

110 J. ICT Res. Appl., Vol. 10, No. 2, 2016, 110-122

Received December 11th, 2015, Revised February 18th, 2016, Accepted for publication March 23rd, 2016.
Copyright © 2016 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2016.10.2.2

An Application of PSV-S in Fast Development
of a Real-Time DSP System

Armein Z.R. Langi1,2

1Electrical Engineering Study Program,
Faculty of Engineering, Maranatha Christian University,

 Jalan Prof. Drg. Suria Sumantri, MPH No. 65, Bandung 40164, Indonesia
2ICT Research Center and Information Technology Research Division,

School of Electrical Engineering and Informatics, Institut Teknologi Bandung,
Jalan Ganeca 10, Bandung 40132, Indonesia

E-mail: azr.langi@gmail.com

Abstract. Virtual prototyping is natural in developing digital signal processing
(DSP) systems using a product-service-value system (PSV-S) approach. Our
DSP virtual prototyping approach consists of four development phases: (1) a
generic DSP system, (2) a functional DSP system, (3) an architectural DSP
system, and (4) a real-time DSP system. Such an approach results in a more
comprehensive approach in the DSP system development. This paper shows an
example of prototyping a voice codec on a single-chip DSP processor.

Keywords: DSP; design; PSV-S; speech; virtual prototyping.

1 Introduction

In this paper we describe the use of our product-service-system (PSV-S)
approach in prototyping digital signal processing systems virtually, using
software platforms [1]. The PSV-S concept was originally developed to cover
product, service and value systems. The main purpose of this paper is to
validate the use of PSV-S in DSP product development. Speech coder
algorithms are of special interest because they can be mapped into values,
services and products [2]. Speech quality and intelligibility are the values to be
preserved. Speech transformations from speech samples to bitstreams suitable
for low bit rate transmissions and back are the services to be provided. Finally,
the DSP chips or hardware modules are the products to be packaged.

Economic considerations put an emphasis on short time to market, demanding
rapid developments of single-chip DSP systems [3,4]. Our virtual prototyping is
an approach for rapid development. It consists of four iterative development
phases: (1) a generic DSP system, (2) a functional DSP system, (3) an
architectural DSP system, and (4) a real-time DSP system.

An Application of PSV-S in Fast Development of a DSP System 111

This paper reports the application of the iterative development phases on a DSP
starter kit (DSK) platform supported by Code Composer technology as a
generic DSP system [5-7]. The target is to produce a single-chip product that
performs speech-to-bistream conversions (from 64 kbit/s samples to 8 kbit/s or
less bitstreams) while maintaining speech quality (signal-to-noise ratios of more
than 10dB). First, PSV-S and its engineering are explained in Section 2. Section
3 describes the DSK as a generic platform to perform speech coding. Section 4
then shows an algorithm with which the speech codec can reduce the bit rates
while maintaining speech quality. Section 5 describes the architecture of the
DSP chip to be used, as well as an optimiziation effort to fit the algorithm into
the architecture. In Section 6, we discuss the results and their implications for
obtaining a real-time single-chip DSP speech coder. Section 7 provides our
concluding remarks.

2 Overview of PSV-S for PSV-S Virtual Prototyping

A PSV-S is a model of entities with three perspectives: product, service, and
value [5]. As shown in Figure 1, the system maintains an internal value, serves a
value source and a value receiver within a value environment. Its objective is to
increase values stored in the source and the receiver while maintaining
environmental support and a positive internal value. This objective is
accomplished through currency exchanges of up to six currencies, namely
solution value, price value, cost value, revenue value, external value, and
external cost.

Figure 1 PSV-S exchanges currencies between source and receiver supported
by the environment.

System

Product

Service

Value

ReceiverSource

Cost Value

Revenue Value Price Value

Solution Value

Environment

External
Value

External
Cost

112 Armein Z.R. Langi

We have shown that a special PSV-S can engineer a PSV-S under design (PSV-
S UD). As shown in Figure 2, the source develops the PSV-S UD using a
development process according to required performance. The receiver then
evaluates the actual performance. If the performance is acceptable, the PSV-UD
becomes the engineering result. Otherwise the receiver issues various feedbacks
and adjustment requirements; the source repeats the process.

Source
Values

Development
PSV‐S
Under
Design

Evaluation
Recei‐
ver

Values

Requirements, Orders,
Feedbacks, Adjustments,
Acceptance, Payments

Actual
Performance

Required
Performance

Figure 2 PSV-S for engineering PSV-S UD.

In essence, the engineering process compresses its value into an efficient form.
We have a selection of three known value compression approaches:
compaction, minimizing and substitution. As shown in Figure 3, value
compaction finds a more efficient representation of the solution value. Value
minimizing excludes less important values. Value substitution replaces the
value with a new one that is more efficient.

3. Value
Substituting

2. Value
Minimizing

PSV‐S
UD

Evaluate

References

Source

1. Value
Compacting

Service
Compacting

Product
Compacting

Figure 3 PSV-S engineering compresses the source values into a PSV-UD.

An Application of PSV-S in Fast Development of a DSP System 113

PSV-S modelling and engineering lend themselves naturally to virtual
prototyping. PSV-S abstractions can be expressed using computing language.
Figure 4 shows how the requirements can be coded using a computational
system description. In turn, we generate a PSV-S behavioural model as well as
its input and output references. Here all value, service and product aspects of
the PSV-S behaviour have to be described.

Virtual
Prototyping

Requirements

Behaviourial
PSV‐S

Reference
Inputs

Reference
Outputs

Figure 4 Virtual prototyping of PSV-S UD.

Thus in virtual prototyping, PSV-S UD evolves computationally through
various processes according to Figures 2 and 3, starting with the process in
Figure 4. As shown in Figure 5, the PSV-S UD evolution process starts with a
generic computing model, moving to a functional model, an architectural
model, and finally a realistic form. Here we maintain a repository of various
models and components to be used in subsequent development. External
PSV-Ss are a source of new innovations being absorbed by the PSVS-UD.

Generic
Computing

PSV‐S

Functional
Computing

PSV‐S

Architectural
Computing

PSV‐S

Realistic
PSV‐S

Internal PSV‐S Libraries and Repositories

External New PSV‐Ss

Evolve Evolve Evolve

Figure 5 The PSV-S UD evolves from conceptual model into physical
realization.

114 Armein Z.R. Langi

3 DSP Starter Kit as Generic Prototype

In this speech codec project we selected a DSP Starter Kit (DSK) as the generic
PSV-UD. As shown in Figure 6, the DSK has analog I/O ports for user speaker
and microphone, UART I/O for digital channel communications, and a TMS
320C5402 processor. The memory bank has a size of 128 kbyte SRAM and 256
kbyte Flash RAM, sufficient for hosting the program code. Speech sound can be
captured by analog I/O into 64 kbits/s samples. The DSP engine uses a program
stored in the memory bank to encode the speech samples into bitstreams at bit
rates as low as 8 kbits/s or less.

Figure 6 DSK module (source: Texas Instruments).

Figure 7 DSK internal block diagram (source: Texas Instruments).

DSP Engine

UART I/O

DAA Phone I/O

Analog I/O

Memory Bank Data Transfer

User Control/Status

An Application of PSV-S in Fast Development of a DSP System 115

From a development perspective, we are interested in the logical scheme of the
DSK, as shown in Figure 7. The audio section, consisting of an ADC/DAC for
speaker and microphone and a phone DAA link, connects to the serial port of
the DSP processor. The digital serial channel connects through a high-speed
EMIF channel. This means input and output run separate channels, allowing a
low-latency speech transcoder. A JTAG port connects to a host PC allowing the
developer to communicate with the DSP processor.

As mentioned before, this DSK is supported by Code Composer, a code
integrated development environment (IDE) in which the developer can write C
code, compile it into DSP machine code and then load it to a DSK for
execution. The developer can debug the code in real-time through a JTAG
connection. One can use Code Composer to view how each C code line has
been compiled into a series of machine codes, as shown in Figure 8. One can
also view the assembly code as it occupies the program memory. While
executing the program, one can see the dynamics of the internal registers of the
DSP processor step-by-step.

Figure 8 Code Composer as a PC-based code development program supporting
DSK (source: Texas Instruments).

Using Code Composer and a DSK, we can set up the basic behavioural
prototype (generic speech codec prototype). The C code consists of two parts:
analysis and synthesis. The analysis part reads a file containing speech samples.
We use two files: a short one, TEST.INP (1.76s), and a longer one, DAM9.INP

116 Armein Z.R. Langi

(21.48s), as input samples. The TEST.INP file is an ITU-T speech file for
testing G.729, containing a male-spoken segment in the French language. The
DAM9.INP file is the US Department of Defense (DoD) file for testing CELP,
containing a mix of male and female spoken rhyme sentences in English. The
analysis program produces bitstream files TEST.BIT and DAM9.BIT,
respectively. The synthesis program takes the bistreams and reproduces the
speech samples files TEST.OUT and DAM9.OUT, respectively.

We can then measure the performance of the system. First, we take the size of
TEST.BIT and DAM9.BIT and ensure that both correspond to a rate of 8 kbps
or less. Next, we compare both original samples and reproduced samples, and
ensure the signal-to-noise ratio (SNR) is higher than 10 dB. In addition to the
prototype code, we added support code to perform the measurements.

4 Functional Prototype

We developed the generic prototype into a functional prototype that satisfies (1)
bit rate requirements, and (2) quality requirements. From a PSV-S perspective,
these are the value requirements. The lower the bit rates, the higher the PSV-S
value; the higher the SNR the higher the PSV-S value. Both are achieved
simultaneously using a compression scheme. In this project we selected the MP-
MLQ/ACELP codec [8], explained briefly as follows.

4.1 Reducing Bit Rates: Synthesis

The MP-MLQ/ACELP codec achieves low bit rates by using a speech
synthesizer to produce speech samples. As shown in Figure 9, a synthesizer can
reproduce speech samples using a pitch and synthesis filter. An excitation
decoder and pitch decoder generate excitation of the synthesis filter to produce
the speech samples. A post-processing block improves speech reproduction
quality to produce the output speech.

Figure 9 Speech synthesizer of MP-MLQ/ACELP codec.

An Application of PSV-S in Fast Development of a DSP System 117

The synthesizer needs three kinds of information to produce speech, namely
LPC bits, pitch bits and excitation bits. As shown in Table 1, for every 30 ms of
speech the parameters need 189 bits and 158 bits for MP-MPQ and ACELP,
respectively. These bit requirements translate into 6.3 kbit/s and 5.3 kbit/s,
respectively; they satisfy the original requirement of bit rates.

Table 1 Bits requirements for 30 ms Speech (ITU-T G.723.1).

Parameters Details MP-MLQ
(Bits)

ACELP
(Bits)

LPC LPC Indices 28 24
Excitation Adaptive CB Lags 18 18

 Gain 48 48
Pitch Pulse Positions 73 48

 Pulse Signs 22 16
 Grid Index 4 4

Total 189 158

4.2 Increasing Quality: Analysis

Given such a low bit-rate bit allocation, it is important to ensure the best speech
quality. This is accomplished by LPC analysis, as shown in Figure 10. Speech
samples are collected in 30-ms blocks. LPC analysis of a block results in LPC
information bits. Pitch and excitation information bits are obtained by open-
loop and closed-loop analysis. An open-loop scheme obtains coarse pitch
information. Furthermore, a closed loop process refines the pitch information.

Figure 10 Speech synthesizer of MP-MLQ/ACELP codec.

118 Armein Z.R. Langi

The closed-loop process finds excitation information through codebook
searching, minimizing the energy of error. The purpose of the search is to find
the best pitch and excitation parameters that when applied to a simulated
decoder produce the lowest error energy. The LPC information is used to
enhance the speech quality by compensating perceptual aspects into the energy
measurement. Such a closed-loop approach ensures the highest quality of
reconstructed speech.

ITU-T provides a reference code implementing both the synthesizer and the
analyser [8]. We have adopted the code into our generic prototype, resulting in
the functional prototype. When simulated, the functional prototype produces the
files TEST.BIT and DAM9.BIT, whose sizes conformed to bit rates of 6.3
kbit/s and 5.3 kbit/s.

Furthermore, we also measured the quality of the synthesized speech, as shown
in Table 2. Both schemes performed at an SNR of more than 11 dB. The results
also confirmed the quality advantages of MP-MLQ over ACELP.

The functional prototype code was run on the DSK. It took 36,589 words and
20,446 words for program and data, respectively. This total of 56.9 Kword fits
into the DSK but does not fit into the single-chip internal memory of the
TMS320C5409 processor, which has only 48 Kword internal memory.

Table 2 Resulting speech SNR quality.

Original (64 kbit/s) MP-MLQ (6.3 kbit/s) ACELP (5.3 kibt/s)
TEST.INP 12.30 dB 11.30 dB
DAM9.INP 13.14 dB 11.73 dB

Averaged SNR 12.72 dB 11.52 dB

Furthermore, Table 3 shows million instructions per second (MIPS)
requirements for MP-MLQ and ACELP. MP-MLQ requires 2707 MIPS while
ACELP 2055 MIPS. They are too high for real-time implementations. A TMS
320C5409 for example has 100 MIPS only. Hence, the functional prototype
would need more than 20 DSP processors to achieve the real-time requirements.

Table 3 MIPS requirements of the functional prototype.

Rates Encoder Decoder Total
MP-MLQ 6.3 kbps 2554 153 2707
ACELP 5.3 kbps 1902 153 2055

An Application of PSV-S in Fast Development of a DSP System 119

5 Architectural Prototype

We then developed the functional prototype to match the DSP internal
architecture. The main objective was to reduce both the memory and MIPS
requirements to match the TMS320C5409 single-chip capacity. Code Composer
was used to optimize the functional prototype code to match the TMS
320C5409 architecture, as follows:

1. Replace all C arithmetic functions with DSP assembly instructions.
2. Simplify all long and nested loops using DSP loop and repeat instructions.
3. Utilize indirect addressing mode to take advantage of dual access internal

memory, allowing a full-capacity single-cycle pipeline.
4. Use circular buffers and circular addressing mode for filter functions
5. Use specialized built-in signal processing instructions such as LMS, FIR,

POLY, NORM, ABDST, and SQDST.
6. Use high-speed internal memory for minimum access time and full pipeline

support.

The process was repeated for many cycles, while maintaining the correctness of
the optimized code. At the end of these cycles we measured the memory
requirements as well as the MIPS requirements. The architectural prototype
took 26,894 words and 12,159 words for program and data, respectively. This
total of 39 Kwords of memory requirements now fitted into a single
TMS320C5409 internal memory of 48 Kwords.

Furthermore, we could match the MIPS requirements, as shown in Tables 4 and
5. Here we measured them with various options, i.e. high pass filter, post filter
and voice activation detection. All options required between 58.5 and 73 MIPS.
They now fitted within the 100 MIPS capacity of the TMS320C5409. Hence the
architecture prototype could fit and run in real-time on a single-chip DSP.

Table 4 MIPS requirements of MP-MLQ architectural prototype.

Setting Encoder Decoder Total

HP, PF, VAD off 56.6 5.5 62.1

HP and PF on; VAD off 54.9 7.9 62.8

HP, PF, and VAD on 65.1 7.9 73.0

Table 5 MIPS requirements of ACELP architectural prototype.

Setting Encoder Decoder Total

HP, PF, VAD off 53.4 4.9 58.3

HP and PF on; VAD off 55.8 7.6 63.4

HP, PF, and VAD on 62.3 7.5 69.8

120 Armein Z.R. Langi

6 Discussions of Realistic Demonstration Prototypes

Having developed the architectural prototype, we were ready to demonstrate a
realistic prototype. Here we used the architectural prototype code for the
analyzer and synthesizer. However, we had to add overall system
considerations, mainly controller, speech input/output, and bitstream
transmissions. Furthermore, a set of buffers was prepared for speech samples
and bitstream transmissions. Timing and framing of samples is crucial.

First we set up one DSK to run the prototype code in a loop. Here, a
microphone and a speaker were connected to the DSK. The DSK then analyzed
the speech samples into bitstream and used the resulting bitstream to synthesize
the reconstructed speech. We confirmed both the quality and the realtime
requirements through subjective listening.

We set up two DSKs and connected their UART port accordingly so they could
communicate at low bit rates. Furthermore the audio I/O ports of both DSKs
were connected to speakers and microphones. The controller then activated each
DSK so we could confirm full-duplex communications.

The main concern of the realistic prototype was the delay. Long delays cause
both conversational inconvenience as well as failures of echo cancellation. It is
desirable to have speech with a maximum algorithmic delay of less than 100
ms. As shown in Table 6, the delay caused by the algorithm was 37.5 ms
because the algorithm had to wait for 37.5 ms (30 ms block size + 7.5 ms look
ahead) samples in the buffer before it could proceed with the computation. The
processing itself caused processing delay. The encoder introduced (65.1 MIPS /
100 MIPS) * 30 ms = 19.53 ms, while the decoder took (7.9 MIPS / 100 MIPS)
* 30 ms = 2.37 ms. Hence, total delay was 37.5 ms + 19.53 ms + 2.37 ms = 59.4
ms, which is still well within the desired range.

Table 6 Implementation algorithmic delay.

Delay Sources Duration (ms) Notes

Standard buffering 30.0 Fixed, 4 subframes

Look ahead 7.5 Fixed, 1 subframe

Encoding 19.5 Varies

Decoding 2.4 Varies

Total 59.5

Furthermore, when the chip is used in an actual system, there will be additional
sources of delay. For example, Table 7 summarizes a GEO satellite case. ADC

An Application of PSV-S in Fast Development of a DSP System 121

and DAC will introduce a delay of one sample. A 9.6 kbps modem could have a
39.4-ms delay. A GEO satellite will introduce a 135-ms delay per trip, totaling
260 ms. A total delay of 369.05 ms is still acceptable for satellite applications.

Table 7 System delay for a case of a satellite transmission.

Delay Sources Duration (ms) Notes

Mic and speaker 0.0 Negligible

ADC & DAC 0.25 One sample

Encoding + decoding 59.4 (see above)

Modem 39.4 9.6 kbps UART

Transmission 270 GEO satellite

Total 369.05

7 Conclusions

This paper shows that a PSV-S approach is suitable for DSP system
development. In this speech coding project, the values were speech bit rates and
speech quality. The service was speech coding between user speech samples
and channel bitstreams. The products were a DSK and a single-chip DSP. In
particular, the DSK was used as a generic prototype at the beginning of an
evolutionary process of virtual prototyping.

Our DSP development was a closed-loop iterative process. Here we started with
a DSK as a generic speech prototype. The C code of the MP-MLQ and ACELP
analyzer and synthesizer became the functional prototype. DSP code that was
optimized for the TMS 320C5409 DSP processor was the architectural
prototype. Finally, we integrated the optimized DSP code with speech I/O and
channel I/O code into the DSK and configured demonstration systems. The real-
time demonstration systems were realistic prototypes.

The whole system evolution took place in a DSK with Code Composer. Code
Composer allows the system to be described using C code and simulated in a
DSK. It constitutes virtual prototyping. We conclude that a PSV-S approach is
suitable for DSP development through virtual prototyping.

Acknowledgements

This paper is based on a conference paper presented at ISCAPCS 2015 in Bali
[9].

122 Armein Z.R. Langi

References

[1] Langi, A.Z.R., Smart Engineering Using PSV-S Concepts, International
Conference on System Engineering and Technology (ICSET), Bandung,
Indonesia, 2012.

[2] Langi, A.Z.R., Rapid Prototyping of DSP Systems Using DSP Starter Kit,
Proc. 2013 Joint International Conference on Rural Information and
Communication Technology and Electric Vehicle Technology (rICT &
ICeVT), Bandung, Indonesia 2013.

[3] Langi, A.Z.R., A DSP Implementation of a Voice Transcoder for VoIP
gateway,” Proc. 2002 Asia-Pacific Conference on Circuit & System
(APCCAS 2002), 1, pp. 181-186, Chiang Mai, Thailand, 2002.

[4] Sitepu, H.I., An Implementation of Real Time Speech Coder G.723.1 on a
DSK TMS320C5402, M.Sc. Thesis, Bandung Institute of Technology,
January, 2002.

[5] TI, TMS320C54x User’s Guide. Dallas, Texas: Texas Instruments, 1995.
[6] Texas Instruments Inc., TMS320C54x DSP CPU and Peripherals, Texas

Instruments Inc., 1999.
[7] Texas Instruments Inc., TMS320C54x DSP Optimizing C Compiler,

Texas Instruments Inc., 1999.
[8] ITU-T Recommendation G 723.1, Dual Rate Speech Coder for

Multimedia Communications Transmitting at 5.3 and 6.3 kbit/s, ITU-T,
1996.

[9] Langi, A.Z.R., Virtual Prototyping of DSP Systems Using a PSV-S
Approach, International Conference on Signal Processing and
Communication Systems (ISPACS 2015), Nusa Dua, Bali, Indonesia,
2015.

