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Abstract. Deep learning’s reliance on abundant data with accurate annotations 

presents a significant drawback, as developing datasets is often time-consuming 

and costly for specific problems. To address this drawback, we propose a semi-

automatic live-feed image annotation tool called saLFIA. Our case study utilized 

CCTV data from Indonesia’s toll roads as one of the sources for live-feed images. 

The primary contribution of saLFIA is a labeling tool designed to generate new 

datasets from public source images, focusing on vehicle classification using 

YOLOv3 and SSD algorithms. The evaluation results indicated that SSD achieved 

higher accuracy with fewer initial images, while YOLOv3 reached maximum 

accuracy with larger initial datasets, resulting in 8 misdetections out of 380 

objects. The saLFIA tool simplifies the annotation process, presenting a labeling 

tool for creating annotated datasets in a single operation. saLFIA is available at 

URL https://github.com/gilangmantara/salfia. 
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1 Introduction 

Surveillance camera networks, commonly known as CCTV (closed circuit 

television), were developed by German scientists in 1942 [1]. They are 

extensively used for various purposes, including security, safety, entertainment, 

and efficiency improvement [2]. Various algorithms process CCTV output for 

applications such as object detection, classification, and tracking [2]. In 

Indonesia, toll road CCTV data is publicly accessible through web or mobile 

applications [3]. This feature significantly enhances real-time monitoring of 

traffic conditions. Additionally, this CCTV data is used in various intelligent 

transportation system (ITS) applications [4], such as vehicle counting, automatic 

number plate recognition (ANPR), and incident detection [5].  
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Vision-based sensors can classify vehicles based on geometry, appearance, 

texture, and a mixed approach [6]. Depending on the speed and camera 

perspective, these applications can be deployed in both urban and highway 

settings. One popular implementation of CCTV data on toll roads is automatic 

vehicle classification (AVC), which classifies vehicles based on type. Vehicle 

type recognition (VTR) aims to categorize vehicles into high-level classes such 

as buses, sedans, vans, trucks, etc. [6]. Many traffic studies and analyses utilize 

automated VTR systems. Additionally, one study has been conducted to 

determine electronic toll rates using this VTR system [7].  

Annotation tools are essential for creating labeled datasets with the vast amounts 

of available data for effective machine-learning models [8]. AVC and VTR 

systems rely on these tools to classify vehicles accurately. To achieve high 

performance, deep learning models require large-scale datasets with precise 

annotations. However, manual annotation is time-consuming, tedious, and costly 

[9], prompting the need for automatic or semi-automatic annotation methods [10].  

This paper proposes an end-to-end pipeline called saLFIA (semi-automatic Live 

Feeds Image Annotation) to create annotated datasets from public CCTV images. 

The pipeline includes retrieving images, preprocessing them, and auto-labeling 

them into vehicle categories based on Indonesian toll road fare classifications. 

The saLFIA tool generates numerous annotated images using flexible HTTP 

resources and allows for manual correction to improve annotation quality. This 

approach simplifies annotation and enhances efficiency, presenting a new method 

for creating annotated datasets in a single operation.  

This paper is organized as follows. Section 2 describes related studies on 

annotation tools for vehicle classification. Section 3 describes the saLFIA tool, 

including the saLFIA pipeline, function module, pre-trained model, and 

implementation of an Indonesia CCTV case study. The conclusion and future 

work are presented in the last section. 

2 Related Works 

Many studies provide open datasets for AVC that classify vehicle classes 

according to their respective research topics [11-14]. Various image annotation 

tools have been developed to simplify and speed up the annotation process. These 

tools are essential for producing high-quality ground truth (GT) from large-scale 

visual datasets. Annotation tools can be manual or semi-automatic. Some widely 

used manual annotation tools available for open access include LabelImg [15], 

LabelMe [16], and imglab [17]. While manual annotation tools offer high 

accuracy, they are time-consuming. The manual annotation tool is a web-based 

and desktop interface. These tools provide polygons, rectangles, circles, lines, or 
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points as object boundaries and save the annotation results in formats such as 

XML, Pascal VOC, COCO, and YOLO. 

Semi-automatic annotation tools are designed to enhance the speed of the 

annotation process using models to generate annotations across multiple images. 

Examples of these tools include LOST [18], iVAT [19], COCO Annotator [20], 

and CVAT [21]. LOST [18] operates in two stages: single-stage and two-stage 

annotation. The single-stage annotation uses the Single Image Annotation (SIA) 

process to manually create baseline bounding box annotations. The two-stage 

annotation combines SIA with Multi Image Annotation (MIA), which finds 

visual similarities within a cluster to assign class labels. iVAT [19] is a video 

annotation tool that employs linear interpolation and template-matching 

algorithms for semi-automatic and automatic annotation, working within an 

interactive and incremental learning framework. COCO Annotator [20], a web-

based tool, offers image segmentation, object instance tracking, and object 

labeling. It provides semi-automatic annotation using methods like the Magic 

Wand for similar pixel color and shade selection and a semi-trained model like 

MaskRCNN for annotation. CVAT [21] is an interactive video and image 

annotation tool for computer vision that supports multiple annotation formats. It 

supports automatic labeling with several algorithms, such as Faster-RCNN, 

Mask-RCNN, RetinaNet, YOLOv3, and YOLOv7.  

Table 1 provides a comparative overview of features across various recent 

annotation tools. Several annotation tools utilize deep learning models for object 

detection tasks, which can be categorized into two-stage and one-stage methods. 

Table 1 Recent annotation tools feature comparison. 

Tools Input Method Platform Output Format 

LabelImg [15] Image Manual Desktop-based YOLO, Pascal VOC 

LabelMe [16] Image Manual Web-based JSON 

ImgLab [17] Image Manual 
Desktop-based, 

Web-based 

Dlib XML, Dlib pts, 

Pascal VOC, COCO 

LOST [18] Image Cluster image similarity Web-based CSV 

iVAT [19] 
Video/ 

images 

Linear Interpolation, 

Template Matching 
Desktop-based 

Video Annotation 

Database 

Coco Annotator 

[20] 
Images 

MaskRCNN Magic Wand, 

DEXTR 
Web-based COCO 

CVAT [21] 
Video/ 

images 

Faster-RCNN, Mask-

RCNN, RetinaNet, 
YOLOv3, YOLOv7, etc 

Web-based 

YOLO, Pascal VOC, 

COCO, MOT, KITTI, 

CVAT, etc 

saLFIA [proposed] 
Live-feed 

images 
YOLO, SSD Script-based YOLO, Pascal VOC 

Two-stage methods, such as Faster R-CNN [21] and R-FCN [22], focus on 

enhancing detection accuracy. On the other hand, the one-stage method 
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prioritizes detection speed, as exemplified by SSD [22], RetinaNet [23], and 

YOLO v3 [24]. When it comes to automatic annotation programs that prioritize 

speed, the one-stage methods are a better fit. Studies have shown that SSD and 

YOLOv3 outperform other deep learning algorithms in terms of speed [25].  

Consequently, the saLFIA tool utilizes pre-trained YOLOv3 and SSD models for 

image annotation. It processes images crawled from live stream URLs, extracting 

and annotating data. The resulting annotations consist of rectangular bounding 

box coordinates with label classes stored in YOLO or Pascal VOC format. This 

tool operates via a command line interface. 

3 saLFIA 

3.1 saLFIA Pipeline 

The saLFIA tool comprises three main functions: image crawling, object 

detection, and annotation, as depicted in Figure 1. Image crawling is responsible 

for gathering images from a specified source URL. The user begins by defining 

the URL for the live feed and setting the number of images they wish to capture. 

This function automates the process of collecting images from the defined source. 

The second function is object detection, which involves detecting objects within 

the collected images using a chosen model, such as YOLO or SSD. The user 

configures the object detection model and sets the corresponding weight 

parameters. This step leverages the capabilities of the selected model to identify 

and classify objects in the images. The final function is annotation, which 

generates annotation files for each image processed. These annotation files and 

the raw images are saved in a designated location specified by the user. This 

function is crucial in creating a dataset in which detailed annotations accompany 

each image. The quality of the dataset improves with more accurate detection 

models, as better models reduce the need for manual corrections and enhance the 

overall dataset quality. 

 

Figure 1 saLFIA scheme. 



 saLFIA: Semi-automatic Live Feeds Image Annotation Tool       147 

3.2 saLFIA Function Modules 

3.2.1 Image Crawling 

The first module of this program is an image crawling module that retrieves 

images from a given URL. The first step in retrieving and saving images is to 

initialize the number of images to be obtained (N), along with the URL and 

directory to store the images in a certain directory. We retrieve the picture from 

the URL for each image i (where i ∈{1,2,...,N}), decode the image data into a 

numeric array, and then save the image locally with a timestamp as the filename. 

Following a second reading, each image is enlarged using padding to preserve its 

aspect ratio and then transformed from BGR to RGB format. After being 

normalized and transposed, the picture is turned into a tensor to be processed 

further.  

3.2.2 Object Detection 

In the object detection phase, the processed image tensor is fed into a YOLOv3 

or SSD model. As shown in Figure 2, the YOLOv3 architecture divides an image 

into a grid of equal size, with each grid cell predicting only one object and a 

bounding box along with the confidence score of the objects present in that grid. 

YOLO has undergone several improvements to enhance detection accuracy while 

maintaining high-speed performance.  

 

Figure 2 YOLO architecture. 

Conversely, Figure 3 illustrates the SSD architecture, which consists of two main 

parts. In the first part, SSD extracts feature maps using the VGG16 base network. 

The second part applies convolutional filters on these feature maps to detect 

objects, with additional feature layers used to enhance the detection capabilities. 
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Figure 3 SSD architecture. 

3.2.3 Annotation 

Following object detection, the module performs annotation by applying non-

maximum suppression (NMS) to filter out overlapping bounding boxes based on 

confidence and intersection-over-union (IoU) thresholds. According to the 

parameter definitions, the class data and bounding box coordinates generated 

from this process are stored in either YOLO or Pascal VOC format. The results 

are then written to a ‘.txt’ or ‘.xml’ file, where bounding box coordinates are 

converted from absolute to normalized values. Labels for each detected object are 

saved alongside these coordinates, ensuring that the results are accurately 

recorded for further analysis or use. 

3.3 Pre-trained Model 

We developed a pre-trained model using several initial images for training. The 

distribution of objects across different classes was calculated based on the total 

number of initial images used for each model, as detailed in Table 2. For example, 

with 20 initial images, there were 77 objects in class 1, 33 in class 2, 24 in class 

3, 9 in class 4, and 10 in class 5. The initial image set includes both the existing 

dataset and new images, resulting in data sets of 50, 100, 200, and 500 images. 

Each data set provides information on the number of objects present in each class. 

Table 2 Object distribution of initial images. 

Total Initial Images Class 1 Class 2 Class 3 Class 4 Class 5 

20 77 33 24 9 10 

50 228 91 48 20 24 

100 486 174 99 33 34 

200 980 357 204 54 60 

500 2309 717 500 78 95 

The model generated at this stage is named according to the algorithm and the 

number of initial images. For instance, SSD_20 denotes the SSD algorithm 

trained with 20 initial images, while YOLO_20 denotes the YOLO algorithm 

trained with 20 initial images. Consequently, ten pre-trained models were 
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generated, each representing a combination of an algorithm and a specific number 

of initial images. 

3.4 Indonesia Toll Road CCTV Case Study  

In this section, we measure the effectiveness of the annotation pipeline using the 

YOLOv3 and SSD detection models. To evaluate saLFIA, we performed two 

stages of measurements: average precision for each class and manual counting of 

misdetection and mislabeling. The case study used CCTV live-feed data to focus 

on vehicle classification problems based on Indonesian toll road tariff 

regulations. The GT test data consists of 80 images from 4 CCTV cameras, with 

20 images from each camera. Additionally, we provide the number of objects for 

each class from a specific camera in Table 3. 

Table 3 GT test data object composition. 

Image Source Images Total Object Class 1 Class 2 Class 3 Class 4 Class 5 

Camera-1 20 128 74 29 16 3 6 

Camera-2 20 92 62 8 10 5 7 

Camera-3 20 126 73 26 15 7 5 

Camera-4 20 34 7 6 13 3 5 

Total data 80 380 216 69 54 18 23 

In this study, vehicle classification includes five distinct classes based on the 

number of vehicle axles, as outlined in Figure 4, following Indonesian toll road 

tariff regulations. The selection of camera locations considers the visibility of the 

vehicle’s axles and the types of vehicles frequently observed on the road. It is 

important to note that the data set was imbalanced: class 1 has a significantly 

higher number of images compared to classes 4 and 5, which correspond to 

vehicles with more axles. 

 

Figure 4 Object example images for each class of vehicles. 
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The evaluation result of the first stage is shown in Figure 5. This experiment 

analyzed the effect of increasing the number of initial images on the model’s 

accuracy. The testing results show that the mean average precision (mAP) value 

increased with the addition of more initial images. However, in classes 4 and 5, 

the mAP value decreased due to the relatively insignificant data addition 

compared to other classes. SSD_20 achieved an mAP value of 0.5, 0.7 for 

SSD_100, and a maximum mAP value of 0.850 for SSD_500. Conversely, 

YOLO_20 obtained an mAP value of 0.2, 0.7 for YOLO_200, and a higher 

maximum mAP than SSD, with 0.874 for YOLO_500. 

  

          (a) SSD Model                                                        (b) YOLOv3 Model 

Figure 5 Evaluation results over class. 

In class 1, for 20 initial images with 77 objects, SSD outperformed YOLOv3, 

achieving an AP value of 0.839 compared to YOLO’s 0.579. For classes 2, 3, and 

4, SSD with 50 initial images surpassed an AP value of over 0.65. In class 5, SSD 

reached an AP value over 0.65 with 200 initial images. In contrast, the YOLOv3 

model achieved an AP value over 0.65 in classes 2 and 3 with 200 initial images 

and in classes 4 and 5 with 500 initial images. 

Table 4 Misprediction evaluation results. 

Model 
SSD 

20 

SSD 

50 

SSD 

100 

SSD 

200 

SSD 

500 

YOLO 

20 

YOLO 

50 

YOLO 

100 

YOLO 

200 

YOLO 

500 

Misdetection 94 59 46 44 25 265 141 120 30 8 

Mislabeling 156 101 80 76 45 267 148 134 65 28 

The second stage results, shown in Table 4, determined the number of manual 

corrections made by the annotator based on the GT label. The number of 

corrections for SSD and YOLO decreased as the initial images increased. SSD 

showed low misdetection and mislabeling rates from the initial phase, with 

SSD_20 to SSD_50. It reached minimum misdetection and mislabeling rates of 

25 and 45, respectively, with SSD_500. Meanwhile, YOLO began to show low 

misprediction rates starting from YOLO_200. YOLO_500 achieved impressive 

results with only 8 misdetections and 28 mislabelings out of 380 objects. 
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Figure 6 illustrates a visual comparison of model predictions across all cameras. 

This result demonstrates the evolving performance of the models in predicting 

objects, showing gradual improvement with the addition of more initial images 

compared to GT. The minimum number of mispredictions occurred with 500 

initial images. 

 

Figure 6 Visual comparison for object detection. Red: Ground truth, green: SSD, yellow: 

YOLO. 

The saLFIA tool could successfully generate specified annotation files in YOLO 

or Pascal VOC format. Manual corrections can be performed using LabelImg, a 

manual annotation tool, to improve the generated annotation files. We could 

assess the impact of the number of initial images on detection accuracy based on 

the measurement results. SSD proved to be a better model than YOLO when 

fewer images were available. However, YOLO achieved maximum accuracy 

with a larger number of initial images. Consequently, the effort required for 

manual annotation can be gradually reduced by leveraging automatic detection 

from previously trained initial models. 

4 Conclusions 

The saLFIA pipeline operates through a command-line interface and consists of 

three main functions: image crawling from live-feed data, object detection using 

two methods, and automatic generation of annotation files. The user can specify 

the number of images, the storage location, and the source image URL via input 

parameters. The pipeline incorporates YOLOv3 and SSD as object detection 

algorithms, generating annotation files in either YOLO or Pascal VOC format 

following object detection. 

Evaluation results indicate that YOLOv3 outperformed SSD when using a larger 

number of initial images, with only 8 misdetections. Conversely, SSD 
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demonstrated superior accuracy with fewer initial images, specifically with only 

20 images. YOLOv3, however, achieved higher accuracy with a data set of 500 

initial images. Increasing the total number of initial images reduced the need for 

corrective actions on the annotation files. Future studies will focus on improving 

both YOLOv3 and SSD detection algorithms to enhance the effectiveness of 

saLFIA in generating accurate annotations. 
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