
 

 

             J. ICT Res. Appl., Vol. 17, No. 3, 2023, 292-315              292         

 

Received August 21st, 2022,  Revised  October 15th, 2023, Accepted for publication November 16th, 2023. 
Copyright © 2023 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.17.3.2 
 
 
 
 

An Efficient Intrusion Detection System to Combat Cyber 
Threats using a Deep Neural Network Model 

Mangayarkarasi Ramaiah1,*, C. Vanmathi1, Mohammad Zubair Khan2,                   
M. Vanitha1 & M. Deepa1 

1School of Computer Science Engineering and Information Systems,  
Vellore Institute of Technology, Vellore, Tamilnadu, India, 632014 

2Department of Computer Science and Information, Taibah University, Medina,  
Saudi Arabia, 41477  

*E-mail: rmangayarkarasi@vit.ac.in 
 
 

Abstract. The proliferation of Internet of Things (IoT) solutions has led to a 
significant increase in cyber-attacks targeting IoT networks. Securing networks 
and especially wireless IoT networks against these attacks has become a crucial 
but challenging task for organizations. Therefore, ensuring the security of wireless 
IoT networks is of the utmost importance in today’s world. Among various 
solutions for detecting intruders, there is a growing demand for more effective 
techniques. This paper introduces a network intrusion detection system (NIDS) 
based on a deep neural network that utilizes network data features selected through 
the bagging and boosting methods. The presented NIDS implements both binary 
and multiclass attack detection models and was evaluated using the KDDCUP 99 
and  CICDDoS datasets. The experimental results demonstrated that the presented 
NIDS achieved an impressive accuracy rate of 99.4% while using a minimal 
number of features. This high level of accuracy makes the presented IDS a 
valuable tool.  

Keywords: artificial deep neural network; correlation tool; DDoS; machine learning; 
network intrusion detection system; RF-score; XGBoost-score. 

1 Introduction 

The pervasive integration of the internet into daily life exposes communication 
networks to increasing vulnerabilities due to recent technological advancements. 
With rising internet usage generating substantial amounts of network data, 
attackers exploit this abundance to introduce novel threats, necessitating robust 
security measures. Intrusion detection systems (IDS) have emerged as critical 
tools for safeguarding networks by continuously monitoring traffic data [1]. The 
main functionality of IDS is to intelligently conceal data to protect valuable 
credentials from potential attacks. Advanced security challenges, such as zero-
day outbreaks, particularly impact countries like the US and Australia, with 



   An Efficient IDS to Combat Cyber Threats using DNN Model  293 

Symantec reporting three billion zero-day cases in 2016 [2]. Situational 
awareness is crucial for identifying devices and services to ensure cyber security 
[3]. IDS, broadly classified into anomaly-based and misuse-based detection, 
plays a vital role in detecting intrusion actions [4]. In contrast, the anomaly-based 
intrusion [5] detection system detects malicious actions that deviate from normal 
network patterns. Thus, network behavior is a major aspect in detecting 
intrusions. Various intrusion detection techniques, including statistical-based, 
data mining, machine learning, and deep learning methods, have been explored 
in the literature [6-9]. Reference [10] discusses the application of classical 
machine learning (ML) and data mining (DM) methods for simulating intrusion 
detection software. The study explains the merits of using the ML and DL 
methods on benchmark datasets along with the challenges involved.  

As a global trend, developing countries are constructing smart cities, where IoT 
plays a pivotal role. The surge in smart devices connected to the internet raises 
security and privacy concerns, highlighting the demand for IDS’s to mitigate 
attacks in smart IoT environments [11]. This reference reports a study on IoT 
security threats underscores the importance of robust network intrusion detection 
systems (NIDS) in smart IoT environments, where attacks vary in difficulty and 
diversity. An analysis report on state-of-the-art NIDS methodologies for IoT 
devices supports classical machine learning implementations [11]. Similarly, 
unmanned aerial vehicles (UAVs) play a crucial role in civilian and military 
missions, necessitating robust IDS mechanisms to detect vulnerabilities in 
interconnected UAVs [12]. With the evolution of IoT to Mobile IoT (M-IoT), the 
study reported in [13] investigated various solutions to ensure mobile network 
security and privacy.  

Overall, these studies contribute to understanding the complex landscape of 
intrusion detection across diverse technological domains and offer insight into 
emerging threats and solutions. An implementation of a machine learning 
framework for detecting DDoS attacks aimed at distributed Fog environments 
[14]. The presented framework ensures load balancing, a crucial aspect in the IoT 
sector. In addition to the above, the framework efficiently handles DDoS attacks 
while implementing smart contracts through blockchain technology. The 
system’s efficacy was experimented with using the BoT-IoT dataset and achieved 
a detection rate of 99.9%. 

Blockchain technologies to ensure privacy and security for IoT devices are an 
emerging research topic. Reference [15] summarizes the possible security and 
privacy issues anticipated in smart IoT environments. Moreover, security issues 
in the IoT protocol stack and possible solutions to mitigate the same are also 
discussed. 
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Figure 1 Intrusion detection system for IoT environments. 

Shafiq, et al. [16] presented a novel feature selection module for improving an 
entropy-based attack classifier. The proposed framework extracts the effective 
features from the BoT-IoT dataset using correlation and the AUC metric. The 
effective features were validated against the labels with the Shannon Entropy-
based classifier. Reference [17] presents a novel feature selection method to 
identify the most influential features from the BoT-IoT dataset. The experimental 
results obtained through a machine learning classifier showed an improvement 
compared to the presented feature selection method. The authors in [18] present 
IDS software specifically meant for IoT wireless networks. The predominant 
features for the IDS are detected through simulated annealing and the IDS 
software experimented with NaBIoT. A support vector machine learning model 
was built upon the selected features to detect attack traffic in wireless networks, 
achieving an accuracy of 95%. 

The presented NIDS is more or less the same as the IDS presented in [19]. The 
presented work not only focuses on building an IDS with a minimal number of 
features but also aimed to achieve good accuracy in attack traffic detection. A 
robust smart network intrusion detection system is presented in this paper. The 
contribution of the NIDS in detecting and mitigating cyber-attacks anticipated in 
IoT networks is displayed in Figure 1. The proposed IDS framework comprises 
a hybrid feature selection phase and a deep neural based cyber-attack classifier. 
The main highlight of the presented work is the utilization of the merits of the 
bagging and boosting methods for detecting the predominant features. The results 
in the experimental section proved that the selected features improved the deep 
optimized neural network cyber-attack classifier. Such an NIDS framework is 
especially suitable for IoT networks, where identifying intruders with less 
features complements the cyber-threats. 
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The contributions of the proposed work are as follows: 

1. A feature selection algorithm using bagging and boosting is proposed. 
2. A neural classifier was built upon fine-tuned features. 
3. The results were compared with other state-of-the-art counterpart 

techniques. 

This paper is organized into five sections. Section 2 presents related works on the 
research problem. The proposed IDS framework is presented in Section 3. 
Section 4 discusses the results and their performance and is followed by the 
conclusion in Section 5.  

2 Related Works  

Recently, anomaly-based network intrusion detection has produced promising 
results in detecting cyber-attacks on IoT networks. Hence, this section discusses 
the state-of-the-art NIDS frameworks built upon AI techniques presented in 
various previous studies for the reader’s perusal. 

2.1 Machine Learning Enabled NIDS 

Utilizing machine learning for cyber-attack detection is a powerful strategy, often 
involving offline models based on network flow or packet data attributes. Feature 
selection is critical for model effectiveness, and innovative approaches, such as 
pigeon-inspired optimization, have been explored for this purpose. Researchers, 
as exemplified in [20], employ datasets like KDDCUP99, NLS-KDD, and 
UNSW-NB15 for intrusion detection benchmarks. Decision tree-based attack 
detection models are trained with selected features to enhance accuracy and 
efficiency. The study reported in [21] improved intruder identification using PCA 
and hyper-parameter tuning with ANN and SVM on UNSW-NB15.  RFE-RF was 
taken into account in [22] when deciding which UNSW-NB15 dominant 
characteristics should be used to train the ML-based NIDS. Addressing 
unbalanced samples in [23] reduces the training sample size through 
oversampling and identifies dominant features using statistical techniques. 
Feature modification, such as Bayesian-based transformation in [24], enhances 
SVM-based models on datasets like NSL-KDD and CICIDS2017. Reference [25] 
introduced TON_IoT, a novel dataset for dynamic NIDS, achieving improved RF 
performance. Similarly, [26] focuses on identifying prominent traits and 
addresses imbalanced samples using the UNSW-NB15 and TON_IOT datasets 
for ML model training. Overall, these studies reflect ongoing efforts to advance 
machine learning techniques in cyber security, which is crucial for our digital and 
interconnected world. 
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2.2 Deep Learning Enabled NIDS 

Researchers responding to the anticipated rise in cyber threats have developed 
sophisticated intrusion detection systems with complex architectures. In one 
approach, as outlined in [27], a deep neural network-based NIDS is optimized 
with multiple layers to effectively identify cyber-attacks. Another strategy, 
presented in [28], employs ensemble models to mitigate the impact of cyber-
attacks, demonstrating superior performance on the UNSW-NB15 dataset 
compared to deep learning techniques. Furthermore, [29] explored the benefits of 
deep learning, ensemble learning, and traditional machine learning in IDS design, 
with ensemble learning techniques proving more effective in attack detection on 
the same dataset. 

A deep long term-short memory (DLSTM) based attack detector is proposed in 
[30]. The presented IDS model analyzes the feature dependencies through 
information gain. The NIDS framework presented in [31] leverages the CNN 
architecture. This approach treats network data as a time series pattern, which is 
a novel way to detect intrusions. Additionally, the framework has been compared 
with other architectures commonly used in intrusion detection systems, including 
multilayer perceptron (MLPs), long short-term memory (LSTM) networks and 
gated recurrent units (GRUs) 

In parallel, specific emphasis on precision is evident in [32], where the proposed 
High-Precision Intrusion Detection System utilizes a K-dependency Bayesian 
network to minimize false alarms and accurately identify intrusion attempts in 
edge computing environments. Additionally, [33] tailored an IDS for vehicle 
networks, achieving low false-negative rates with a deep convolutional neural 
network (CNN) that outperformed classical machine learning methods. 
Moreover, [34] designed a CNN IDS specifically for detecting denial of service 
(DoS) attacks that achieved high precision, with an accuracy rate of 99.87%. The 
works presented in [35]-[37] use diverse machine learning methods upon 
KDDCup99 (KDD) and NSL-KDD (NSL) for the attempted task, weighing their 
pros and cons and providing insight into future directions for network intrusion 
detection.  

Lastly, [38] introduced a deep learning-based NIDS for software-defined 
networking, emphasizing the importance of adapting intrusion detection systems 
to evolving network architectures and assessing feature relevance in software-
defined networking (SDN) environments. 

2.3 Federated Learning Based NIDS 

Federated learning (FL) is emerging as a pivotal solution in the realm of machine 
learning, particularly addressing concerns of data privacy and security. By 
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enabling model training across decentralized devices while keeping data locally 
stored, FL circumvents the need to share sensitive information with a central 
server, thus safeguarding privacy. One of the challenges in FL is the 
communication delay incurred when transmitting model updates from devices to 
the central server and back. To reduce this delay, various techniques, including 
an attention mechanism, [39] can be employed. However, challenges like 
implementation complexity and data imbalance across devices must be 
addressed. FL operates by distributing a global model to participant nodes, 
allowing local training on individual data without [40] sharing it centrally. Model 
updates are then transmitted back to the central server, minimizing data exposure.  

Moreover, in the context of intrusion detection, bio-inspired optimization 
techniques, as highlighted in References [41]-[43], showcase innovative 
approaches to enhance software functionality by optimizing features and 
parameters. The incorporation of ensemble methods like bagging and boosting in 
intrusion detection frameworks underscores the ongoing pursuit of accuracy 
improvement in this critical domain. 

3 Proposed System 

The proposed simple and reliable NIDS framework’s schematic diagram can be 
seen in Figure 2. It first takes the characteristics from network flow data. Before 
being fed into the attack-detection model, the retrieved characteristics undergo 
preprocessing. The novel solution applies ensemble feature selection techniques 
to the extracted dataset to eliminate redundant features while maximizing the 
benefits of the bagging and boosting approaches. Thirty percent of the samples 
are used for testing, while another thirty percent are used for training the 
framework. A deep neural network model was created based on handpicked 
attributes to accurately categorize regular traffic despite the presence of malicious 
traffic. Finally, quantitative metrics were used to evaluate how effective the 
proposed framework was. 

Pseudocode1: Pre-processing 
Input: Data set D 
Output: Preprocessed Data set D’ 
 
Step1: Load the dataset D 
Step 2: Encode the string values of the D into numeric values X 
            X={0,1,2,3,4,…………n-1}  where n is number of distinct data values 
Step 3: Normalize the encoded data X. 
Step 4:  Store the Normalized dataset S in D’ 
                 D’=S 

Step 5:   return D’ 
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Pseudocode 2: Feature Selection 
Input: Normalized features set   

Output: Dominant feature subset  

 
Step1: Compute correlation value Cij for every pair of features Fi and Fj  among k features 
            for i = 1 to k 

                        

          end 
Step 2: If the correlation value  Cij > threshold then remove it from the input set 

 
Step 3: Apply the XGBoost method on the resultant subset from Step 2 
Step 4: Apply Random Forest classifier on the subset of  features from Step 2 
Step 5: Apply set union operation on the result from Step 3 and Step 4 to produce final set of 
features. 

Step 6: Return the resultant feature set  

 
Pseudocode 3: A deep neural-based classification model 
Input: Train, Test set. 
Output: Accuracy, F1-score, Precision, Recall  
Step 1: Load the dataset 
Step 2: Train the model using the training samples 
Step 3: Continue the training until it achieves the good accuracy  
Step 4: Display the results 

3.1 Dataset Description 

The KDDCUP99 and CICSDDoS datasets served as the basis for the prospective 
NIDS system. The KDDCUP99 dataset is made up of 38 numerical features and 
three category features [44]. In total, there were 1,35,973 samples in the 
experimental dataset. Attack methods covered by KDDCUP99 include DoS 
(Denial of Service), R2L (unauthorized remote access), U2R (unauthorized local 
superuser privileges access), and probing. Additionally, Table 1 contains 
examples of typical network activities that are part of routine traffic. Figure 3(a) 
shows the number of samples against the various forms of attacks. 

Table 1 Categories of attacks as per KDDCUP 99 dataset. 

Categories  Meanings 

Normal  Normal Traffic – no intrusion found 

DoS  Denial of Service 

Probing  Monitoring other’s behaviors to particularly obtain their data 

R2L  Illegal access to data from a remote machine 

U2R  Unauthorized access for escalation of privileges 
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The data from the other dataset, CICDDoS [45], was compiled from the CSE-
CIC-IDS2018-AWS, CICIDS2017, and CICDoS (2016) datasets to test the 
resilience of the presented proposal. The experimental dataset consisted of 
101,295 rows of samples with 84 columns against two labels, ‘Benign’ and 
‘DDoS’. The sample distribution statistics against the output labels are shown in 
Figure 3(b). 

 

Figure 2 Outline of the proposed framework. 

 
 

Figure 3 (a) Samples distribution from KDDCUP99, (b) sample distribution 
from CICDDoS. 

3.2 Data Pre-processing 

The investigation started with data preparation, or data engineering. 
Occasionally, feeding the models with raw data can result in a prediction that is 
false. The datasets do not contain any duplicate or null values, and the data 
preprocessing stage only includes feature categorical encoding, feature scaling, 
and feature selection. The experimental datasets KDDCUP99 and CICDDoS 
consisted of many categorical variables. Since the machine learning process uses 
only numerical values, the presented framework uses label encoding to convert 
object type into numeric type. For example the column ‘Protocol type’ is 
converted into a number value using label encoding. UDP, TCP and ICMP are 
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the alternative values in the column. The TCP, UDP and ICMP values are 
changed into 2, 1, and 0 respectively.  

3.2.1 Feature Scaling and Normalization 

Some of the features in the datasets have highly erratic magnitudes, ranges, and 
units. Some algorithms make incorrect predictions as a result of the highly 
variable characteristics of the datasets. Feature scaling is an essential 
preprocessing step in many machine learning algorithms to ensure that the range 
of independent variables (features) is consistent and appropriate for the model. 
Two commonly used feature scaling techniques are standardization and 
normalization. The presented framework deploys normalization according to the 
sample distribution. Data normalization is applied to feature columns before 
using them to train machine learning models so that the trained models become 
less sensitive to the scale of the features. Normalization facilitates the model for 
converging to better weights, whereby the designed model predicts outputs more 
accurately. The data normalization is accomplished using Eq. (1). For the given 
vector x with n components, the L2 norm takes the sum of squared value and the 
square root at the end. In normalization, each element in the vector is squared to 
produce the sum value of 1. 

 ‖�‖� = �∑ |��|��
��� �

�

�
        

  (1) 

3.2.2 Feature Selection 

Superfluous and irrelevant features slow down the network intrusion detection 
process and prevent the classifier from making a correct classification. 
Correlation feature selection (CFS) yields promising results in obtaining the 
predominant feature variable to a certain extent. CFS [30] is based on a 
hypothesis, the features from the set correlate well with the output label and not 
with each other. The proposed framework uses the CFS tool to detect highly 
correlated features. The idea is that the initial set of redundant features is removed 
through CFS. Highly correlated pairs of features are chosen based on a threshold 
value and either one of them is retained for choosing the output class label. In the 
experiment, features with a correlation value greater than or equal to 0.8 were 
removed. This promising step deleted ten redundant features from the 
KDDCUP99 dataset and fifteen features from the CICDDoS dataset.  Removing 
irrelevant features is essential for neural based classifiers. Then further dominant 
features can be derived through the XGboost technique, which makes use of a 
gradient descent algorithm. The core idea of the technique is to learn the current 
pattern with the previous step’s result facilitating performance improvement. 
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Another benefit of this technique is that it does not require scaling since it 
depends on trees to capture the complex non-linearity pattern and interactions. 
Such a technique can handle any type of data and is not affected by redundant 
independent variables. While designing a classification model, two facts are 
essential: feature selection and feature transformation; the first step is used to 
detect the dominant independent features, and the latter step is used to refine the 
data to gain insight. These two steps are built into the XGboost technique. The 
technique starts with a set of base learners, which can be represented as F 
={f1,f2,f3…………fn}. The initial model was designed to predict the output 
variable Y using Eq. (2). For the initial model mentioned in the equation, the 
residual value is computed using the following expression: 

 ��(�) = ������ ∑ �(��, �)�
���   (2) 

            rim=  δL(yi, F(xi))/δF(xi)                                                                          (3) 

In the next step, a new base learner hm is identified, with the residual obtained 
using Eq. (2). Each hm(x) is fit on the gradient obtained at each step by combining 
the initial model F0, while the new base learner hm defines the boosted version of 
the initial model F0. The new model F1 can be defined using the following 
expression: 

 F1(x) <- F0(x) +h1(x)   (4) 

After including the multiplicative factor ϒm derived for each terminal node, the 
boosted model Fm(x) is defined as in Eq. (4). Here, m denotes the number of 
iterations. Thus the final feature selection model is defined after m iterations as 
follows: 

 Fm(x) = Fm-1(x) + ϒmhm(x)   (5) 

Another method deployed by the proposed feature selection component is 
Random Forest, a bagging method that fits many models of training samples and 
combines the results. For the given the training set X and responses Y, RF selects 
a random sample from the training set with B times of replacement and then fits 
these samples. After training, the prediction of the unseen samples x’ is done by 
calculating the average of the prediction values from all the individual regression 
trees as follows: 

 ḟ  =
�

�
 ∑ ��(��)�

���      (6) 

The mathematical expression in Eq. (6) removes the noise pattern and subsets of 
the features that are selected randomly by splitting each candidate from the 
resultant set. A classification problem with n features uses √n features in each 
split. Highly correlated features are selected using many B-trees to improve the 
accuracy. After the randomization of the trees, impurities in the data generated 
from extremely randomized trees are removed by selecting a random cutting 



302     Mangayarkarasi R, et al. 
 

point rather than computing the optimal cutting point using Gini Index or 
information gain. From the randomly generated tree splits, the place that produces 
the highest score is used to make a split node. The experiment was established 
with the RF model. First it was trained with the 41 features and then the top 
influential features were found. The bagging method facilitates a decrease of the 
complexity of models that overfit on the training samples. The proposed feature 
selection combines the merits of the bagging and boosting ensemble algorithms 
to detect highly influential features. In contrast, boosting increases the robustness 
of models that may underfit the training samples. The set of feature columns 
obtained through the boosting and bagging methods using the KDDCUP99 and 
CICDDoS datasets are given in Tables 2 and 3. 

Table 2 Top twenty-two features from KDDCUP99. 

Feature columns 
src_bytes , srv_count, Service, Hot , dst_bytes, diff_srv_rate ,dst_host_srv_count, 
num_file_creations, Count, dst_host_srv_diff_host_rate, dst_host_same_src_port_rate 
wrong_fragment, protocol_type, root_shell, Duration, rerror_rate, Flag, srv_diff_host_rate, 
dst_host_diff_srv_rate, logged_in, dst_host_count, same_srv_rate 
 

Table 3 Dominant features from CICDDoS dataset. 

Feature columns 
Flow ID, Src IP, Dst IP, Fwd Seg Size Min, Init Bwd Win Byts 

Init Fwd Win Byts, Timestamp, Fwd Seg Size Avg, Fwd Pkt Len Mean 
Tot Fwd Pkts 

3.3 Classification 

The proposed deep neural network model performs classification in supervised 
mode. The model transforms the input features into output classes, which can be 
expressed as follows: 

 �(. ) = �� → ��  (7) 

where m is the number of dimensions in the input and n is the number of 
dimensions in the output. The deep neural network models learn non-linear 
approximation to transform the set of input features X = x1,x2,x3…..xm to 
o1,o2…on. Figure 4 shows the proposed optimized deep neural network 
architecture. The proposed framework has three hidden layers and one input 
layer. The hidden layer equation for nonlinear transformation is given by Eq. (8) 
and the output class vector classification is computed using Eq. (9). The proposed 
attack classification is depicted as pseudo-code as below.  

 ℎ� = �(∑ ����  . ��)        (8)                                                                                                              
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where weights Wij  are assigned to hidden layer j with weights assigned to hidden 
neuron i, and Xi  represents input vector i = 1, 2, …n  and  hj  refers to the j th  
hidden layer, where j varies from 1 to n. 

 �� = ��∑ ���� . ℎ��   (9) 

The output layer neuron is the dot product of hidden layer output and hidden layer 
weights, where weights Wik  are assigned to hidden layer j with weights assigned 
to hidden neuron k, and hj represents the output of the jth hidden layer, where j 
varies from 1 to n. 

4 Results and Discussion 

This section discusses the efficacy metrics used to measure the reliability of the 
proposed system. To prove the effectiveness of the proposed NIDS framework, 
the experimented results were compared with its counterpart NIDS presented in 
various previous studies. 

4.1 Efficacy Metrics 

Most of the researchers use the below-mentioned metrics to evaluate the 
performance of   NIDS models. Recall (R), precision (P), and F1-score. The true 
positive rate (TPR) represents the ability of the classifier to recognize all positive 
cases and is calculated using Eq. (10): 

 Recall���® =
��

�����
       (10) 

A true positive (TP) occurs when a positive example is classified accurately. A 
false negative (FN) occurs when a negative example is misclassified. Precision 
(P) assesses the capacity of the classifier to avoid positive instance 
misclassification and can be represented as in Eq.(11). The expression for 
computing the accuracy of the proposed model can be found in Eq. (12). 

 ������������ =
��

�����
   (11) 

 ���������� =
�����

�����������
  (12) 

where FP represents how often negative examples were classified as positive. The 
F1 score is the harmonic mean of the past two qualities, as portrayed in Equation 
10. A high F1 score means excellent performance of the classifier. 

 �1����� = 2
���������.������

����������������
  (13) 
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4.2 Experimental Setup 

Utilizing the Keras library in Python 3.6, a deep neural network classifier was 
crafted for addressing high-dimensional problems. The model incorporates a 
precise configuration with an input layer of 1,000 neurons, accommodating 41 
and 22 feature vectors, and three hidden layers capturing variations in feature 
instances. The output layer is created for multiclass and binary labels, employing 
the rectified linear unit (ReLU) activation function in the input layer for enhanced 
computation unit performance. The ReLU activation function can be presented in 
simple form as in Eq. (14), where x represents the input features and f(x) 
represents the ReLU activation function. 

  �(�) = �� = max(0, �) (14)                              

The hidden layer of the data is activated through the SoftMax function, which 
turns the data values into probabilities that sum up to unity. In general, the input 
for the function is a vector of real numbers and uses a normalization technique 
that consists of K probabilities to map the values into a probability distribution. 
The probabilities for vector K can be calculated using the standard SoftMax 
function. Each input element Zj of the vector Z uses standard exponentiation. 
Then, the values are normalized by dividing them by the sum of the exponentials 
of each data set in the vector. The normalization confirms that the sum of the 
values is always calculated to 1 using Eq. (15), where denotes the SoftMax 

function,  denotes the input vector,  represents the standard exponential 
function for the input vector, K denotes the number of classes in the multi-class 

classifier, and  represents the standard exponential function for the output 
vector. 

 �(�)� =
�

��

∑ ����
���

 ��� � = 1, … �  (15) 

The designed model is compiled with an efficient optimizer to search through 
numerous weighted networks and any other metrics that need to be collected 
during the training of the model. The proposed experiment uses the Adam 
optimizer, a first-order gradient-based optimization algorithm. The reason for 
choosing the Adam optimizer is that it is straightforward, efficient, and well-
suited for large volumes of data, and has minimum memory requirements. The 
established model was tested with the feature columns derived through the 
proposed feature selection package and the whole set of features came with the 
dataset. The neural network model was set up for binary as well as multiclass 
classification attack detection. In the next step, the designed model was fit with 
150 of epochs (KDDCUP99). Figure 4 shows the iteration versus accuracy 
relationship for 41 and 22 feature columns. As the model is trained with a varying 
number of iterations it learns the patterns gradually until it reaches the optimal 
accuracy value. At the 150th epoch, the proposed model achieved 99.5 as training 


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accuracy, which is highly competitive in detecting cyber threat vulnerabilities 
with 41 features (see Figure 4(a)). And after deploying the presented feature 
selection package, the model was trained with 22 unique features. The model 
accuracy plot for this case can be seen in Figure 4(b), which shows that the testing 
accuracy was 99.4, which is highly commendable.  

 

Figure 4 Accuracy versus number of epochs for 41 and 22 feature columns 
(KDDCUP99). 

 

Figure 5 Model loss versus the number of epochs for 41 and 22 feature columns 
(KDDCUP99). 

Figures 4 and 5 show the designed multiclass deep neural attack detection 
model’s learning path with and without the presence of the proposed feature 
selection package. The deviation between training and testing should be minimal 
to ensure better learning. Figure 5 illustrates the relationship between model loss 
values versus the number of epochs for the 41 and 22 features columns. Figure 5 
shows that as the number of epochs increases the loss values decreases. The 
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plotting curve reveals that with 22 features the proposed neural network model 
performed well. The model with 22 features is comparable to the model with 41 
features in terms of accuracy. Then, a binary deep neural network attack detection 
model was designed and tested with 150 epochs; the results in terms of accuracy 
and loss were in line with the multiclass attack detection model. The model 
training details are plotted in Figure 6 for the reader’s perusal. The proposed deep 
neural classifier is theoretically very complex and requires good expertise to fine-
tune the setup. An improper setup may end up with either overfitting or 
underfitting. 

 

Figure 6 Model accuracy versus number of epochs curve for 41 and 22 features 
(Binay). 

To feed the proposed NIDS framework, the CICDDoS dataset was also used to 
prove its resilience against attacks. The learning curves generated by the DNN 
model that were built on the features (as mentioned in Table 3) selected by the 
proposed ensemble feature selection technique can be found in Figures 7 and 8. 
As the number of epochs increased, both training and testing began to converge 
and finally at 100 epochs both the training and the testing accuracy were almost 
the same. Hence, the curves rendered in Figure 7(a) show that the DNN model 
learned from the data accurately and could successfully be deployed to mitigate 
cyber-attacks. The same kind of outcome can be seen in Figure 7(b), i.e., as the 
number of epochs increased, the loss value started to decrease. One more notable 
thing about the curves displayed in Figure 7 is that the experimental model was 
built upon unbalanced samples. 



   An Efficient IDS to Combat Cyber Threats using DNN Model  307 

 

Figure 7 DNN model training curve on CICDDoS dataset (unbalanced samples). 

In another experiment, the samples were balanced against two output class labels. 
In this context, the model’s training accuracy and testing accuracy curves 
displayed in Figure 8 also converged at a distinct point of time. It is expected that 
the deviation between both curves (training and testing) should be as minimal as 
possible. According to this fact, the results provided in Figures 4 to 8 prove the 
model’s learning ability, i.e., the deviation is minimal. 

  

Figure 8 DNN Model training curve on CICDDoS dataset (balanced samples). 

4.3 Discussion on Results  

This section discusses the performance of the proposed NIDS (P-NIDS) tested on 
the KDDCUP99 and CICDDoS datasets against quantitative metrics. To identify 
the results obtained through the KDDCUP99 and CICDDoS datasets, the 
following notation was used: P-NIDS-KDD, P-NIDS-CIC. The test results of the 
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proposed NIDS framework in binary and multiclass mode along with the results 
obtained from some of the states of the NIDS techniques can be found in Table 
4. The results in [36] were obtained using an ANN model, which uses the same 
network structure for both binary and multi-class attack detection. The 
framework presented in [38] is an NIDS built on the UNSW-NB15 dataset and 
the provided results were obtained for six features.   

 
Table 4 Tested results (binary, multiclass) through neural-based models. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
The presented feature selection component had twenty-two predominant features 
in the KDDCUP99 dataset and ten in the CICDDoS dataset. The authors in [36] 
used a hierarchical cluster approach for selecting the dominant features, after 
which the selected features were used to enhance the performance of the ANN 
(artificial neural network). Table 4(a) reports the results for the NIDS built in 
binary mode. Based on analysis of various neural-based NIDS frameworks 
presented in different previous studies, the proposed model built on the 
KDDCUP99 and CICDDoS datasets showed promising results in terms of 
accuracy (AC), precision (Pre), recall (Rec), and F1-score. The numeric data 
presented in Table 4(a) is displayed in Figure 9. Table 4(b) presents the attack 
multiclassification framework’s results. The proposed technique recorded the 
best performance compared to the others. 

 

(a) NIDS (Binary) 
Method AC Pre Rec F1-score 

ANN [21] 0.92 0.93 0.92 0.92 
ANN [36] 0.92 0.99 0.91 0.95 
DNN4 [37] 0.93 0.99 0.91 0.95 
DNN5 [37] 0.92 0.99 0.91 0.95 

FE-DNN [38] 0.87 0.87 0.96 0.91 
P-NIDS-KDD 0.994 0.994 0.994 0.994 
P-NIDS-CIC 0.998 0.998 0.998 0.998 

(b) NIDS (Multi-Class) 
Method AC Pre Rec F1-score 

DNN2 [36] 0.926 0.944 0.926 0.920 
DNN3 [36] 0.93 0.920 0.935 0.925 
DNN4 [36] 0.929 0.911 0.929 0.918 
DNN5 [36] 0.925 0.934 0.925 0.921 

P-NIDS-KDD 0.994 0.994 0.994 0.994 



   An Efficient IDS to Combat Cyber Threats using DNN Model  309 

 

Figure 9 Neural-based NIDS results. 

Table 5 Test results with existing ML-based NIDS (binary). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 5 illustrates the performance of a network intrusion detection system 
(NIDS) built on various machine learning techniques, particularly focusing on 
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 (a) 
Method AC Pre Rec F1-score 

SVM [21] 0.92 0.92 0.92 0.91 
NB-SVM [24] 0.93 0.93 0.94 0.92 

GI-DT [26] 0.999 0.999 0.999 0.999 
KNN [36] 0.925 0.998 0.909 0.952 
AB [36] 0.925 0.996 0.910 0.951 
RF [36] 0.927 0.999 0.911 0.953 

P-NIDS-KDD 0.994 0.994 0.994 0.994 
P-NIDS-CIC 0.998 0.998 0.998 0.998 

(b) 
Method AUROC (%) 
SVM [8] 96.80 

Chi_SVM [8] 99.5 
LR [8] 92.70 

P-NIDS-KDD 99.4 
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the KDDCUP99 and CICDDoS datasets. Figure 10 presents the result from Table 
5. It showcases superiority over the benchmark NIDS techniques, except for the 
Gini Impurity-based Random Forest Decision Tree model for attack 
classification.  

 

Figure 10 Machine learning-based NIDS. 

Figure 11 shows the confusion matrix; the metrics reveal the effectiveness of the 
presented NIDS, especially when employing balanced samples, yielding 99.9% 
accuracy compared to 99.8% with unbalanced samples. In contrast to the pigeon-
inspired optimization-based model, which achieved 94% accuracy, the proposed 
method attained 99.8% accuracy with unbalanced samples. Additionally, the 
presented technique outperformed the others in terms of the AUROC metric, 
emphasizing its suitability for countering cyber-attacks in IoT networks through 
ensemble feature selection and an optimized deep neural network classifier. Table 
5(b) reports some of the results from previous studies for comparison. In terms 
of the AUROC metric, the of the proposed technique were better than those of 
the others. By comparing the frameworks published recently, the proposed 
framework indicated ensemble feature selection followed by the optimized deep 
neural network classifier as the most appropriate solution to mitigate cyber-
attacks anticipated in IoT networks. 
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Figure 11  (a) Classification results for unbalanced samples; (b) results for 
balanced samples (CICDDoS). 

5 Conclusion and Future Work 

The present research developed an intelligent NIDS system to defend against 
potential assaults anticipated in IoT and wireless networks. The NIDS has an 
ensemble feature selector that makes use of the advantages of the boosting and 
bagging techniques. A refined deep neural network attack detection model is 
included in the NIDS framework’s second phase in order to speed up the 
mitigation procedure. Two datasets, KDDCUP99 and CICDDoS, were used in 
the experiment to see if the model could be made more resilient. Comparing the 
quantitative metric findings with those produced using state-of-the-art techniques 
demonstrated how well the proposed framework performed. On KDDCUP99, the 
proposed approach achieved a classification accuracy of 99.4%. However, the 
output class labels for the KDDCUP99 dataset are unbalanced and the dataset 
itself contains some inherent ambiguities. Therefore, the CICDDoS dataset was 
used in experiments to improve its suitability for dynamic DDoS attack detection.  

The proposed structure achieved 99.9% accuracy in that endeavour. In a future 
study, it will be determined whether the proposed methodology can be used to 
mitigate cyber-attacks against bitcoin networks. To be more precise, additional 
characteristics peculiar to the blockchain platform will be included in order to 
lower the misclassification rate. 
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