN
 new-sentence = Concatenate(subject, predicate, object, adjunct);
 ELSE
 //add coma if adjunct is at the first of sentence
 new-sentence = Concatenate(adjunct, ‘, ‘, subject, predicate, object);
 END IF

116 Soni Yora & Ari Moesriami Barmawi

 RETURN Check-Common-Structure(sentence, new-sentence, sentence-elements,
 table-of-frequently-used-sentences);
END FUNCTION

FUNCTION Check-Common-Structure(original-sentence, new-sentence,
sentence-elements, table-of-frequently-used-sentences)

 Input: original-sentence is the sentence before transformation,
 new-sentence is the sentence after transformation,
 sentence-elements are the result of parsing,
 table-of-frequently-used-sentences to check valid common
 and formal sentence pattern
 Output: new sentence after checking if its pattern is common and formal
 //parsing to check the generality and formality of the sentence
 //if no, revert to the original sentence
 IF sentence-elements are in table-of-frequently-used-sentences THEN
 RETURN new-sentence;
 ELSE
 RETURN original-sentence;
 END IF
END FUNCTION

FUNCTION Create-Sentence-For-Representing-The-Number-Of-Code-Digits(code-list)
 Input: code-list as result of message encoding
 Output: sentence for representing the number of code digits
 //Get new random value using Linear Congruential Method [4]
 new-random-value = Random-Value();
 second-millisecond = FORMAT(new-random-value + LEN(code-list), ‘HH.MMM’);
 pre-sentence = ‘Laporan ini dihasilkan secara otomatis oleh sistem pada
tanggal ‘;
 RETURN Concatenate(pre-sentence, GetCurrentDate(), second-millisecond);
END FUNCTION

FUNCTION Random-Value()
 previous-random = Get-Previous-Random-From-Database();
 //the value 16672,4 and 50013 is the best composition for generating optimum
 //random value between 0-59999 (max secondmillisecond), which uses Linear
 //Congruential Method
 new-random-value = (16672 * previous-random + 4) modulo 50013;
 Save-New-Random-Value-Into-Database(new-random-value);
 RETURN new-random-value;
END FUNCTION

On the receiver side, the extraction process is started by finding the number of
code digits representing the secret message from the timestamp using Eq. (2).
Furthermore, the keywords in the sentences are identified, where the number of
keywords is identical to the number of code digits. The code digits form codes to
decode the secret message using the Baudot-Murray code table. The pseudo-
codes for extraction and decoding are shown in Algorithm (7) and Algorithm (8),
respectively.

Algorithm 7

FUNCTION Message-Extraction(cover-text, answer-choice-table,
 sentence-for-representing-shifting-code-table)

 Strengthening INORMALS Using Context-based NLG 117

 Input: cover-text received by the receiver,
 answer-choice-table as a reference to check keywords,
 sentence-for-representing-shifting-code-table as a reference to check
 keywords
 Output: code-list to decode the message
 //scanning for every sentence in the cover-text
 FOR every sentence in the cover-text
 //try to identify a keyword in the sentence
 //search keyword by phrase of sentence
 WHILE keyword is not found
 phrase = Scan-Phrase(sentence);
 keyword = Find-Keyword(phrase, answer-choice-table);
 END WHILE
 IF keyword is not found THEN
 digit = ‘444’; //the keyword must be shifting code
 ELSE
 digit = Get-Digit(phrase, the answer-choice-table);
 END IF
 codes.ADD(digit);
 END FOR
 RETURN codes;
END FUNCTION

Algorithm 8
FUNCTION Message-Decoding(code-list, Baudot-Murray-code-table)
 Input: code-list from message-extraction process, Baudot-Murray-code-table as
 reference to decode code-list into the message
 Output: the message sent by the sender
 //scanning for every code in code-list
 //code is 3 digits of the quinary number
 current-position-of-code = LEFT;
 FOR every code in code-list
 chars = Get-Chars-From-Baudot-Murray-Table(code);
 IF code is shifting code THEN
 current-position-of-code = NOT current-position-of-code; //swapping
 END IF
 //get chars from Baudot-Murray code table
 chars = Get-Chars(code, current-position-of-code, the answer-choice-table);
 message = Concatenate(message, chars);
 END FOR
 RETURN message;
END FUNCTION

4 Experimental Evaluation

The embedding capacity was evaluated by conducting 300 message embeddings,
where the length of each message was greater than six. Efficiency was gained
whenever a message contained a shifting code, because the proposed method only
uses one message for a shifting code, while Wibowo’s method uses three
messages. To observe the embedding capacity, the number of messages should
be greater than six, which both methods can accommodate.

118 Soni Yora & Ari Moesriami Barmawi

Figure 4 Comparison of embedding capacity.

Based on Figure 4, it can be seen that only 1% of messages could not be
embedded by both methods; 34% of messages could be embedded by Wibowo’s
method; 99% of messages could be embedded by the proposed method. Thus, it
can be concluded that the proposed method can embed 99% of messages with
more than six characters.

The security level for representing the number of code digits in the proposed
method depends on the number of code digits hidden in a timestamp, which is
represented in Eq. (2). Thus, the security level can be calculated by calculating
the probability of guessing the secondmillisecond value, which is hidden in the
cover text. Since the secondmillisecond value is random, where the random value
is kept secret by both parties, it makes obtaining the number of code digits very
difficult. Finally, we can conclude that the security level depends on the
probability of obtaining the number of code digits represented in Eq. (3), while
in Wibowo’s method, the guessing probability of the number of code digits is 1,
because the key can be directly obtained from the timestamp. A comparison of
the security levels of both methods is shown in Table 5.

 P(numberOfCodeDigits) =
ଵ

୑ୟ୶୧୫୳୫(ୖୟ୬ୢ୭୫)
 (3)

Table 5 Probability comparison for guessing the number of code digits between
Wibowo’s and the proposed method.

Wibowo’s Method Proposed Method

1
1

Maximum(Random)

In Wibowo’s method, sentences are manually generated, which may cause human
grammatical and semantic errors. A sentence with grammatical and semantic
errors will cause unnaturalness. Based on linguistic steganography analysis, an

1%

34%

99%

0%

20%

40%

60%

80%

100%

120%

can not be
embedded by both

methods

can be embedded
by previous

method

can be embedded
by proposed

method

P
er

ce
nt

ag
e

of
 E

m
be

dd
in

g
C

ap
ac

ity

Embedding Capability

 Strengthening INORMALS Using Context-based NLG 119

unnatural sentence could raise the suspicion of the attacker. Therefore, it is
essential to evaluate the naturalness of the sentences to increase the
imperceptibility of the cover [8].

In this study, an evaluation of the naturalness of the sentences in the cover text
was conducted based on human judgment, using thirty respondents. The
respondents were divided into two groups, namely experts and non-experts. The
experts were linguistic lecturers, and the non-experts were undergraduate
students, nonlinguistic lecturers, and ordinary employees. To evaluate the
sentences, questionnaires about the naturalness of the sentences, from a grammar
as well as a semantic point of view, had to be answered by the respondents. The
evaluation was conducted on sentences generated by Wibowo’s method and the
proposed method.

Figures 5 and 6 show that Wibowo’s method had three sentences with a
naturalness value less than 100%, namely, sentences 3, 9 and 10, whereas the
proposed method had two sentences with a naturalness value less than 100%,
namely, sentences 1 and 14. Thus, the average sentence naturalness percentage
of Wibowo’s method was 98.61%, while the naturalness percentage of the
proposed method was 99.89%. In this case, the naturalness of the proposed
method was higher than that of Wibowo’s method.

Figure 5 Naturalness comparison between sentences generated by Wibowo’s
and the proposed method (sentence 1 to 9).

100% 100%

80%

100% 100% 100% 100% 100%
97%

99% 100% 100% 100% 100% 100% 100% 100% 100%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9S
en

te
nc

e
N

at
u

ra
ln

es
s

P
er

ce
nt

ag
e

Sentence Id

Wibowo's Method Proposed Method

120 Soni Yora & Ari Moesriami Barmawi

Figure 6 Naturalness comparison between sentences generated by Wibowo’s
and the proposed method (sentence 10 to 18).

Since the security of both methods depends on the naturalness of the sentences
generated, the security of the proposed method is higher than that of Wibowo.
This is because the cover text generated by Wibowo’s method is more suspicious
to attackers than the sentences generated by the proposed method. Thus, it is
easier for attackers to get the number of digits hidden in the timestamp with
Wibowo’s method than with the proposed method.

The worst case occurs when the full message length cannot be embedded by the
proposed method and a number of questions from the questionnaire and sentences
representing shifting codes has to be added. For example, the message ‘DOMINO
ASLI O’ results in codes consisting of the following six bigrams and one
unigram: 444 122 444 430 444 033 444 140 444 430 444 233 444 002. In this
case, representing one bigram or one unigram requires three sentences, while one
sentence is required to represent the shifting codes. Therefore, calculating the
number of sentences required to represent the secret message and the number of
sentences required to represent the shifting codes can be defined as follows in Eq.
(4):

 NSS(sm) = NSSB(sm) + NSSU(sm) + NSSS(sm) (4)

where NSS is the number of sentences required to represent a secret message,
consisting of the number of sentences required to represent bigrams (NSSB),
unigrams (NSSU), and shifting codes (NSSS).

98%
100% 100% 100% 100% 100% 100% 100% 100%

100% 100% 100% 100% 99% 100% 100% 100% 100%

50%

60%

70%

80%

90%

100%

10 11 12 13 14 15 16 17 18

S
en

te
nc

e
N

at
u

ra
ln

es
s

 P
er

ce
n

ta
ge

Sentence Id

Wibowo's Method Proposed Method

 Strengthening INORMALS Using Context-based NLG 121

5 Conclusion

Based on the experimental result, it can be concluded that the embedding capacity
of cover texts using the proposed method is higher than that of Wibowo’s method.
This is because the proposed method decreases the number of sentences that have
to be used to represent shifting codes. Another contribution of this research is that
the security level of the number of code digits was improved by introducing a
private key, which is very difficult for attackers to guess. To maintain the
naturalness of the generated sentences, sentence paraphrasing is used.

In this study, the sentences representing shifting codes were created manually. In
the future, it is necessary to build these automatically by keeping the context of
the sentence before and after the sentences that represent the shifting code. This
would allow all sentences to be built dynamically.

References

[1] Desoky, A., NORMALS: Normal Linguistic Steganography Methodology,
Journal of Information Hiding and Multimedia Signal Processing, 1(3), pp.
145-171, July 2010.

[2] Desoky, A., Mature Linguistic Steganography Methodology (Matlist),
Journal of Security and Communication Networks, 4(1), pp. 697-718,
2010.

[3] Wibowo, A. & Barmawi, A.M., INORMALS Improving Using the Modified
Baudot-Murray Code, ICCNS ’16: Proceedings of the 6th International
Conference on Communication and Network Security, pp. 113-118, 2016.

[4] Hull, T.E. & Dobell, A.R., Random Number Generators, Journal of
Society for Industrial and Applied Mathematics, 4(3), pp. 230-254, July
1962.

[5] Muhammad, A. & Barmawi, A.M., Paraphrasing Method Based on
Contextual Synonym Substitution, Journal of ICT Research and
Applications, 13(3), pp. 257-282, 2019.

[6] Alwi, H., Dardjowidjojo, S., Lapoliwa, H. & Moeliono, A.M., Indonesian
Dictionary, Ed. 4, Balai Pustaka, 2012. (Text in Indonesian)

[7] Sneddon, J.N., Adelaar, A., Djenar, D.N. & Ewing, M.C., Indonesian
Reference Grammar, Ed. 2, Allen & Unwin, 2008.

[8] Chang, C.Y. & Clark, S., Practical Linguistic Steganography using
Contextual Synonym Substitution and a Novel Vertex Coding Method,
Journal of Computational Linguistics, 40(2), pp. 403-448, 2013.

[9] Reiter, E. & Dale, R., Building Natural Language Generation Systems, The
Press Syndicate of the University of Cambridge, 2000.

122 Soni Yora & Ari Moesriami Barmawi

[10] Muhammad, A. & Kamariah, K. Banjarese Sentence Parser Using PC-
PATR Parser, Jurnal Linguistik Komputasional, 3(1), pp. 20-23, 2020.
(Text in Indonesian)

[11] Jurafsky, D. & Martin, J.H., Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition, Ed. 2, Prentice Hall, 2008.

[12] Hammarström, H., Rarities in Numeral Systems, Rethinking Universals,
pp. 11-60, 2010.

[13] Hunt, C., TCP/IP Network Administration, ed. 3, O’Reilly, 2002.
[14] Mozilla Documentation, HTTP Response Status Codes,

https://developer.mozilla.org/enUS/docs/Web/HTTP/Status#client error
responses, (7 February 2021).

