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Abstract. LAPAN built several remote ground stations to support the telemetry 
tracking and command (TTC) system for the LAPAN-A2 and LAPAN-A3 
satellites. These remote ground stations are located in Kototabang/KT (West 
Sumatra), Biak/BK (Papua), Parepare/PR (South Sulawesi), Rumpin/RP, 
Rancabungur/RB (Bogor, West Java), and Svalbard/SV (Norway). Problems that 
often arise in the TTC process are telecommands not being sent (commands sent 
from the ground station to the satellite) or telemetry packages not being received 
(feedback on telecommands sent by the satellite to the ground station). This 
research attempted to calculate and analyze the quality of TTC using a data-mining 
approach, i.e., rule mining. The calculations were performed using five main 
parameters: satellite name, ground station, azimuth, altitude, and communication 
status. The research output consisted of a combination of remote ground station 
parameters that may result in a successful or failed TTC. For the LAPAN-A3 
satellite at the Svalbard ground station, 19 failed communication combinations 
were generated with a dataset of 57,029. Communication failures occur in azimuth 
and elevation, i.e., areas blocked by obstacles. 

Keywords: associate rule mining; azimuth; elevation; ground station; satellite; 
telemetry tracking and command. 

1 Introduction 

LAPAN-A2 and LAPAN-A3 are experimental microsatellites with ground 
observations and remote sensing missions [1]. The LAPAN-A2 satellite has a 
low-altitude orbit with an inclination near the equator [2], and is used for ground 
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observation, maritime monitoring, and amateur radio communications [3]. The 
LAPAN-A3 satellite has a polar orbit with an inclination of 98° and performs 
remote-sensing missions. Both satellites use ultra-high frequency (UHF) for 
telemetry tracking and command (TTC) functions, with LAPAN-A2 using a 
frequency of 437.425 MHz, and LAPAN-A3/IPB using a frequency of 437.325 
MHz. 

Telemetry is a collection of information that contains real-time satellite health 
and status data, namely satellite attitude data, operating mode, voltage, current, 
temperature, and power, on each satellite payload. Telemetry data are obtained in 
real-time or delayed via long-term telemetry. Tracking accurately monitors the 
satellite orbits. The satellite orbit tracking process uses two-line element (TLE) 
calculations based on satellite speed and acceleration calculations resulting from 
a simplified perturbation model (SGP4) [4],[5]. Telecommand is the activity of 
sending commands to a satellite, such as turning the satellite payload on or off, 
or changing the satellite payload parameter values. Commands can be in the form 
of real-time commands, or a series of commands executed at a certain time via a 
scheduler. 

The ground station plays a crucial role in maintaining the performance of the 
satellite and its payload. It is responsible for controlling the satellite, monitoring 
its status through telemetry data, and accurately tracking its orbit [6]. The TTC 
ground station includes a UHF antenna, transmitter-receiver radio, modem, and 
transmitter-receiver computer. The computer operates two programs, SatPC32, 
to control the antenna direction and generate protocol commands and another for 
interpreting the satellite telemetry [7]. An X-quad-type UHF antenna with a 
Yaesu G-5500 rotator system is used. Figure 1 illustrates LAPAN-A2 and 
LAPAN-A3 TTC satellite systems. The alternating lines in Figure 1 indicate two-
way communication between the devices (request and response). 

To support the TTC system of the two satellites, the National Institute of 
Aeronautics and Space (LAPAN) built several ground stations in Kototabang/KT 
(West Sumatra), Biak/BK (Papua), Parepare/PR (South Sulawesi), Rumpin/RP, 
Rancabungur/RB (Bogor, West Java), and Svalbard/SV (Norway). The remote 
ground stations are controlled by an operator from the main ground station 
located in Rancabungur. Table I displays the ratio of ground station utilization in 
support of the LAPAN-A2 and LAPAN-A3 TTC satellites from 1 October to 31 
December 2019, measured in percentage. As shown in Table I, the Kototabang 
ground station is most commonly used to access the LAPAN-A2 satellite, while 
the Svalbard ground station is used for the LAPAN-A3 satellite. 

A problem that often arises in the TTC process is the difference between the 
actual position of the ground station antenna (azimuth and elevation) and the 
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satellite position because the TLE is not updated or the transmitter-receiver 
antenna (transceiver) is not calibrated towards the north pole under parked 
conditions (both azimuth and elevation must be in a 0-degree position). 

 

Figure 1 Satellite TTC System LAPAN-A2 and LAPAN-A3. 

Table 1 Ground station utilization ratio [8]. 

Ground 
Station 

LAPAN-A2 LAPAN-A3 
October November December October November December 

Ʃ 
Pass 

% 
Ʃ 

Pass 
% 

Ʃ 
Pass 

% 
Ʃ 

Pass 
% 

Ʃ 
Pass 

% 
Ʃ 

Pass 
% 

BK 147 21.21 123 17.80 141 19.48 56 9.79 47 8.32 58 10.30 
KT 184 26.55 227 32.85 265 36.60 62 10.84 66 11.68 67 11.90 
PR 181 26.12 172 25.18 174 24.03 79 13.81 64 11.33 60 10.66 
RB 181 26.12 165 24.17 144 19.89 17 2.97 22 3.89 10 1.78 
RP - - - - - - 51 9.09 48 8.67 53 9.41 

SV - - - - - - 306 53.50 317 56.11 315 55.95 

Total 693 100 691 100 724 100 572 100 565 100 563 100 

To communicate with a satellite, precise azimuth and elevation antenna positions 
are required facing the satellite [9]. In addition, obstacles such as mountains, hills, 
buildings, and telecommunications towers in the environment around the ground 
station can also hinder the transmission and reception of signals from the ground 
station to the satellite (obstructing the line of sight). Some of these problems can 
cause telecommands not being able to send or receive telemetry packets. The 
remote condition of the ground station means that the calibration process cannot 
be carried out quickly, apart from the time and money required.  
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Azimuth and elevation are important parameters for antenna calibration because 
they determine the direction and angle of the antenna’s radiation pattern. Proper 
calibration of these parameters ensures that the antenna is pointing in the correct 
direction and at the correct angle, which is essential for accurate and reliable 
measurements. Calibration also helps ensure that the antenna operates within its 
specified parameters and that the measurement results are repeatable and 
traceable. In addition, calibration helps to identify any changes in the antenna’s 
performance over time, which can be caused by factors such as wear and tear, 
environmental conditions, or damage [10][11]. The concepts of azimuth, 
elevation, ground station, and satellite are illustrated in Figure 2. 

The simulation results from [12] and [13] showed that a TLE that was not updated 
affected the error in the azimuth position and elevation of the ground station 
antenna in tracking satellite positions. The research conducted in [12] only 
compared the use of the old TLE with the new TLE to obtain the difference 
between the azimuth and elevation of the ground station antenna relative to the 
satellite. This research aimed to develop previous research by combining TLE 
calculations, TTC log data, and association rule mining (ARM). The aim of this 
study was to measure the health of ground stations by combining TTC log data 
with the ARM approach. An unhealthy ground station is characterized by a high 
number of cases of failure in carrying out two-way communication with satellites 
so that calibration must be performed. The ARM results combined with the 
blockage profile can be used to assist in making decisions about whether the 
ground station needs to be calibrated to reduce maintenance costs. Table 2 
presents a comparison of several studies using the rule mining approach for 
several scopes. 

 

Figure 2 Azimuth, elevation, ground station, and satellite [14]. 
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Table 2 Studies of the rule mining for several scopes. 

Ref. Methods Used Limitation Strength Dataset 

[15] 

Modified FP-Growth 
algorithm and Mean Product 

of Probabilities (MPP) to 
rank rules and compute the 
proportion of items for one 

rule. 

Large number of 
candidate rules 
generated and 

subjective choices 
required by domain 

experts. 

Proposed new method called FP-
GCID. 

Transactional dataset 
generated in the first 

phase. Clusters 
generated by the 

DBSCAN algorithm. 

[16] 

Animal dynamic migration 
optimization (ADMO) 

method – ARM-PSO, ARM-
AMO, ARM-MOPSO, 

ARM-WOA, and ARM-DE 
methods. 

ADMO may not be 
effective for extracting 

key rules when the 
number of key rules is 

extremely small. 
ADMO currently only 

handles discrete 
variables and not 

continuous variables. 

ADMO has faster mining speed 
and obtains more key rules 

Eleven open-source 
datasets were used for 

validation (a real-world 
elevator case). 

[17] 
Modified Apriori-based 

algorithm for representation 
of alarm data in binary form. 

Spurious rules are 
found with small 

minimum support and 
traditional ARM 

techniques require high 
computational effort. 

Method allows identifying 
groups of components affecting 

reliability and availability of 
CTIs, and also reduces 

computational effort and does 
not find spurious rules. 

Synthetic alarm 
database generated by 

a simulated CTI model. 

[18] 

Analysis of spatial 
distribution characteristics 
of traditional villages with 
application of the Apriori 

association rule algorithm in 
spatial analysis. 

- 

The strength of an association 
rule can be measured by its 
support and confidence. The 
weighted average distance 
analysis method is used to 

calculate the correlation between 
elements. 

Spatial distribution of 
traditional villages in 

Anhui Province. 

[19] 

Apriori algorithm used for 
Association Rule Mining 

with bottom-up approach to 
identify frequent items in the 

database. 

Lack of 
recommendations for 

mental health 
comorbidities and 
logistic regression 

prone to overfitting. 

ARM has shown potential for 
knowledge discovery in 

healthcare data. Identified high-
risk factors for suicide attempts 

in individuals with diabetes. 

Dataset included 
3,266,856 subjects 

with diabetes (0.2% of 
patients had a 

documented diagnosis 
of suicide attempts). 

[20] 

Predicting quantitative 
variables in ARM and use of 
Kullback-Leibler divergence 

to consider complete data 
distributions. 

Classical ARM 
algorithms cannot 
handle quantitative 

variables. Comparing 
distributions with 

classical regression 
algorithms is valuable. 

New approach for predicting 
quantitative variables in ARM 
which uses Kullback-Leibler 

divergence to consider complete 
data distributions. 

Bank and Telco 
customer dataset. 

[21] 

Improved Apriori algorithm 
for equipment quality 

information mining and 
matrix-based strong 

association rule extraction 
algorithm proposed. 

Single approach and 
incomplete 

consideration of 
contradictions and 

defects in the classical 
Apriori algorithm. 

Improved Apriori algorithm for 
association rule mining. This 
aims to provide information 

support for equipment quality 
analysis. 

Five experimental data 
sets were used in the 

study 

[22] 

Association rule mining 
used to analyze crossroad 

accidents. Factors like head-
to-the-side collisions and 
spring season associated 

with accidents. 

Heterogeneous nature 
of accident data and 

unequal distribution of 
features in each group. 

The strength of the inter-
dependency of factors is 

represented by the total lift. The 
relative frequency of occurrence 

of factor combinations is 
represented by the size of the 

balloon. 

The study analyzes a 
crossroad accident 

dataset (576 
transactions related to 
two different types of 

accidents). 
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The contribution of this research lies in the problem statement because there has 
been no similar research regarding how to calculate the performance of ground 
stations for calibration decision-making using a rule mining approach. Most of 
the research that used a rule-mining approach was done outside the ground station 
scope. 

2 Research Methods 

The research process included four stages: data collection, preprocessing, 
identification of communication status, and ARM implementation, as shown in 
Figure 3.  

 

Figure 3 Research methods. 

However, there were some limitations. (1) Not considering the satellite’s attitude 
towards the ground station, which can affect the TTC quality, and the APRS 
payload condition on the LAPAN-A2 satellite, which can interfere with the TTC 
quality [23]. (2) Radio frequency interference (RFI) in the ground station 
environment was ignored, and it was assumed that the TLE used for satellite 
tracking was always up-to-date. Other studies [24]-[26] found that the RFI can 
significantly affect the performance of ground stations and impede satellite 
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tracking. The presence of permanent uplink signals can cause intermodulation 
interference, and the intermodulation products from GSM and uplink satellite 
signals have the potential to interfere, particularly in urban areas [27]. (3) In 
addition, this study ignored the Doppler effect in the low earth orbit (LEO) 
satellite communication systems. The Doppler effect can significantly impact the 
efficiency of communication links owing to rapid changes in the Doppler 
frequency shift caused by the relative motion between the satellite and the user 
terminal [28][29]. (4) The research data were collected from 1 October 2019 to 
31 December 2019 (92 days) using logfile data and tracking/pass data. 

2.1 Data Collection 

The data collection process involved the retrieval of LAPAN-A2 and LAPAN-
A3 satellite data from the Kototabang, Parepare, and Svalbard ground stations. 
The data collected included the time, azimuth, and elevation of the satellite to the 
ground station during its passage. To automate the data collection process, Java-
based software was used with the SGP4 mathematical model. The collected data 
were stored in the MariaDB database, with the TLE updated automatically every 
six hours and downloaded from the Celestrak webpage [30]. The database stores 
the collected data with attributes, such as satellite name, ground station, time, 
azimuth, and elevation. The collected data in the form of log file data contain 
information such as time, telecommands, telemetry, and communication status 
during TTC operations. Prior to the analysis, the data must be preprocessed to 
eliminate any data that is irrelevant to the research objectives. 

2.2 Preprocess 

In this study, data pre-processing involved two main steps: data selection and data 
cleaning. First, the selection process was conducted by choosing only log file data 
with a capacity of greater than 1 KB. Redundancy or duplication in the database 
was eliminated by cleaning both the logfile and tracking data. Finally, noisy data 
were removed because they do not provide useful information [31][32]. 

2.3 Identify Communication Status 

The communication status was determined by identifying the entire content of 
the log file. Every two lines after the timeline containing a no-response string 
‘server busy’, ‘no beep’, ‘no RF ack’, ‘time out’, and/or ‘no echo’ indicates a 
failed communication status. A failed communication status is marked with an N 
(No) label, while a successful communication status is marked with a Y (Yes) 
label. Figure 4 shows an example of the LAPAN-A3 satellite log file from the 
Svalbard ground station with failed and successful communications.  
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Figure 4 Example of a LAPAN-A3 satellite log file. 

The log file in Figure 4 is then converted into Table 3 using four attributes: 
satellite name, ground station, time, and communication status. Next, the names 
of the satellites, ground stations, and times in Table 3 are used to determine the 
equivalent azimuth and elevation from the tracking database, as shown in Figure 
5. The equivalent results shown in Figures 4 and 5 are presented in Table 4. The 
data listed in Table 4 are candidate datasets for use as the ARM inputs. The time 
attribute was removed from the ARM dataset, leaving only satellite name, ground 
station, communication status, azimuth, and elevation. 

 

Figure 5 Example of LAPAN-A3 satellite log file. 
 

Successful communication 

Communication failed 

Successful communication 

Communication failed 
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Table 3 Communication status logs. 

Table 4 Sample candidate dataset 

Satellite 
Name 

Ground 
Station 

Time Communication 
Status 

Azimuth Elevation 

A3 SV 2019/12/01 08:55:29 Y 36 14 
A3 SV 2019/12/01 08:55:33 N 37 14 
A3 SV 2019/12/01 08:55:39 N 37 15 
A3 SV 2019/12/01 08:55:43 Y 38 16 

2.4 Association Rule Mining (ARM) 

ARM is a data mining method that aims to find a set of items that often appear 
together. The ARM operates on datasets/transactions. The support formula is 
given in Eq. (1) [33]: 

 ������� =  
������ �� ������������ ���������� � ��� �

����� �������������� �����������
 (1) 

The support value indicates the degree to which the domination level of an 
item/itemset is from the entire transaction. The support value determines whether 
an item/itemset is feasible for finding its confidence from all existing 
transactions, whereas the degree of dominance indicates that items A and B are 
purchased together and can also be used to find the dominance level of a single 
item. The confidence value indicates a conditional relationship between two 
items (how often item B is purchased if people buy item A). The confidence 
formula is given as follows [33]: 

 ���������� =  
������ �� ������������ ���������� � ��� �

������ �� ������������ ���������� �
       (2) 

2.5 Apriori Algorithm 

The association rule search algorithm is an a priori algorithm. The pseudocode 
for the Apriori algorithm is as follows [34]: 

Algorithm 1. Apriori Algorithm 
1. L1 = large 1-itemsets; 
2. for (k = 2, Lk-1 ≠ 0; k++) start  
3. Ck = apriori-gen(Lk-1); //new candidate 
4. for all transactions t ∈ D start 
5. Ct = subset (Ck , t); // the candidates contained within t 
6. for all candidates c ∈ Ct do 
7. c.count++; 

Satellite Name Ground Station Time Communication Status 
A3 SV 2019/12/01 08:55:29 Y 
A3 SV 2019/12/01 08:55:33 N 
A3 SV 2019/12/01 08:55:39 N 
A3 SV 2019/12/01 08:55:43 Y 
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8. End 
9. Lk = { c ∈ Ck | c.count ≥ minSup } // all candidates 
10. End 
11. answer = Սk Lk; 

The following is a description of the variables in the Apriori algorithm: k-itemset 
(an item set that has k items), Lk (a large set of k-item sets), k (represents the 
number of iterations), Ck (set of k-item set candidates), Ct (candidates contained 
in t), t ∈ D (t is in the set D), c ∈ Ct (c is in the set Ct), and c ∈ Ck (c is in the set 
Ck.). 

2.6 FP-Growth Algorithm 

The FP-Growth algorithm is an advancement of the Apriori algorithm that utilizes 
a prefix tree, also known as the FP-tree, to detect frequent-item sets. As 
referenced in [35], the FP-Growth algorithm can extract frequent-item sets 
directly from the FP-Tree. The FP-Tree is created in the frequent-item set search 
process, which involves using the FP-growth algorithm. Subsequently, 
association rules were generated from the obtained frequent-item sets, while 
satisfying the minimum support (minSupp) and minimum confidence (minConf) 
thresholds. The FP-Growth calculation begins by determining the minimum 
support and confidence values for the sales data obtained from the database. After 
the support and confidence values are inputted and processed, the system 
determines the k-item set that can be formed. The result of the k-item set, which 
has been processed by the system, is stored as a set of association rules [36]. 

3 Results And Discussion 

3.1.1 Collection and Selection of Data 

The selected dataset contained information on satellite name, ground station, 
communication status, azimuth, and elevation. It is composed of five datasets 
from three ground stations: Kototabang (LAPAN-A2 and LAPAN-A3), Parepare 
(LAPAN-A2 and LAPAN-A3), and Svalbard (LAPAN-A3). The trajectory of the 
LAPAN-A2 satellite is repeated every 26 to 27 days, with a 92-day logfile period 
covering 3.4 orbits, while the LAPAN-A3 satellite has a 16-day orbit period and 
a 92-day logfile representing 5.75 orbits. During the three-month period, a 
maximum of 14 passes per day for the LAPAN-A2 satellite when crossing the 
Kototabang and Parepare ground stations resulted in 1260 passes. Calculations 
were performed on 53.65% of the total passes (676 passes) at Kototabang, 
resulting in 34,442 datasets, whereas 41.67% (525 passes) were used at Parepare, 
resulting in 15,533 datasets. For the LAPAN-A3 satellite, a maximum of four 
passes per day over three months when crossing the Kototabang and Parepare 
ground stations results in 360 passes. At Kototabang, 54.17% of the total passes 
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(195 passes) were used for calculations, resulting in 9,235 datasets, whereas 
54.72% (197 passes) were used at Parepare, resulting in 9,813 datasets.  

Table 5 Recapitulation of communication status based on logfile data and 
tracking data. 

A maximum of 14 passes per day can be obtained over three months at the 
Svalbard ground station when the LAPAN-A3 satellite crosses, resulting in 1,260 
passes. A total of 74.44% of the total passes (938 passes) were used for the 
calculations, resulting in 57,036 datasets. Table 5 summarizes the communication 
status dataset for October, November, and December 2019 (92 days) based on the 

Ground 
Station 

Satellite Start End 
Number 
of Files 

Amount 
of TTC 

Successful 
Comm. 

Comm. 
Failed 

Ratio 
(%) 

KT 

LAPAN-
A2 

2019-10-10 
06:27:30 

2019-10-31 
12:49:01 

184 11392 4308 7084 37,82 

2019-11-01 
00:50:44 

2019-11-30 
13:35:48 

227 11263 3770 7493 33,47 

2019-12-01 
05:14:13 

2019-12-31 
14:58:35 

265 11787 7127 4660 60,46 

LAPAN-
A3 

2019-10-03 
02:20:35 

2019-10-31 
14:38:47 

62 2910 849 2061 29,18 

2019-11-01 
02:22:21 

2019-11-30 
15:11:42  

66 3004 569 2435 18,94 

2019-12-01 
14:45:11 

2019-12-31 
03:36:54 

67 3321 1244 2077 37,46 

PR 

LAPAN-
A2 

2019-10-01 
01:26:19 

2019-10-31 
07:37:34 

179 5621 2683 2938 47,73 

2019-11-01 
01:01:56 

2019-11-30 
12:04:12 

172 5727 3450 2277 60,24 

2019-12-01 
00:07:49 

2019-12-31 
15:02:52 

174 4185 2691 1494 64,30 

LAPAN-
A3 

2019-10-01 
02:03:57 

2019-10-31 
13:04:01 

73 3138 1295 1843 41,27 

2019-11-01 
00:48:53 

2019-11-30 
13:36:59 

64 3290 1150 2140 34,95 

2019-12-01 
01:21:34  

2019-12-31 
13:53:41 

60 3385 1444 1941 42,66 

SV 
LAPAN-

A3 

2019-10-01 
01:47:37 

2019-10-31 
15:03:05 

306 18486 5572 12914 30,14 

2019-11-01 
00:21:26 

2019-11-30 
15:33:44 

317 19107 5825 13282 30,49 

2019-12-01 
00:58:10 

2019-12-31 
14:19:25 

315 19443 6659 12784 34,25 
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log files and tracking data, with 2,531 log files and 126,059 TTC 
communications.  

 

Table 6 shows an example of the resulting dataset used as the input for the ARM. 

Table 6 Example of a ground station dataset. 

Satellite Name Ground Station Elevation Azimuth  Communication status 

A3 SV EL21 AZ45 Y 

A3 SV EL21 AZ46 N 

A3 SV EL22 AZ47 N 

A3 SV EL23 AZ48 Y 

A3 SV EL23 AZ49 Y 

A3 KT EL75 AZ44 Y 

A3 KT EL77 AZ48 Y 

A3 KT EL80 AZ63 Y 

A3 KT EL82 AZ105 Y 

A3 PR EL15 AZ241 N 

A3 PR EL15 AZ240 N 

A3 PR EL14 AZ238 Y 

A3 PR EL14 AZ238 N 

3.1.2 Application of Association Rule Mining 

The aim of ARM implementation is to discover association rules and large item 
sets based on the given values of minSup and minConf. The minimum length of 
the resulting rule was set to four, and it must include the communication status 
attribute. The minConf value of 0.9 was chosen based on previous research [37], 
which suggests that a confidence value of over 90% is effective for finding 
classification rules. Based on research conducted by [38], the minSup value of 
0.01-0.02 is more accurate than that of the C4.5 algorithm. A value of 0.001 was 
chosen because no rules were found for the minSup value of 0.01 and minLen 
five that involved all dataset attributes. A value of 0.001 indicates that the 
dominance level of the five attributes or combinations involved was only 0.1% 
of the entire dataset. 

A comparison of the association rules generated by the Apriori and FP-Growth 
algorithms is shown in Table 7. The same association rules were generated by 
both algorithms except for the A3-SV dataset. Although both algorithms 
produced the same number of rules, the process of generating association rules 
and the processing time differed. The association rule results showed that the 
number of association rules increased with a reduction in the minSup value, 
which confirms the results of previous studies [39][40]. For minLen 5, minSupp 
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0.001, and minConf 0.9, nine rule combinations for the LAPAN-A2 satellite and 
six combinations for the LAPAN-A3 satellite were produced at the Kototabang 
ground station. 

Table 7 Comparison of rules generated by the Apriori and FP-Growth 
algorithms. 

Ground Station Satellite minLen minSupp minConf 
Number of Rules 

Apriori FP-Growth 

KT 

A2 
4 1% 90% 1 1 

5 1% 90% 0 0 

A3 
4 1% 90% 3 3 

5 1% 90% 0 0 

PR 

A2 
4 1% 90% 0 0 

5 1% 90% 0 0 

A3 
4 1% 90% 2 2 

5 1% 90% 0 0 

SV A3 
4 1% 90% 4 4 

5 1% 90% 0 0 

KT 

A2 
4 0.10% 90% 19 19 

5 0.10% 90% 9 9 

A3 
4 0.10% 90% 46 46 

5 0.10% 90% 6 6 

PR 

A2 
4 0.10% 90% 12 12 

5 0.10% 90% 1 1 

A3 
4 0.10% 90% 41 41 

5 0.10% 90% 15 15 

SV A3 
4 0.10% 90% 61 62 

5 0.10% 90% 19 20 

Table 8 illustrates the three combinations with the highest support values for both 
the LAPAN-A2 and LAPAN-A3 satellites at Kototabang Ground Station. The 
first combination had 104 occurrences of communication status N, or 0.3% of the 
entire dataset, at an elevation of 1° and an azimuth of 256°, with a confidence 
level of 99%. This means that there is a 99% chance of failing to establish TTC, 
and only a 1% chance of succeeding with this combination. 
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Analysis of the data collected at the Kototabang ground station indicated that 
communication failure status for the LAPAN-A2 and LAPAN-A3 satellites 
occurred more frequently at elevations of 1°-2° and 5°-6°, respectively, with 
specific azimuth angles. These angles correspond to the acquisition of signals 
(AoS) from satellites to the west and north, respectively. 

Table 8 The results of the Apriori algorithm and the FP-Growth algorithm of 
the Kototabang ground station with a failed communication status. 

Satellite Elevation Azimuth Support Confidence 
Number of 

Events 
Communication Status 

A2 

1° 256° 0.00302 0.990 104 N 

2° 255° 0.00299 0.972 103 N 

2° 256° 0.00192 0.971 66 N 

A3 

5° 17° 0.00173 1.000 16 N 

5° 8° 0.00152 1.000 14 N 

6° 8° 0.00152 0.933 14 N 

Figure 6 displays the blockage profile of the Kototabang ground station, which 
depicts the actual condition of obstacles in the ground station environment based 
on the elevation and azimuth. Several obstacles in profile blockage can 
potentially disrupt the TTC process [13][41]. However, the results obtained from 
the ARM combined with profile blockage indicated that the Kototabang ground 
station is suitable for calibration purposes. 

 

Figure 6 Kototabang ground station blockage profile. 

Table 9 lists the two combinations with the highest support values for LAPAN-
A2 and LAPAN-A3 at the Parepare ground station. In the first combination, there 
were 16 instances of successful communication, or 0.1% of the total dataset, with 
an elevation of 16° and azimuth of 261°. A confidence level of 94% indicated a 
94% chance of successful TTC and 6% chance of failure. In the fourth 
combination, with an elevation of 7° and an azimuth of 5°, there were 12 instances 
of communication failure (0.12% of the total dataset). This combination is 
deemed to have a 100% confidence level, meaning that it will definitely fail to 
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achieve the TTC. For elevations below 100, more than 12 combinations of failed 
communications with a 100% confidence level were experienced by both the 
LAPAN-A2 and LAPAN-A3 satellites. These failed combinations did not 
involve azimuths of ±60° and ±270°, which had obstructions, as indicated by the 
Parepare ground station blockage profile in Figure 7. The blockage profile and 
ARM results revealed that the Parepare ground station is suitable for calibration. 

Table 9 Results of the Apriori and FP-Growth algorithms for the Parepare 
ground station. 

Satellite Elevation Azimuth Support Confidence 
Number of 

Events 
Communication 

Status 
 

A2 16° 261 0.00103 0.941 16 Y  

A3 

4° 209° 0.00132 1.000 13 N  
4° 159° 0.00132 1.000 13 N  
7° 5° 0.00122 1.000 12 N  

 

 

Figure 7 Parepare ground station blockage profile. 

Table 10 presents three combinations of failed communications based on the 
largest support value at the Svalbard ground station. The failed communication 
status was mostly observed at elevations ranging from 3° to 6°, with varying 
azimuths. In the first combination, for an elevation of 4° and an azimuth of 14°, 
there were 133 occurrences of communication status N, or 0.23% of the entire 
dataset. The first combination has a 100% confidence level, which means that the 
combination of elevation 4° and azimuth 14° fails to perform TTC. According to 
the blockage profile at the Svalbard ground station shown in Figure 8, the failed 
communication was caused by an obstacle in the form of a hill at an elevation of 
0-20° at several azimuth points. Obstacles such as hills can obstruct the line of 
sight between the satellite and the transmitter-receiver antenna. The ARM results, 
combined with profile blockage, suggest that the Svalbard ground station should 
consider relocating the antenna or increasing its position by 20° from its original 
position. 
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Table 10 Results of the Apriori and FP-Growth algorithms for the Svalbard 
ground station. 

Satellite Elevation Azimuth Support Confidence 
Number of 

Events 
Communication 

Status 
 

A3 

4° 14° 0.00233 1.000 133 N 
 

4° 15° 0.00224 1.000 128 N 
 

5° 19° 0.00219 1.000 125 N 
 

 

Figure 8 Svalbard ground station blockage profile. 

4 Conclusion 

This paper proposed a ground station performance evaluation method for making 
calibration decisions using a rule-mining approach. The calculation method used 
five main parameters: satellite name, ground station, azimuth, elevation, and 
communication status. The rule-mining results indicated an unhealthy ground 
station through a high number of failed communication events with satellites, 
highlighting the need for calibration. Utilizing rule mining to measure ground 
station health is feasible, as long as it disregards the satellite’s condition towards 
the ground station and ongoing satellite missions. The rule mining results can aid 
in determining whether remote ground stations require calibration, leading to cost 
reduction. Additionally, the rule-mining results combined with profile blockage 
can determine whether changing the antenna position of the ground station is 
necessary. 

Further research is necessary, including training data with a longer duration or 
adjusting minSupp and minConf values, to compare the association results with 
shorter training data. Exploring other data mining methods can also improve the 
accuracy of ground station health measurements (performance). It is also 
necessary to consider further research by adding new parameters, namely, radio 
frequency interference and the Doppler effect, to measure the performance of 
ground stations. 
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