

J. ICT Res. Appl., Vol. 18, No. 2, 2024, 143-154 143

Received January 5th, 2023, Revised August 2nd, 2024, Accepted for publication September 12th, 2024.
Copyright © 2024 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.18.2.5

saLFIA: Semi-automatic Live Feeds Image Annotation

Tool for Vehicle Classification Dataset

Umi Chasanah1,*, Gilang Mantara Putra1, Sahid Bismantoko2, Sofwan Hidayat3,

Tri Widodo3 & Mohammad Rosyidi2

1Research Center for Artificial Intelligence and Cyber Security, National Research and

Innovation Agency, Jalan Cisitu Sangkuriang, Bandung 40135, Indonesia
2Research Center for Computing, National Research and Innovation Agency,

Jalan Raya Jakarta - Bogor KM 46 Cibinong 16911, Indonesia
3Research Center for Transportation Technology, National Research and Innovation

Agency, Kawasan PUSPIPTEK, Tangerang Selatan 15314, Indonesia

*E-mail: umi.chasanah@brin.go.id

Abstract. Deep learning’s reliance on abundant data with accurate annotations

presents a significant drawback, as developing datasets is often time-consuming

and costly for specific problems. To address this drawback, we propose a semi-

automatic live-feed image annotation tool called saLFIA. Our case study utilized

CCTV data from Indonesia’s toll roads as one of the sources for live-feed images.

The primary contribution of saLFIA is a labeling tool designed to generate new

datasets from public source images, focusing on vehicle classification using

YOLOv3 and SSD algorithms. The evaluation results indicated that SSD achieved

higher accuracy with fewer initial images, while YOLOv3 reached maximum

accuracy with larger initial datasets, resulting in 8 misdetections out of 380

objects. The saLFIA tool simplifies the annotation process, presenting a labeling

tool for creating annotated datasets in a single operation. saLFIA is available at

URL https://github.com/gilangmantara/salfia.

Keywords: annotation tool; CCTV; dataset; vehicle classification; YOLO; SSD.

1 Introduction

Surveillance camera networks, commonly known as CCTV (closed circuit

television), were developed by German scientists in 1942 [1]. They are

extensively used for various purposes, including security, safety, entertainment,

and efficiency improvement [2]. Various algorithms process CCTV output for

applications such as object detection, classification, and tracking [2]. In

Indonesia, toll road CCTV data is publicly accessible through web or mobile

applications [3]. This feature significantly enhances real-time monitoring of

traffic conditions. Additionally, this CCTV data is used in various intelligent

transportation system (ITS) applications [4], such as vehicle counting, automatic

number plate recognition (ANPR), and incident detection [5].

144 Umi Chasanah, et al.

Vision-based sensors can classify vehicles based on geometry, appearance,

texture, and a mixed approach [6]. Depending on the speed and camera

perspective, these applications can be deployed in both urban and highway

settings. One popular implementation of CCTV data on toll roads is automatic

vehicle classification (AVC), which classifies vehicles based on type. Vehicle

type recognition (VTR) aims to categorize vehicles into high-level classes such

as buses, sedans, vans, trucks, etc. [6]. Many traffic studies and analyses utilize

automated VTR systems. Additionally, one study has been conducted to

determine electronic toll rates using this VTR system [7].

Annotation tools are essential for creating labeled datasets with the vast amounts

of available data for effective machine-learning models [8]. AVC and VTR

systems rely on these tools to classify vehicles accurately. To achieve high

performance, deep learning models require large-scale datasets with precise

annotations. However, manual annotation is time-consuming, tedious, and costly

[9], prompting the need for automatic or semi-automatic annotation methods [10].

This paper proposes an end-to-end pipeline called saLFIA (semi-automatic Live

Feeds Image Annotation) to create annotated datasets from public CCTV images.

The pipeline includes retrieving images, preprocessing them, and auto-labeling

them into vehicle categories based on Indonesian toll road fare classifications.

The saLFIA tool generates numerous annotated images using flexible HTTP

resources and allows for manual correction to improve annotation quality. This

approach simplifies annotation and enhances efficiency, presenting a new method

for creating annotated datasets in a single operation.

This paper is organized as follows. Section 2 describes related studies on

annotation tools for vehicle classification. Section 3 describes the saLFIA tool,

including the saLFIA pipeline, function module, pre-trained model, and

implementation of an Indonesia CCTV case study. The conclusion and future

work are presented in the last section.

2 Related Works

Many studies provide open datasets for AVC that classify vehicle classes

according to their respective research topics [11-14]. Various image annotation

tools have been developed to simplify and speed up the annotation process. These

tools are essential for producing high-quality ground truth (GT) from large-scale

visual datasets. Annotation tools can be manual or semi-automatic. Some widely

used manual annotation tools available for open access include LabelImg [15],

LabelMe [16], and imglab [17]. While manual annotation tools offer high

accuracy, they are time-consuming. The manual annotation tool is a web-based

and desktop interface. These tools provide polygons, rectangles, circles, lines, or

 saLFIA: Semi-automatic Live Feeds Image Annotation Tool 145

points as object boundaries and save the annotation results in formats such as

XML, Pascal VOC, COCO, and YOLO.

Semi-automatic annotation tools are designed to enhance the speed of the

annotation process using models to generate annotations across multiple images.

Examples of these tools include LOST [18], iVAT [19], COCO Annotator [20],

and CVAT [21]. LOST [18] operates in two stages: single-stage and two-stage

annotation. The single-stage annotation uses the Single Image Annotation (SIA)

process to manually create baseline bounding box annotations. The two-stage

annotation combines SIA with Multi Image Annotation (MIA), which finds

visual similarities within a cluster to assign class labels. iVAT [19] is a video

annotation tool that employs linear interpolation and template-matching

algorithms for semi-automatic and automatic annotation, working within an

interactive and incremental learning framework. COCO Annotator [20], a web-

based tool, offers image segmentation, object instance tracking, and object

labeling. It provides semi-automatic annotation using methods like the Magic

Wand for similar pixel color and shade selection and a semi-trained model like

MaskRCNN for annotation. CVAT [21] is an interactive video and image

annotation tool for computer vision that supports multiple annotation formats. It

supports automatic labeling with several algorithms, such as Faster-RCNN,

Mask-RCNN, RetinaNet, YOLOv3, and YOLOv7.

Table 1 provides a comparative overview of features across various recent

annotation tools. Several annotation tools utilize deep learning models for object

detection tasks, which can be categorized into two-stage and one-stage methods.

Table 1 Recent annotation tools feature comparison.

Tools Input Method Platform Output Format

LabelImg [15] Image Manual Desktop-based YOLO, Pascal VOC

LabelMe [16] Image Manual Web-based JSON

ImgLab [17] Image Manual
Desktop-based,

Web-based

Dlib XML, Dlib pts,

Pascal VOC, COCO

LOST [18] Image Cluster image similarity Web-based CSV

iVAT [19]
Video/

images

Linear Interpolation,

Template Matching
Desktop-based

Video Annotation

Database

Coco Annotator

[20]
Images

MaskRCNN Magic Wand,

DEXTR
Web-based COCO

CVAT [21]
Video/

images

Faster-RCNN, Mask-

RCNN, RetinaNet,
YOLOv3, YOLOv7, etc

Web-based

YOLO, Pascal VOC,

COCO, MOT, KITTI,

CVAT, etc

saLFIA [proposed]
Live-feed

images
YOLO, SSD Script-based YOLO, Pascal VOC

Two-stage methods, such as Faster R-CNN [21] and R-FCN [22], focus on

enhancing detection accuracy. On the other hand, the one-stage method

146 Umi Chasanah, et al.

prioritizes detection speed, as exemplified by SSD [22], RetinaNet [23], and

YOLO v3 [24]. When it comes to automatic annotation programs that prioritize

speed, the one-stage methods are a better fit. Studies have shown that SSD and

YOLOv3 outperform other deep learning algorithms in terms of speed [25].

Consequently, the saLFIA tool utilizes pre-trained YOLOv3 and SSD models for

image annotation. It processes images crawled from live stream URLs, extracting

and annotating data. The resulting annotations consist of rectangular bounding

box coordinates with label classes stored in YOLO or Pascal VOC format. This

tool operates via a command line interface.

3 saLFIA

3.1 saLFIA Pipeline

The saLFIA tool comprises three main functions: image crawling, object

detection, and annotation, as depicted in Figure 1. Image crawling is responsible

for gathering images from a specified source URL. The user begins by defining

the URL for the live feed and setting the number of images they wish to capture.

This function automates the process of collecting images from the defined source.

The second function is object detection, which involves detecting objects within

the collected images using a chosen model, such as YOLO or SSD. The user

configures the object detection model and sets the corresponding weight

parameters. This step leverages the capabilities of the selected model to identify

and classify objects in the images. The final function is annotation, which

generates annotation files for each image processed. These annotation files and

the raw images are saved in a designated location specified by the user. This

function is crucial in creating a dataset in which detailed annotations accompany

each image. The quality of the dataset improves with more accurate detection

models, as better models reduce the need for manual corrections and enhance the

overall dataset quality.

Figure 1 saLFIA scheme.

 saLFIA: Semi-automatic Live Feeds Image Annotation Tool 147

3.2 saLFIA Function Modules

3.2.1 Image Crawling

The first module of this program is an image crawling module that retrieves

images from a given URL. The first step in retrieving and saving images is to

initialize the number of images to be obtained (N), along with the URL and

directory to store the images in a certain directory. We retrieve the picture from

the URL for each image i (where i ∈{1,2,...,N}), decode the image data into a

numeric array, and then save the image locally with a timestamp as the filename.

Following a second reading, each image is enlarged using padding to preserve its

aspect ratio and then transformed from BGR to RGB format. After being

normalized and transposed, the picture is turned into a tensor to be processed

further.

3.2.2 Object Detection

In the object detection phase, the processed image tensor is fed into a YOLOv3

or SSD model. As shown in Figure 2, the YOLOv3 architecture divides an image

into a grid of equal size, with each grid cell predicting only one object and a

bounding box along with the confidence score of the objects present in that grid.

YOLO has undergone several improvements to enhance detection accuracy while

maintaining high-speed performance.

Figure 2 YOLO architecture.

Conversely, Figure 3 illustrates the SSD architecture, which consists of two main

parts. In the first part, SSD extracts feature maps using the VGG16 base network.

The second part applies convolutional filters on these feature maps to detect

objects, with additional feature layers used to enhance the detection capabilities.

148 Umi Chasanah, et al.

Figure 3 SSD architecture.

3.2.3 Annotation

Following object detection, the module performs annotation by applying non-

maximum suppression (NMS) to filter out overlapping bounding boxes based on

confidence and intersection-over-union (IoU) thresholds. According to the

parameter definitions, the class data and bounding box coordinates generated

from this process are stored in either YOLO or Pascal VOC format. The results

are then written to a ‘.txt’ or ‘.xml’ file, where bounding box coordinates are

converted from absolute to normalized values. Labels for each detected object are

saved alongside these coordinates, ensuring that the results are accurately

recorded for further analysis or use.

3.3 Pre-trained Model

We developed a pre-trained model using several initial images for training. The

distribution of objects across different classes was calculated based on the total

number of initial images used for each model, as detailed in Table 2. For example,

with 20 initial images, there were 77 objects in class 1, 33 in class 2, 24 in class

3, 9 in class 4, and 10 in class 5. The initial image set includes both the existing

dataset and new images, resulting in data sets of 50, 100, 200, and 500 images.

Each data set provides information on the number of objects present in each class.

Table 2 Object distribution of initial images.

Total Initial Images Class 1 Class 2 Class 3 Class 4 Class 5

20 77 33 24 9 10

50 228 91 48 20 24

100 486 174 99 33 34

200 980 357 204 54 60

500 2309 717 500 78 95

The model generated at this stage is named according to the algorithm and the

number of initial images. For instance, SSD_20 denotes the SSD algorithm

trained with 20 initial images, while YOLO_20 denotes the YOLO algorithm

trained with 20 initial images. Consequently, ten pre-trained models were

 saLFIA: Semi-automatic Live Feeds Image Annotation Tool 149

generated, each representing a combination of an algorithm and a specific number

of initial images.

3.4 Indonesia Toll Road CCTV Case Study

In this section, we measure the effectiveness of the annotation pipeline using the

YOLOv3 and SSD detection models. To evaluate saLFIA, we performed two

stages of measurements: average precision for each class and manual counting of

misdetection and mislabeling. The case study used CCTV live-feed data to focus

on vehicle classification problems based on Indonesian toll road tariff

regulations. The GT test data consists of 80 images from 4 CCTV cameras, with

20 images from each camera. Additionally, we provide the number of objects for

each class from a specific camera in Table 3.

Table 3 GT test data object composition.

Image Source Images Total Object Class 1 Class 2 Class 3 Class 4 Class 5

Camera-1 20 128 74 29 16 3 6

Camera-2 20 92 62 8 10 5 7

Camera-3 20 126 73 26 15 7 5

Camera-4 20 34 7 6 13 3 5

Total data 80 380 216 69 54 18 23

In this study, vehicle classification includes five distinct classes based on the

number of vehicle axles, as outlined in Figure 4, following Indonesian toll road

tariff regulations. The selection of camera locations considers the visibility of the

vehicle’s axles and the types of vehicles frequently observed on the road. It is

important to note that the data set was imbalanced: class 1 has a significantly

higher number of images compared to classes 4 and 5, which correspond to

vehicles with more axles.

Figure 4 Object example images for each class of vehicles.

150 Umi Chasanah, et al.

The evaluation result of the first stage is shown in Figure 5. This experiment

analyzed the effect of increasing the number of initial images on the model’s

accuracy. The testing results show that the mean average precision (mAP) value

increased with the addition of more initial images. However, in classes 4 and 5,

the mAP value decreased due to the relatively insignificant data addition

compared to other classes. SSD_20 achieved an mAP value of 0.5, 0.7 for

SSD_100, and a maximum mAP value of 0.850 for SSD_500. Conversely,

YOLO_20 obtained an mAP value of 0.2, 0.7 for YOLO_200, and a higher

maximum mAP than SSD, with 0.874 for YOLO_500.

 (a) SSD Model (b) YOLOv3 Model

Figure 5 Evaluation results over class.

In class 1, for 20 initial images with 77 objects, SSD outperformed YOLOv3,

achieving an AP value of 0.839 compared to YOLO’s 0.579. For classes 2, 3, and

4, SSD with 50 initial images surpassed an AP value of over 0.65. In class 5, SSD

reached an AP value over 0.65 with 200 initial images. In contrast, the YOLOv3

model achieved an AP value over 0.65 in classes 2 and 3 with 200 initial images

and in classes 4 and 5 with 500 initial images.

Table 4 Misprediction evaluation results.

Model
SSD

20

SSD

50

SSD

100

SSD

200

SSD

500

YOLO

20

YOLO

50

YOLO

100

YOLO

200

YOLO

500

Misdetection 94 59 46 44 25 265 141 120 30 8

Mislabeling 156 101 80 76 45 267 148 134 65 28

The second stage results, shown in Table 4, determined the number of manual

corrections made by the annotator based on the GT label. The number of

corrections for SSD and YOLO decreased as the initial images increased. SSD

showed low misdetection and mislabeling rates from the initial phase, with

SSD_20 to SSD_50. It reached minimum misdetection and mislabeling rates of

25 and 45, respectively, with SSD_500. Meanwhile, YOLO began to show low

misprediction rates starting from YOLO_200. YOLO_500 achieved impressive

results with only 8 misdetections and 28 mislabelings out of 380 objects.

0,000

0,200

0,400

0,600

0,800

1,000

mAP AP_C1 AP_C2 AP_C3 AP_C4 AP_C5

SSD_20 SSD_50 SSD_100 SSD_200 SSD_500

0,000

0,200

0,400

0,600

0,800

1,000

mAP AP_C1 AP_C2 AP_C3 AP_C4 AP_C5

YOLO_20 YOLO_50 YOLO_100 YOLO_200 YOLO_500

 saLFIA: Semi-automatic Live Feeds Image Annotation Tool 151

Figure 6 illustrates a visual comparison of model predictions across all cameras.

This result demonstrates the evolving performance of the models in predicting

objects, showing gradual improvement with the addition of more initial images

compared to GT. The minimum number of mispredictions occurred with 500

initial images.

Figure 6 Visual comparison for object detection. Red: Ground truth, green: SSD, yellow:

YOLO.

The saLFIA tool could successfully generate specified annotation files in YOLO

or Pascal VOC format. Manual corrections can be performed using LabelImg, a

manual annotation tool, to improve the generated annotation files. We could

assess the impact of the number of initial images on detection accuracy based on

the measurement results. SSD proved to be a better model than YOLO when

fewer images were available. However, YOLO achieved maximum accuracy

with a larger number of initial images. Consequently, the effort required for

manual annotation can be gradually reduced by leveraging automatic detection

from previously trained initial models.

4 Conclusions

The saLFIA pipeline operates through a command-line interface and consists of

three main functions: image crawling from live-feed data, object detection using

two methods, and automatic generation of annotation files. The user can specify

the number of images, the storage location, and the source image URL via input

parameters. The pipeline incorporates YOLOv3 and SSD as object detection

algorithms, generating annotation files in either YOLO or Pascal VOC format

following object detection.

Evaluation results indicate that YOLOv3 outperformed SSD when using a larger

number of initial images, with only 8 misdetections. Conversely, SSD

152 Umi Chasanah, et al.

demonstrated superior accuracy with fewer initial images, specifically with only

20 images. YOLOv3, however, achieved higher accuracy with a data set of 500

initial images. Increasing the total number of initial images reduced the need for

corrective actions on the annotation files. Future studies will focus on improving

both YOLOv3 and SSD detection algorithms to enhance the effectiveness of

saLFIA in generating accurate annotations.

References

[1] Kroener, I., CCTV: A Technology Under the Radar?, Contemp. Sociol. J.

Rev., 44(3), pp. 436-436, May, 2015. DOI: 10.1177/0094306115579192b.

[2] Sedky, M.H., Moniri, M. & Chibelushi, C.C., Classification of Smart

Video Surveillance Systems for Commercial Applications, in Proceedings.

IEEE Conference on Advanced Video and Signal Based Surveillance,

2005, Como, Italy, IEEE, pp. 638-643, 2005. DOI:

10.1109/AVSS.2005.1577343.

[3] The Directorate General of Highways, CCTV TOL - Indonesia, 2022.

https://binamarga.pu.go.id/index.php/contents/cctv (Sep. 14, 2022)

[4] Bommes, M., Fazekas, A., Volkenhoff, T. & Oeser, M., Video based

Intelligent Transportation Systems – State of the Art and Future

Development, Transp. Res. Procedia, 14, pp. 4495-4504, 2016. DOI:

10.1016/j.trpro.2016.05.372.

[5] Buch, N., Velastin, S.A. & Orwell, J., A Review of Computer Vision

Techniques for the Analysis of Urban Traffic, IEEE Trans. Intell. Transp.

Syst., 12(3), pp. 920-939, Sep. 2011. DOI: 10.1109/TITS.2011.2119372.

[6] Boukerche, A., Siddiqui, A.J. & Mammeri, A., Automated Vehicle

Detection and Classification: Models, Methods, and Techniques, ACM

Comput. Surv., 50(5), pp. 1-39, Sep. 2018. DOI: 10.1145/3107614.

[7] Sasongko, A.T. & Ivan Fanany, M., Indonesia Toll Road Vehicle

Classification using Transfer Learning with Pre-trained Resnet Models, in

2019 International Seminar on Research of Information Technology and

Intelligent Systems (ISRITI), Yogyakarta, Indonesia: IEEE, pp. 373-378.

Dec. 2019. DOI: 10.1109/ISRITI48646.2019.9034590.

[8] Prior, F., Almeida J., Kathiravelu P., Kurch T., Smith K., Fitzgerald T.J.,

& Saltz J., Open Access Image Repositories: High-quality Data to Enable

Machine Learning Research, Clin. Radiol, 75(1), pp. 7-12, Jan. 2020. DOI:

10.1016/j.crad.2019.04.002.

[9] Bhagat, P.K. & Choudhary, P., Image Annotation: Then and Now, Image

Vis. Comput, 80, pp. 1-23, Dec. 2018. DOI: 10.1016/j.imavis.2018.09.017.

[10] Cheng, Q., Zhang, Q., Fu, P., Tu, C. & Li, S., A Survey and Analysis on

Automatic Image Annotation, Pattern Recognit, 79, pp. 242-259, Jul. 2018.

DOI: 10.1016/j.patcog.2018.02.017.

 saLFIA: Semi-automatic Live Feeds Image Annotation Tool 153

[11] Dong, Z., Wu, Y., Pei, M. & Jia, Y., Vehicle Type Classification using a

Semisupervised Convolutional Neural Network, IEEE Trans. Intell.

Transp. Syst., 16(4), pp. 2247-2256, Aug. 2015. DOI:

10.1109/TITS.2015.2402438.

[12] Luo, Z., Branchaud-Charron F., Lemaire C., Konrad J., Li S., Mishra A.,

Achkar A., Eichel J. & Jodoin P.-M., MIO-TCD: A New Benchmark

Dataset for Vehicle Classification and Localization, IEEE Trans. Image

Process, 27(10), pp. 5129-5141, Oct. 2018. DOI:

10.1109/TIP.2018.2848705.

[13] Sasongko, A.T., Jati, G., Fanany, M.I. & Jatmiko, W., Dataset of Vehicle

Images for Indonesia Toll Road Tariff Classification, Data Brief, 32,

106061, Oct. 2020. DOI: 10.1016/j.dib.2020.106061.

[14] Mulyanto, A., Jatmiko, W., Mursanto, P., Prasetyawan, P. & Borman, R.I.,

A New Indonesian Traffic Obstacle Dataset and Performance Evaluation

of YOLOv4 for ADAS, J. ICT Res. Appl., 14(3), pp. 286-298, Mar. 2021.

DOI: 10.5614/itbj.ict.res.appl.2021.14.3.6.

[15] Tzutalin, LabelImg, 2015. MIT license, Git code.

https://github.com/tzutalin/labelImg (Nov. 22, 2022)

[16] Russell, B.C., Torralba, A., Murphy, K.P. & Freeman, W.T., Label Me: A

Database and Web-based Tool for Image Annotation, Int. J. Comput. Vis.,

77(1–3), pp. 157-173, May, 2008. DOI: 10.1007/s11263-007-0090-8.

[17] Natural Intelligence, imglab, Git code.

https://github.com/NaturalIntelligence/imglab (Oct. 16, 2022)

[18] Jäger, J., Reus, G., Denzler, J., Wolff, V. & Fricke-Neuderth, K., LOST: A

Flexible Framework for Semi-automatic Image Annotation, 2019. DOI:

10.48550/ARXIV.1910.07486.

[19] Bianco, S., Ciocca, G., Napoletano, P. & Schettini, R., An Interactive Tool

for Manual, Semi-automaticand Automatic Video Annotation, Comput.

Vis. Image Underst, 131, pp. 88-99, Feb. 2015. DOI:

10.1016/j.cviu.2014.06.015.

[20] Brooks, J., COCO Annotator, 2019. MIT license, Git code.

https://github.com/jsbroks/coco-annotator/ (9 Oct. 14, 2022)

[21] CVAT.ai, Computer Vision Annotation Tool. (2022). CVAT.ai

Corporation, Git code. https://github.com/cvat-ai/cvat?tab=readme-ov-file

(July 14, 2024)

[22] Liu, W., Anguelov D., Erhan D., Szegedy C., Reed S., Fu C.-Y., & Berg

A.C., SSD: Single Shot MultiBox Detector, 2015. DOI:

10.48550/ARXIV.1512.02325.

[23] Lin, T.-Y., Goyal, P., Girshick, R., He, K. & Dollar, P. Focal Loss for

Dense Object Detection, IEEE Trans. Pattern Anal. Mach. Intell, 42(2), pp.

318-327, Feb. 2020. DOI: 10.1109/TPAMI.2018.2858826.

154 Umi Chasanah, et al.

[24] J. Redmon, S. Divvala, R. Girshick, & Farhadi, A., You only Look once:

Unified, Real-time Object Detection, 2015. DOI:

10.48550/ARXIV.1506.02640.

[25] Wang, H., Yu, Yi., Cai, Y., Chen, X., Chen, L. & Liu, Q., A Comparative

Study of State-of-the-art Deep Learning Algorithms for Vehicle Detection,

IEEE Intell. Transp. Syst. Mag., 11(2), pp. 82-95, 2019. DOI:

10.1109/MITS.2019.2903518.

