

ITB J. ICT Vol. 3, No. 1, 2009, 51-66 51

Received April 23rd, 2009.

An Infrastructural IP for Interactive MPEG-4 SoC

Functional Verification

1
Trio Adiono,

2
Hans G. Kerkhoff &

3
Hiroaki Kunieda

1
Institut Teknologi Bandung, Bandung, Indonesia

tadiono@paume.itb.ac.id
2
MESA+ Institute for Nanotechnology, 7500AE Enschede, the Netherlands

h.g.kerkhoff@utwente.nl
3
Tokyo Institute of Technology, Tokyo, Japan

kunieda@vlsi.ss.titech.jp

Abstract. This paper introduces a specific architecture including an

infrastructural IP for functional verification and diagnostics, which is suitable for

functional core-based testing of an MPEG4 SoC. Our advanced MPEG4 SoC

results in a high complexity SoC with limited physical access to many different

functional cores. The proposed test method provides direct monitoring and

control for each core, which enables core verification at actual speed. It

significantly decreases the verification time due to the large number of required

test vectors in typical MPEG4 verification. Furthermore, it also makes the

system scalable for functional core expansion due to upgrading of standards.

The proposed infrastructural IP is also linked to PC-based interactive tools to

simplify the verification of individual and integrated cores. It also provides

detailed diagnostic data that enables simple system debugging. The debugging

tools also feature test-pattern generation and simulation of expected values.

Actual system implementation has shown full functionality of our proposed

method.

Keywords: functional MPEG-4 verification; infrastructural IP; SoC testing.

1 Introduction

Advances in MPEG4 video standard development has resulted in complex SoCs

that feature a high logic density and a large number of pins. They consist of

many dedicated hardware processing cores [1,2,3] such as a Discrete Cosine

Transform (DCT), Inverse DCT (IDCT), Variable Length Coding (VLC),

Quantizer (Q), inverse-Quantizer (IQ), Motion Compensator (MC) and Motion

Estimator (ME) etc., which possess many different functions. Although large

numbers of pins are required, the designer still has very limited access to each

processing core inside the SoC.

In order to optimize chip-level verification, debug and program chip

functionality, embedded core logic is incorporated in this design as an

embedded infrastructural IP. Incorporating an embedded infrastructural IP

mailto:tadiono@paume.itb.ac.id
mailto:h.g.kerkhoff@utwente.nl
mailto:kunieda@vlsi.ss.titech.jp

52 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

provides the physical access to all processing cores inside the SoC, which

surpasses the limitation of pin numbers, helps silicon debugging, improves test

quality and increases the manufacturing yield. Furthermore, it also enables

further functional development extensions to the device functionality, in order

to cope with the latest advances in the video coding standard.

The utilization of a standard testing approach such as IEEE 1500 [4] has a

limitation in providing a large number of test patterns. MPEG processing

requires very specific test-pattern data, which usually consist of two-

dimensional data, which have continuity in the time domain. In addition, a

significant amount of memory should also be provided to store the processing

result. To preserve external compatibility with IEEE 1500 and 1149.1, a

standard TAP controller is used as access mechanism for our approach, in

combination with a dedicated infrastructural IP.

This paper is organized as follows. Section II presents the verification

methodology proposed in this paper. In Section III, experiments are conducted

to evaluate the effectiveness of the proposed verification methodology. Finally,

a summary is provided in Section IV.

2 Verification Methodology

2.1 Architecture System

Hardware-software co-design has been employed to build an integrated system

for functional core verification in an MPEG4 SoC as shown in Figure 1. Most

of MPEG4 processing is performed with respect to a 16 x 16 pixels input image

data (macro-block); the dedicated hardware processing core to perform this

operation is called Macro-block Processing Unit (MPU). A typical MPU core is

a DCT, IDCT, Q, IQ, VLC, IVLC, ME and MC. As depicted in Figure 1, the

light box labelled ―cores to be tested‖ is shown in the SoC as many as MPUs

that are connected to a single bus.

In the infrastructural IP part, the Core Test Interface (CTI) handles the

verification data communication between the SoC and a host computer. Based

on instructions and test patterns generated by the host computer, the Core Test

Processor (CTP) inside the SoC controls the verification process for each

functional core. Both the CTI and CTP are embedded in SoC as an

infrastructural IP (I
2
P).

The test patterns are generated by the diagnostic tools. The test pattern

generation depends on the core that will be tested. The test pattern can be an

original image sequence, bit-stream data, or a special test vector for a functional

 Interactive MPEG-4 SoC Functional Verification 53

core that is generated from simulations. Therefore, the diagnostic tools have the

capability to simulate all of the functionality of a core. They also have the same

computational algorithm to ensure the same computational result between the

simulation and hardware processing result.

The test pattern generated by diagnostic tools is downloaded into the Frame

Store Memory (FSM) of the SoC. During actual operation of the SoC, the FSM

is used for storing image frame data. Utilizing available system memory of the

SoC reduces the additional hardware for test-pattern data storage.

However, to assign the MPEG SoC to process a test vector at a certain location,

one needs to have a core test processor (CTP) as part of an infrastructural IP

inside the SoC. This processor also has a programmability function in order to

support all processing core testing. Therefore, before starting the testing, the

diagnostic tools have to download data in the program memory of the CTP.

The CTP is also designed for being able to be controlled by the diagnostic tools.

Communication between the diagnostic tool and the SoC is implemented via the

IEEE TAP controller [4] circuit. This controller is used because a small number

of pins are required (3) and relatively little additional logic in the SoC for

interfacing. Moreover, it can also be used during structural testing of (wrapper-

equipped) cores. Through this interface, the host processor can start, stop, and

configure cores with special processing parameters.

Similar to the case of actual signal processing, the verification result data is

stored inside the FSM. In the final stage, diagnostic tools can upload result data

into the host computer, and carry out comparisons with simulated results. With

the programmability features, one may configure the SoC for many different

cases of verification, which result in diagnostic capabilities of the system.

2.2 The Core Test Interface (CTI)

The CTI handles the communication between CTP and host computer. Through

this interface and the TAP controller, the host computer performs functional

verification of the SoC by Read/Write (R/W) access to the registers of the CTP,

Program Memory (PM) and FSM. By setting the register values of the CTP, the

host computer can execute the verification program inside the PM. The test-

bench data for verification is also written by the host computer through this

CTI. By accessing the PM, the host computer can replace the test program

inside the PM for another verification procedure anytime. As a consequence,

the amount of testing is only limited by the PM size.

54 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

Figure 1 Functional verification system architecture.

The CTI consists of address decoding and data multiplexer circuits. They

determine which address to be R/W by the host computer.

As the construction of a typical SoC system consists of many dedicated

hardware MPUs, system control can be done through registers. Registers can

be used for dedicated enable and reset of each core. In another case, it can also

be used for system configuration, such as image size, data scheduling etc.

2.3 The Core Test Processor (CTP)

The Core Test Processor is designed for applying test pattern data to each

Macro-block Processing Unit (MPU). Therefore, the CTP must be able to

access memory data inside the FSM according to each MPU data input-output

scheduling. As a video-based MPU typically accesses the data in terms of

pixels, in block or macro-block form, the CTP has been designed to be

programmable for this type of data scheduling. As shown in Figure 2, the CTP

can access data in the scheme that also follows the MPEG input data format.

As defined in the MPEG4 standard [5], the input image data is presented in CIF

format. In CIF format, image data is subdivided into a macro-block (16 by 16

pixels) and a block (8 by 8 pixels). To represent a 16 x 16 pixel image data,

each macro-block data consist of four blocks of luminance data (Y) and two

blocks of chrominance data (Cr and Cb).

 Interactive MPEG-4 SoC Functional Verification 55

Figure 2 The memory data access scheme.

2.3.1 CTP Architecture

In order to generate the FSM address of an MPEG-4 core, a Core Test Processor

(CTP), as part of an embedded infrastructural IP in MPEG4 SoC system, is

designed as shown in Figure 3. The CTP is designed as a programmable

processor that generates an address by executing instructions in a Program

Memory (PM). The program is designed to apply a test pattern and perform

verification inside an MPEG-4 core. The executed instruction inside the PM is

determined by the Program Counter register (PC). In order to generate the

sequence of an address for memory R/W operation, the dedicated Loop

Generator (LG) is designed. Using this unit, pixel, block or macro-block

memory data R/W operations become possible. The LG generates the address

sequence with respect to the zero position (Figure 2). In order to randomly

access a certain pixel, block or macro-block position, an offset address should

be added with reference to the pixel, block or macro block position that is stored

in the registers (REG_X and REG_Y). For this purpose, ALU_X and ALU_Y

are used to add REG_X and REG_Y to the address value generated by LG. X

and Y are separated, in order to easily access the data block in a two-

dimensional position.

Using the Module Selector register, one can determine which core is going to be

tested. Each functional core has a unique core number.

As shown in Figure 3, the registers have been divided into two groups: byte-

and word-oriented registers. With byte registers, one can have registers with

much data addressing capability (2
12

). On the other hand, a word register is

56 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

designed for large amounts of data with a small number of registers (maximum

is 2
4
).

Control signals inside the CTP are generated by the controller. It operates in 3

stages, Instruction Fetch (IF), Decoding (DEC) and Execution (EXE). In the IF

stage, the instruction pointed by the program counter is transferred from the

program memory into the instruction register. Start and stop of the CTP

Controller unit is controlled by a RUN register value inside the Byte Control

Registers.

Data

Multiplexer

Program

Memory

Byte Control Registers

Program Counter

Instruction Reg.

Module Selector

Loop Generator

Reg X

Reg Y

ALU Y

ALU X

Controller

Instruction Decoder

Data

Address

Core Test

Processor

(CTP)

to Core Test Interface (CTI)

FSM Address Bus

Word Control Registers

Figure 3 The Core Test Processor architecture.

In the DEC stage, the data from the instruction operand value is extracted. This

operand value is used for the CTP configuration, which is dependent on the

instruction type. For an instruction type related to memory access, which will

be explained in next section, this operand value is used to configure the

maximum loop of the loop generator and Reg X & Reg Y. For an instruction

related to program control, the operand value is used to determine the program

counter value. For a function specific instruction, the operand value is used to

set a specific register value, such as the module register or motion vector

register.

In the EXE stage, the operation depends on the instruction. In a memory-access

type instruction, such as IRD_LINE, IRD_COLUMN, IWR_LINE and

IWR_COLUMN, the loop generator performs a looping operation to generate

an address according to the maximum loop value defined in the instruction

operand data. The amount of required clock cycles for this execution stage

depends on the amount of generated addresses. Since in the rest of the

 Interactive MPEG-4 SoC Functional Verification 57

instruction the operation is only to set the register value, the designated register

value will be set in this stage within a clock cycle.

In order to inform the host computer with regard to the completion of the

processing, an interrupt controller is used, where the host computer can detect

its status by reading the interrupt controller value. Therefore, the host computer

needs to observe this value after setting the run registers to a high value.

2.4 Instruction Sets

Instruction sets are designed in order to provide flexibility with regard to the

application of test patterns to the MPU and perform verification. As a

consequence, three instruction types can be distinguished: Register Access,

Memory Access, and Program Control. An instruction consists of three bytes

of data as shown in Figure 4.

INST : Instruction,

INST OPND0 OPND0 OPND1

4 bits 4 bits 8 bits 8 bits

OPND : Operand.

Figure 4 The instruction format.

The complete list of instructions is shown in Table 1.

2.4.1 Memory Access Instructions

These types of instructions read/write the data from the frame store memory

according to the instruction’s operand value. Using the instructions IRD_LINE

/ IWR_LINE or IRD_COLUMN / IWR_COLUMN one can read/write the

frame store memory data in horizontal (LINE) or vertical (COLUMN) direction;

one can also perform pixel, block or macro-block data access as described in

Figure 2 by setting the Δ value of the instruction operand. The ∆px and ∆py

operand values determine the size of the group of pixels to be read in x and y

direction. As a consequence, if one sets ∆px and ∆py to the maximum value

(∆px=7, ∆py=7), one will access those pixels as block of data. As another

example, if one sets ∆px=0 and ∆py=7, it will read/write a line of 7 pixel data in

y direction.

In the same way, ∆bx and ∆by operand values determine the amount of block

data to be read/write. And also if one sets them to the maximum value (∆bx=2,

∆by=1), it will access a macro block of data. The same case is also applied to

the ∆mbx, ∆mby operand values. One can set them to access the data in

macro-block format.

58 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

Different from the above read/write instructions, the ISET_ADD and

IINC_ADD instructions are used to manipulate the reference address position

for pixel, block or macro-block data read/write. The ISET_ADD instruction sets

the reference address to its operand values, which consist of pixel (px, py),

block (bx, by) and macro-block position (mbx, mby). Therefore, one can set

the reference position of data to be read inside a frame.

Instruction IINC_ADD increases the current address according to its operand

values. Increment is done independently among px, bx, and mbx. Second

complement representation is used for operand representation. Therefore, using

this instruction one can also decrease the address value. Different to

ISET_ADD, this instruction is designed for relative address setting according to

the current position. Usually it is useful for address setting inside a loop

condition.

Table 1 Instruction sets of the Core Test Processor. fno : frame number. ∆mbx,

∆mb: number of macro blocks to be R/W. ∆bx, ∆by: number of blocks to be

R/W. ∆px, ∆p: number of pixels to be R/W.

Instruction name & Operand

Memory Access Type

IRD_LINE(∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)

IWR_LINE(∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)

IRD_COLUMN((∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)

IWR_COLUMN((∆mbx, ∆bx, ∆px, ∆mby, ∆by, ∆py)

ISET_ADD(fno, mbx, bx, px, mby, by, py

IINC_ADD((fno, mbx, bx, px, mby, by, py)

Program Control

IJUMP(dest_add)

ICALL(dest_add)

IRTN

IWAIT(n)

ISTOP

Function Specific

ISET_MOD(module_no)

ISET_MV(mvx, mvy)

2.4.2 Program Control Instructions

Several instructions are designed to control the program execution flow, such as

IJUMP, ICALL, IRTN, IWAIT and ISTOP. The IJUMP instruction is used to

execute the instruction in the destination address (dest_addr). By this instruction

one can perform a loop operation or share several program routines for different

functionality. Beside IJUMP, we also provide the ICALL instruction for

 Interactive MPEG-4 SoC Functional Verification 59

execution of a subroutine program. This instruction helps reduce the number of

instruction lines by making many program routines for frequently used

subprograms. In order to return to the instruction after the ICALL instruction,

the IRTN instruction is used.

The instruction ISTOP is used to terminate the program execution. Therefore,

this instruction must exist at the end of every program. Finally, the instruction

IWAIT(n) delays for n clocks before executing the next instruction. Usually this

is used between read and write data from a module. The parameter n is bit

[15...0] representing the number of clock cycles to wait before executing the

next instruction.

2.4.3 Function Specific Instructions

This type of instruction is used for dedicated MPEG functionality instructions

such as the ISET_MV instruction, which is used for setting the motion vector

value during the testing of the Motion Compensation operation in MPEG-4

processing.

The ISET_MOD(module_no) instruction is used to select an active module. We

have assigned a specific module number to each MPU. This instruction must be

executed before reading data for each module.

3 System Simulation

In order to verify the embedded IP design via simulations, we have constructed

the system using Synopsys design ware IP as shown in Figure 5. In this

configuration, the host system is replaced with Synopsys Serial IP for

verification. Using this IP one can perform data transmission and receive data

via the SoC JTAG interface. Therefore, this system will replace the host PC

and diagnostic tools (see Figure 1). Programming features provided by IP

Verification can transfer generated test vectors directly, expect data and

program memory data into this system. Therefore, the previous system can be

simulated using this system.

In order to reduce data transfer time and to simplify the simulations, the test

patterns are loaded into the FSM by using the memory model design ware from

Synopsys. With these memory model features, one can load the test patterns in

short time and perform comparisons with the processing result.

60 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

4 Diagnostic Tools

Diagnostic tools have several functions in the verification process, which are

test pattern generation, SoC processing control, processing simulation and data

comparison.

4.1 Test Pattern Generation

Depending on the core that will be tested, the diagnostic tool can provide the

test pattern data in original image/bit-stream or a result of certain processing

simulation. As an example, to verify the IDCT function, the diagnostic tool

must perform the DCT function to generate DCT coefficient data as test pattern.

Therefore, all processing inside the SoC system must be implemented in the

debugging system. One must also consider the similarity of processing between

hardware and software simulation. Especially in the case for processing such as

the DCT that may be providing different results depending on the different ways

of computation.

Beside the test vectors, the diagnostic tools also generate expected result data.

This can be accomplished by simulating the input data with the simulation

program inside the diagnostic tools.

Test Pattern

JTAG CUT
Core Test

Interface

Test

Program

Expected

Result

FSM
Program

Memory

CUT

Core Test

Processor

RTL Code
Synopsys(R)

Mempro

Synopsys(R)

Verification IP

Synopsys VERA(R)

Description Language

Figure 5 System verification using Synopsys DesignWare.

4.2 SoC Processing Control

Since all testing mechanisms are controlled via register read and write

operations, the management of the testing process can be implemented as an

interactive application by attaching a register read/write function. As result, one

 Interactive MPEG-4 SoC Functional Verification 61

can write or read all the available registers and memory inside the SoC via the

diagnostic tools.

One can also combine several mechanisms as a specific program subroutine

with a certain function. For example, writing memory data actually consists of

generating data writing instruction and generating a block of data. Inside the

diagnostic tools, we have generated this as special function; therefore, the user

usually does not recognize each function step.

This program is also equipped with an interactive function, where the program

automatically checks the interrupt register for determining the end of data

processing.

The diagnostic tools can also use a standard frame video sequence data as input.

Originating from this data, many other test vectors can be generated. With the

instruction mechanism, one can easily transfer or read blocks of data. One can

observe the results either from a text-based or graphical console (Figures 7 and

8).

4.3 The Software Verification Flow

Verification can be performed using the flow as shown in Figure 6. At the

beginning of verification, a dedicated testing program is downloaded from the

PC to the CTP program memory. Afterwards, the input of the encoding and

decoding process, video sequence or bit-stream data is downloaded into the

diagnostic tools. Depending on the MPU to be tested, the video sequence or

bit-stream data is directly loaded into the FSM or, if the MPU requires pre-

processing, the processing is performed by the simulator inside the diagnostic

tools.

In order to select the module to be verified, the module selector register is set

according to the module being tested. After that, the register is set to execute

the designated program inside the program memory. The processing result is

stored inside the FSM for uploading to the PC. At the same time, the diagnostic

tools simulate the same processing. The control unit inside the CTP issues an

interrupt after each testing program has been completed. Both simulated and in-

circuit processing results are compared in the PC. The result can also be

visually compared and displayed by the diagnostic tools, as shown in Figure 8.

62 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

Image Sequence/

Bitstream Data

MB Simulation

Download To Frame

Store Memory

Execute Module

Module Select

Store In Frame Store

Memory

Upload To PC

Compare

End

Start

MB Simulation

Wait For Interupt

Load Testing

Program to HW

Figure 6 The verification software flow.

If the bug is found, diagnostics can be performed by applying customized test

patterns. Customization can be done in many ways depending on the tested

MPU. For instance for MC diagnostics, one can input the same pixel value for

checking the core functionality.

5 Experimental Results

In order to carry out experiments, we have developed an MPEG-4 SoC system,

and performed verification by means of simulation as well as in-circuit.

Simulation is carried out by using the system explained in section 2.3.

Additionally, for in-circuit verification, we implemented an MPEG-4 SoC

system using an FPGA as shown in Figure 9. This system was built using an

ALTERA FPGA chip and several chips for the frame store memory, data

converters and other external interfaces.

The proposed system was developed for checking DCT, IDCT, Quantizer, Inv-

Quantizer, ME, and MC cores. DCT testing is done by applying block image

data into the FSM using the IWR_LINE instruction. The IWAIT instruction is

used to wait for completion of the DCT processing. Afterwards, the processing

result data is written into the FSM using the IWR_COLUMN instruction. The

IWR_COLUMN instruction is used instead of IWR_LINE, due to the

orientation change because of this processing. As a result, the DCT verification

code is as follows:

 Interactive MPEG-4 SoC Functional Verification 63

ISET_MODULE(01h) // Select DCT module

ISET_ADD(0;5,1,0;4,2,0) //Set Frame No=0, Macro-block=5,4 and Block

number(1,2)

IRD_LINE(0,0,7;0,0,7) // Read a block of data from FSM

IWAIT(72) // Wait for 72 clocks

ISET_ADD(1;5,1,0;4,2,0) //Set Frame No=1, Macro-block=5,4 and Block

number(1,2)

IWR_LINE(0;5,1,0;4,2,0) // Write transformed data to FSM

ISET_MOD(00h) // Release DCT module

ISTOP // Stop the execution

The above program performs the DCT operation to a block of data in frame 0,

macro-block (5, 4) and block number (1, 2). The result of processing is stored

in frame 1, macro-block (5, 4) and block number (1, 2).

Figure 7 Character-based visualization of the verification tool.

64 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

Almost in a similar way, one can perform the verification for the IDCT, Q and

Inv-Quantization cores. As a result of DCT & Q processing, we can see the

reconstructed image as illustrated in Figure 10. It shows that the verification

process can be done for individual DCT and IDCT functional verification.

Figure 8 Graphical-based visualization of the verification tool.

In the case of MC testing, one can use any frame image from a sequence. The

data is read in the macro-block by using the same instruction as before, but with

different operand for setting the image size into a macro-block. Afterwards we

apply the complete range of MV values (typically between –15.5 to 15.5 in both

x and y directions) using the ISET_MV instruction. As a result one can see that

the macro-block data is shifted according to the input motion vector value.

The ME unit usually has a local memory for internal system cache. For copying

the test pattern into this cache data, the IRD_LINE instruction can also be used.

After that, the ME unit can be started, and the result can be read using the

Register Access instruction.

 Interactive MPEG-4 SoC Functional Verification 65

Figure 9 MPEG-4 SoC prototype board using an FPGA from Altera.

Figure 10 Experimental result for DCT/IDCT verification; the quantization

value is five.

6 Conclusions

An infrastructural IP has been proposed to support cost-efficient debug, and

board & system level functional test. Programmability of the system offers the

flexibility of upgrading and fixing bugs. Diagnostic tools on a PC are used to

manage test patterns, and allow system reconfiguration for specific processing

core tests. Verification can be done interactively and executed processing at

actual system speed. It solves the problem of requiring large amounts of test

patterns as required by MPEG-4 SoC system verification. The same system

configuration can be easily verified in RTL description and chip level.

66 Trio Adiono, Hans G. Kerkhoff & Hiroaki Kunieda

References

[1] M. Ohashi., et al. A 27MHz 11.1mW Video Decoder LSI for Mobile

Application, IEEE ISSCC Digest of Technical Papers, February, pp. 366,

2002.

[2] H. Nakayama et al., An MPEG-4 Video LSI with Error-Resilient Codec

Core based on a Fast Motion Estimation Algorithm, IEEE ISSCC Digest

of Technical Papers, pp. 368, February, 2002.

[3] M. Takahashi, et al., A Scalable MPEG-4 Video Codec Architecture for

IMT-2000 Multimedia Applications, Proceedings of IEEE ISCAS 2000,

Geneva, Switzerland, pp. 188-191, 2000.

[4] http://standards.ieee.org/announcements/pr_ics.html

[5] International Standard, Information technology — Coding of audio-visual

objects, ISO/IEC 14496-2.

[6] Y. Zorian., Guest Editor’s Introduction: What is Infrastructure IP?, IEEE

Design & Test of Computers, 19(3), pp. 5-7, 2002.

http://standards.ieee.org/announcements/pr_ics.html

