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Abstract. The aim of this research is to investigate the performance of Welch 
based de-noising technique for a set of chirp signals corrupted by Gaussian 
noises. In telecommunications, chirp signals are widely studied, particularly for 
sonar, radar and spread spectrum applications. However, unlike conventional 
signals, chirp signals are typical of time varying frequency signals. It sweeps 
linearly from a low to a high frequency. It is in fact a signal in which its 
frequency increases or decreases with time. Results indicate that Welch based 
de-noising technique has effectively inhibited the noise. Nevertheless, this 
method works satisfactory only below its threshold point. Beyond this limit, the 
signal-to-noise ratio of the desired signal is not acceptable.  Figuratively, radar 
can only detect the presence of the aircraft only at a certain limited distance only. 
As soon as the aircraft moves further apart, the transmitted signal becomes 
substantially weaker before the noise can completely overwhelm it. It turns out 
that the presence of the aircraft is no longer perceptible. 
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1 Introduction 
Welch's method, named after P.D. Welch, is a technique applied to compute 
power spectra density (not the spectrum) of the signal. It is based on Barlett's 
procedure which splits a set of data into smaller sets of data and calculates the 
modified periodogram (the power spectrum) of each set. At the end, it comes up 
with an array of power measurements against its frequency "bin" [1]. 

The modified periodogram is calculated by applying a window function to the 
time-domain data, computing the discrete Fourier transform, and then 
computing the squared magnitude of the result.  

Most window functions afford more influence to the data at the centre of the set 
than to data at the edges, which represents a loss of information. To mitigate 
that loss, the individual data sets are commonly overlapped in time.  
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The individual periodograms are then time-averaged, which reduces the 
variance of the individual power measurements. For further details, interested 
readers may refer to [1], [2] and [3]. 

The organisation of this paper is as follows. Firstly, Section I discusses some 
background information related to the importance of this research and also the 
organisation of this paper. Section II deals with the underlying principles of 
chirp signals. Meanwhile, Section III looks at the simulation and analysis of the 
P-Welch denoising process upon a set of chirp signals. Conclusions are 
accordingly drawn in Section IV. 

2 Chirp Signals 
The well-known signals used in this research are called chirp signals. Unlike 
conventional signals, a chirp signal is a time varying frequency one. It sweeps 
linearly from a low to a high frequency. It is a signal in which its frequency 
increases or decreases with time. It is widely studied, particularly for 
applications in sonar and radar and also in spread spectrum communication 
technique. Interested readers are suggested to refer to {[4]-[9]} for further 
details. 

3 System’s Model, Assumptions and Simulations 
The chirp signal of our interest is linearly described in time domain as follows: 
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The angle function )(tϕ is such that the frequency f (t) increases linearly with 
time:  
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Also, the instantaneous frequency is defined as derivative of )(tϕ as follows: 
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By substituting (2) into (3), we finally obtain: 
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Accordingly we obtain, 
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The distribution of  chirp signal given by time-frequency is shown in Figure 1.  

 
Figure 1 Chirp Signal in Time-Frequency Display. 

Firstly, the two end points st 1= and st 12=  respectively was considered. 
Accordingly, the representation of chirp signals will become purely sinusoidal 
of frequency 5Hz and 16 Hz as depicted in Figure 2 and Figure 3 respectively. 

 
Figure 2 a 5 Hz Chirp Signal. 
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Figure 3 a 16 Hz Chirp Signal. 

The value of window width  and sampling time T have been selected such 
that the number of N=256 for each display. The resulting DFT experiment of 
each Chirp signal is obtained as follows: 

oT

 
Figure 4 The Resulting DFT for x1(t). 

x( )Since in Matlab, life begins with n=1, the biggest k  with amplitudes 0.5 are 

located on N=6 and N=252. The sum of squares 2/][ oTkX∑ , as an average 
power representation has been calculated to be exactly half a watt. It turns out 
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X [ ]that the largest k components have been placed in the right frequency bin 
and of the right values. 
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Figure 5 The Resulting DFT for . )(2 tx

Similarly, the same reason applied for allocating the biggest ( )x k  with 
amplitude 0.5 on N=17 and N=241 which theoretically they should be on N=16 
as well as N=240. Again, the sum of squares 2/][ oTkX∑ , as an average power 
representation has been calculated to be exactly half a watt. Likewise, it turns 
out that the largest [ ]X k components have been placed in the right frequency 
bin and of the right values. 

3.1 3-D Spectral Contents against Time t  and Frequency Bin  i k

Now, a rectangular sliding window ),( τtw  is centred at a fixed time t , with a 

window width defined as: ),()(),( τττ twtxtxw += within  
/ 2 / 2oT Toτ− < ≤ , in which  t  is called the frame time. It is fixed within a 

window time. Also, τ is regarded as a running variable, which varies from 
range  for each window frame. A block of 2/2/ oo TtoT− TTN o /= data 
was obtained, which t . Consequently, a block of 31 data, 
each of 256 values was examined. The next step is to present the spectral 
contents 

15,...,5.1,1,5.0,0=i

[ , ] /iX t k T∑ o   against time and frequency bin . it k

As a result, we obtain the 3D plot time-frequency distribution as follows: 
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Figure 6 3-D Plot of Noiseless Time-Frequency Distribution of ( )x t . 

Due to the fact that the range of t  starts from 1 to 12, some data have zeroes 
value in the beginning and in the end of simulation as shown in Figure 5 and 
Figure 6. Subsequently, the total average power against various value of is 
depicted in Figure 7. 

it

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
The Average Power of Each Signal

 
Figure 7 Total Average Power against Various Value of . it

Apparently, for t=1 and t=2, the average power equals to zero, due to the fact 
that no chirp signal appeared in the systems. The same condition applied for 
t=26 up to t=31. The point to remember is that index in Matlab always starts 
from n=1. 

 



 Welch Based Denoising Technique  121 
 

3.2 The Effect of Noise 
One watt of Gaussian noise is now added to the systems. As a result, the 
corrupted signals are depicted in Figure 8. 
 

 
Figure 8 Signals Corrupted by One Watt Gaussian Noise. 

From the time-frequency plot in Figure 8 one can still be possible to visually 
discern the presence of the chirp signals amongst the noises. This, of course, 
will make a significant impact on the average power of the signals, as shown in 
Figure 9.  
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Figure 9 Noise in Time Domain Representation. 

Accordingly, the effects of Gaussian noise on the average power are depicted in 
Figure 10.  
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Figure 10   The Effect of Noise on The Average Power. 

As can be seen, the average power of the signals due to one watt Gaussian noise 
is no longer half watt. They have fluctuated between about one and one and half 
watt. What is more, the zero values power of signals is no longer appear. 
Roughly speaking, at that time distribution the average power of signals have 
become around one watt. It corresponds to the one watt Gaussian noise. (see 
t=1, 2, 26-31).  

3.3 De-noising Techniques Using P-Welch Function 
The underlying principles of Welch based denoising technique can be 
rigorously discussed as follows [10]: 

Firstly, the input signal vector x  is broken into k overlapping segments 
according to window and n overlap (or their default values). If the window size 
is larger than the number of FFT points (NFFT), the signal is divided into 
NFFT–length segments and then, the last segment is padded with zeros. 
Subsequently, the specified (or default) window is applied to each segment of 
x . (No preprocessing is done before applying the window to each segment.).  

Furthermore, an n fft-point FFT is applied to the windowed data and the 
(modified) periodogram of each windowed segment is computed. The set of 
modified periodograms is averaged to form the spectrum estimate S(ejω)..  

The resulting spectrum estimate is scaled to compute the power spectral 
density , where F is 
 2π when we do not supply the sampling frequency 
 fs when we supply the sampling frequency 
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The performances of Welch based de-noising techniques with respect to power 
spectral density function are now examined. We shall also investigate the 
threshold of noise power in which the additional noise can collapse the chirp 
signals. Computer simulations have been started from the level of 1 watt, 1.5 
watt up to 3.5 watt noise. A More comprehensive discussion will be presented 
accordingly. 
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Figure 11 2D Representation of De-Noising Signals (2D). 

Figure 11 and Figure 12 depict the result of the P-Welch de-noising process. As 
indicated, one can still discern the presence of the chirp signals amongst the 
noises. The noise power applied is one watt Gaussian noise. 

 
Figure 12    3D Representation of De-Noising Signals. 

Furthermore, we now set the noise power into 1.5 watt. As a result, the chirp 
signals are buried deeper under Gaussian noise. One still may be able to discern 
it. Nevertheless, it has been progressively more difficult to discern the chirp 
signals due to these circumstances. 
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Figure 13    Signals Corrupted by 1.5 watt Gaussian Noise. 

Upon this de-noising process, some of the noises have been successfully 
filtered out, and the presence of the chirp signals is more apparent as 
illustrated by Figure 14. 
 

 
Figure 14    Representation of De-Noising Signals. 

Subsequently, we now enhance the Gaussian noise power from 1.5 watt into 2 
watt. Accordingly, the signals are mostly collapsed due to the increasing noise 
power as shown in Figure15.  
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Figure 15   The Effect of 2Watt Gaussian Noise. 

Upon performing P-Welch de-noising technique, the signals to noise ratio due 
to 2 watt Gaussian noise has been significantly improved.  

 
Figure 16   Representation of De-Noising Signals. 

Nonetheless, as the noise power has significantly increased, the resulting de-
noising signals in terms of S/N ratio have decreased moderately.  

The question we are attempting to address now is what the unrecoverable 
threshold of Gaussian noise power. To address this question, again, we increase 
the noise power into 2.5 watt. 
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Figure 17   The Effect of 2.5 Watt Gaussian Noise. 

From Figure 17, it is apparent that the chirp signals have been totally buried 
under the noise. 

 
Figure 18   Representations of De-Noising Signals 3 Watt Gaussian Noise. 

According to Figure 18, P-Welch de-noising process does not mean much to 
recover the original signal. The signals can be substantially recovered, albeit the 
S/N ratio is still poor. 

Moreover, 3 and 3.5 watt additional Gaussian noise will result in the chirp 
signals given by Figure 19 and Figure 20. 
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Figure 19   The Effect of 3 Watt Gaussian Noise. 

 

 
Figure 20   The Effect of 3.5 Watt Gaussian Noise. 

As the ratio of S/N is poorer, it is now completely impossible to visually discern 
the original signals and the noise. 

Upon performing P-Welch Denoising technique, we still end up with poor 
signal to noise ratio as indicated by Figure 21 and Figure 22. 
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Figure 21   De-Noising Signals due to 3Watt Gaussian Noise. 

 
Figure 22   De-Noising Signals due to 3.5 watt Noise. 

It can be concluded that although the de-noising process has been performed the 
desired signal and the interference are not discernable should the noise power 
has exceeded its threshold value. In this study, we have a threshold noise power 
about 2.5 watts.  

4 Concluding Remarks 
To sum up, without employing de-noising techniques, the presence of chirp 
signals that still can be visually discerned is up to 2 watt Gaussian noise power. 
However, since the power of the noise has gradually increased, exceeding a 
threshold value, say, above 2 watts (see Fig 17, 19 and 20) the chirp signals 
have been completely overwhelmed. By employing Pwelch de-noising 
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technique, the desired signal still can be discernable in the presence of 2.5 or 3 
watt Gaussian noise. Beyond this limit, we will end up with the unsatisfactory 
de-noising results, as indicated by poor S/N ratio results. For comparison, radar 
can only detect the presence of the aircraft at a certain limited distance only. If 
the aircraft moves further apart, then the transmitted signals become weaker and 
weaker before the noise can completely overwhelm it. It turns out that the 
presence of the aircraft is no longer perceptible.  
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