
 

 

J. ICT Res. Appl., Vol. 11, No. 2, 2017, 113-130                         113 

 

Received January 28
th
, 2016, Revised December 14

th
, 2016, Accepted for publication April, 3

rd
, 2017. 

Copyright © 2017 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2017.11.2.1 

 

 

A Chemical Reaction Optimization Approach to Prioritize 

the Regression Test Cases of Object-Oriented Programs 

Sudhir Kumar Mohapatra
1,* 

& Srinivas Prasad
2
 

1SOA University, Bhubaneswar, Odisha, India – 751030 
2Dept. of Computer Science & Engineering, GMRIT, Andhra Pradesh, India – 532127 

*E-mail: sk_mohapatra@rediffmail.com 

 

 

Abstract. Regression test case prioritization is used to improve certain 

performance goals. Limited resources force to choose an effective prioritization 

technique, which makes an ordering of the test cases so that the most suitable test 

case will be executed first. Executing regression test cases for a fixed time is all 

about time aware test case prioritization. Regression test case prioritization using 

chemical reaction optimization (CRO) for object-oriented programs is proposed 

in this paper. The effectiveness of the test case ordering was measured using 

average percentage of faults detected (APFD). Experiments on three object-
oriented subject programs involving three different techniques were performed to 

judge the proposed approach. The empirical results indicate that the algorithm 

implemented using CRO gives a higher APFD value than the other two 

techniques. 

Keywords: APFD; chemical reaction optimization; regression testing; test case 

minimization; test case prioritization; test case reduction. 

1 Introduction 

High-quality software systems cannot be completed without developing 

rigorous testing methodologies [1,2]. With the rise in size and complexity of 

recent software system products, regression testing is becoming ever more 

important. In the field of software system development, considering the 
character of software system quality and growing stress on software system 

products, test suit prioritization is of great importance and relevance to business. 

The whole testing process consumes 30-50% of the development cost. It is 
tough for the tester to create the product 100 percent bug-free in the limited 

given time [3]. Additionally, as 365-day functionality of a product is commonly 

used, the tester is required to target creating such functionality bug-free [4,5]. 
To undertake this, because of resource constraints, the application of all sets of 

test cases is impractical. So a limited number of test cases are selected, which 

may find most of the faults in the given version of the software system [6]. Such 

a choice can amount to minimization of the number of test cases but may not 
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always be effective in finishing the method of finding faults. Test cases ought to 

be prioritized according to code coverage and execution time. Test case 

prioritization [7-9] orders test cases in such a way that the test cases with the 

highest priority according to some fitness metric are executed first.  

Rothermel, et al. [8] outline the test case prioritization problem and describe 

many problems relevant to its solution. They define the problem as follows. 

1.1 Test Case Prioritization (TCP) Problem 

Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to 

real numbers. 

Problem: Find T’ ∈ PT such that (∀ T’’ (T’’ ∈ PT) (T’’ ≠ T’) [f (T’’) ≥ (T’’)]) 

Here, PT represents the set of all possible prioritization (orderings) of T and f is 

a function that, applied to any such ordering, yields an award value for that 

ordering. 

Meta-heuristic search techniques [10] are high-level frameworks that utilize the 

automatic discovery of heuristics in order to search out solutions to 

combinatorial problems at an inexpensive procedure price. Evolutionary 

algorithms, of which genetic algorithms (GAs) are a subclass, are a form of 
meta-heuristic searching that employ a Darwinian evolutionary metaphor to 

guide the searching by a process of ‘survival of the fittest’. In the case of 

scheduling problems, of which regression test case prioritization is an example, 
the application of genetic algorithms has been shown to be effective [11]. As 

such, an empirical study of the effectiveness of those and related meta-heuristic 

techniques is timely. As a by-product of such a study, it is possible to realize an 

insight into the character of the search space denoted by test case prioritization 
and to review the fitness metrics used to guide the search. 

This paper focuses on test case prioritization techniques for code coverage as 

well as execution time. With totally different objective functions, techniques 
can have totally different complexity and search-space characteristics. Given a 

function f that assesses the rate of accomplishment of code coverage, an 

economical answer to the test case prioritization problem would provide an 
economical answer to the knapsack problem, which is understood to be NP-hard 

[12]. Thus, prioritization techniques for code coverage are essentially heuristic 

[13]. 

Chemical reaction optimization (CRO) is an optimization algorithm that has 
recently been proposed in [14,15]. CRO includes a smart searching ability that 
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shows glorious operation in 2 necessary options of improvement meta-

heuristics: intensification and diversification. It conjointly enjoys the benefits of 

GA by using crossover and mutation operators that are typically utilized in GAs 

[14]. CRO, by outperforming several existing evolutionary algorithms, has 
resolved several issues in recent years: it has been successfully applied to the 

quadratic assignment problem [15], the resource-constrained project 

programming problem [15], the stock portfolio choice problem [16], artificial 
neural network training [17], network coding optimization [18], the channel 

assignment problem in wireless mesh networks [14], and several alternative 

problems. 

2 Related Work 

In [19-21], Rothermel, et al. formally outlined the drawbacks of test suite 

prioritization and investigated six prioritization techniques using experiments. 
Four of the techniques supported the coverage of either statements or branches 

for a program and 2 of the techniques supported the calculable ability to reveal 

faults. In [22], Srivastava and Thiagarajan studied a prioritization technique 

supporting the changes that are created by the program. Their technique orders 
the given test cases to maximally cover the affected elements of the program so 

that defects are likely to be found quickly and inexpensively.  

Panigrahi and Mall [23,24] proposed S-RTP and H-RTP, which determine the 
affected nodes in the ESDG model based on an analysis of control and data 

dependencies as well as dependencies arising from object relations, and then 

prioritize regression test cases based on the number of affected nodes exercised 
by a test case.  

The use of greedy algorithms (total and additional) for regression TCP has been 

widely studied in the literature [25]. However, results obtained from empirical 

studies carried out by Rothermel, et al. [13] indicate that greedy strategies may 
not always produce optimal ordering of test cases. To prioritize regression test 

cases, Li, et al. [26] further proposed other greedy strategies, such as the 2-

optimal strategy and two meta-heuristic search strategies (hill-climbing and 
genetic algorithms). 

Jeffrey and Gupta [27] proposed an approach of prioritizing regression test 

cases based on coverage of a relevant slice of the output of a test case. They 

defined a relevant slice as the set of statements that influence or can influence 
the output of a program when running on a regression test case [27]. The main 

aim of their prioritization technique was to achieve higher rates of fault 

detection. 
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Smith, et al. [28] used call tree for TCP. Mohapatra, et al. [29] proposed a GA-

based TCP, where the code coverage and severity of the test case are taken into 

consideration.  

3 Understanding Average Percentage of Fault Detected (APFD) 

Rothermel, et al. [30] planned APFD to measure the average rate of fault 

detection of a regression test suite. APFD has been used by many researchers 

[27, 31] to determine the effectiveness of test prioritization schemes. For test 
suites, APFD is calculated by taking the weighted average of the quantity of 

faults detected throughout the execution of the program with the test suite. 

APFD metric values range from 0-100, where a high APFD value indicates a 
faster rate of fault detection.  

Let a number n of test cases be present in test suite T and the set of faults 

revealed by T be F. The total number of faults present will be m. In an ordering, 
let TFi be the primary test case that reveals a fault i. Then the average 

percentage of faults detected with said ordering is obtained using Eq. (1). 

 APFD=
1 2 .......... 1

1
* 2

nTF TF TF

n m n

+ + +
− +  (1) 

To better understand the APFD matrix let us select a program that has 6 test 

cases and exposes 9 faults, as represented in Table 1. The test cases are labeled 

as T1,T2,T3,T4,T5,T6. Let us prioritize them in two ordering sequences O0< 
T1,T2,T3,T4,T5,T6> and O1< T3,T4,T5,T1,T2,T6>. Figure 1 represents the detection 

of faults in a fraction of the test cases. The area under the graph represents the 

average percentage of faults detected. Figure 1(a) shows that in 0.17 percent of 
the test cases 10% of the faults were detected, whereas in Figure 1(b), in the 

same 0.17 percent of test cases 50% of the faults were detected. The ordering 

sequence O1 represented in Figure 1(b) detects all faults quicker than order 

O0(A). 

Table 1 Test suite and faults detected. 

Test Case 
Fault 

1 2 3 4 5 6 7 8 9 

T1 ∎         

T2 ∎ ∎     ∎ ∎  

T3  ∎ ∎  ∎  ∎  ∎ 

T4 ∎     ∎  ∎ ∎ 

T5   ∎ ∎ ∎ ∎    

T6      ∎    
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(a) (b) 

Figure 1 Illustration of APFD measure. 

4 Proposed Model  

In this section, the procedure of execution of the CRO algorithm is described. 
Before applying the TCP techniques, we collected the test case-requirement 

metrics from the previous execution of test case T over program P. In the case 

of regression testing the test cases, T is prioritized using CRO and give 
prioritize test case T’. These test cases are run on the modified program P’ in 

the maintenance stage (See Figure 2).  

 

Figure 2 Model for execution of CRO prioritization procedure. 
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The initial test case T over program P is executed in the development stage. 

This information of the test case is stored in a log file for future use. After the 

program is modified (P’) some new test case is created and new modules are 

added to P’. Let this new test case be TNEW. The set of new test cases T’ =  
T U TNEW. Now this TNEW must be executed over P’ to test the new 

functionalities of P’. Then what about T? Is it possible to execute all the test 

cases present in T or should we take a subset of it? By prioritizing T, we will be 
able to know the sequence of test cases that exposes the faults more quickly. For 

this, the log file of T in the development phase is taken into consideration. This 

information is used in the CRO algorithm, which is implemented using 

MATLAB. The CRO algorithm gives an optimal sequence of test cases that is 
used in the testing of P’. The details of the CRO algorithm and a flowchart are 

shown in Figure 3 and 4 of Section 5 of this paper. 

5 Proposed CRO Algorithm for Test Case Prioritization 

Begin 
Initialize   PopSize, KELossRate, MoleColl, buffer, InitialKE, α and β in the initial 
stage. 

InitialSolGen( popSize , n)  
Repeat 
Calculate PE for each molecule and set InitialKE for each molecule 
While (No molecule Left) 
Repeat 
generate a random number bϵ[0,1] 
  if b>MoleColl 
   if (number of hits - minimum hit number) > α 

    decomposition(W) 
    else 

OnwallIneffectiveCollision(w) 
   end if 
  else 
    if KE≤β 
    Synthesis(w1,w2) 
    else 

    Inter-Molecular Ineffective Collision(w1,w2) 
    enf if 
  end if 
while (PE of molecule remain constant for successive iteration) 

End 

Figure 3 CRO test case prioritization algorithm and flow chart. 

The algorithm represented in Figure 3 starts with the creation of molecules 

representing a set of randomly selected test cases, as represented in Figure 5. 

Molecule fitness is calculated using PE. The molecules undergo CRO 
operations like on-wall ineffective collision, decomposition, inter-molecular 
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ineffective collision, synthesis to generate new molecules at each iteration. The 

algorithm will stop when the potential energy (PE) of the molecules does not 

further optimize in the successive execution of the CRO method. These 

operations and algorithms are discussed in Section 6. 

 

Figure 4 CRO test case prioritization algorithm and flow chart. 

6 CRO Operators for Test Case Prioritization  

CRO mimics the operation of molecules in a chemical reaction. Low energy 

gives high stability so the initial reactants create a high-energy and unstable 
state. They undergo a sequence of collisions and produce a product in a stable 

Yes 

Yes 

Stop 

Yes 

Yes 

No 
PE of molecule remain constant for 

successive iteration 

decomposition(�) 

Onwall Ineffective Collision  (w) 

 

Inter-Molecular Ineffective 

Collision (w1,w2) 
Synthesis 

Calculate PE for the entire molecule 
 

No 

No No 

KE ≤ β 

 

(number of hits - 
minimum hit 

number) > α 

Start 

Generate Random Number b ϵ [0, 1] 

b>MoleColl 

Prioritize Test Case Set 
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low-energy state. The correspondence between optimization and a chemical 

reaction can be easily seen. This meta-heuristic algorithm was developed by 

Lam, et al. [15] in 2010. 

A molecule in CRO represents a candidate solution. Each molecule denotes a 
solution of the specific problem and it also becomes a point in the search space. 

Like genetic algorithms, where a population contains chromosomes, in this case 

the population contains molecules. Each molecule’s fitness is decided by its 
potential energy (PE), which is the same as the fitness function of a GA. New 

molecules in CRO are generated using this potential energy and different CRO 

operators. In CRO, different collisions occur either between molecules or with 

the container. These collisions represent different operators or reactions in 
CRO. The major elementary reactions of CRO are: 

1. On-wall ineffective collision 

2. Decomposition 
3. Inter-molecular ineffective collision  

4. Synthesis 

CRO has been successfully used to solve optimization problems. It is better than 
other heuristic techniques in both continuous as well as discrete problems. CRO 

has several advantages over other techniques, as described by Lam [15]. The 

definitions of the components of CRO for test case prioritization are as follows: 

6.1 Potential Energy (PE) 

The potential energy, represented by Eq. (6), assigns each test molecule a 

potential energy based on two major factors: 

1. Code coverage percentage of the molecule 

2. Time at which each test covers its associated code in the program 

The potential energy is divided into two parts. The first component, PEpri, is 

used to calculate the code coverage of the entire test molecule ω. It ensures the 
overall coverage of the molecule, which is more important for test case 

prioritization than the ordering. PEpri is weighted by multiplying the percentage 

of code covered by the program coverage weight, W. The selection of W’s 
value should be sufficiently large so that when PEpri and PEsec are added 

together, PEpri dominates the result. The primary potential energy PEpri for a 

molecule ωi is given by Eq. (2): 

 PEpri=code_coverage(P,ωi) * W                             (2) 

The second component, PEsec, considers the individual coverage of the test case. 

It uses incremental code coverage of the molecule, giving precedence to test 
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molecules whose earlier tests had greater coverage. PEsec is also calculated in 

two parts. First, PEsec-actual is computed by adding the multiplication of the 

execution time (<Tj>) and the code coverage of the sub-molecules 

ωi(1,j)=<T1,T2,…Tj> for each test case Tj ϵ ωi . Formally, some molecule ωi 
contains random test tuples, which are the power set of T (perms(2

T
)) as shown 

in Eq. (3), 

 PEsec-actual(P, ωi)=∑ ���	
� �
 ���
|��|

��� ���	_���	���	
�, ωi
1, 
�� (3) 

PEsec-max represents the possible maximum value that PEsec-actual can take (i.e. the 

value of PEsec-actual if T1 covers 100% of the code covered by T). Some molecule 
ωi contains random test tuples, which are the power set of T (perms(2

T
)) as 

shown in Eq. (4), 

 PEsec-max (P,ωi)= code_coverage(P,ωi) X ∑ time
� Tj ��
|��|

)��  (4) 

Finally, PEsec-actual and PEsec-max are used to calculate PEsec. Specifically, some 
molecule ωi contains random test tuples, which are the power set of T 

(perms(2
T
)) as shown in Eq.(5), 

 PEsec =
*+,-./0.1203	
*,5��

*+,-./607
*,5��
 (5)  

The potential energy is given by following Eq.(6): 

 PE= PEpri + PEsec (6) 

6.2 Initial Solution Generator 

This operator is used to generate molecules for CRO. It creates the molecules 

with a size of MolSize. Initially, ω0 is empty. Test cases are added from the set 

of available test cases, i.e. T =< T1,T2,…….,Tn>, where ωi contains random test 
cases that are the power set of T (perms(2

T
)). The molecules and algorithm are 

shown in Figure 5. 

 

 
Figure 5 Initial solution generator algorithm and procedure. 
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6.3 On-Wall Ineffective Collision 

In CRO, on-wall ineffective collision is used to find a neighbor of solution ω in 

search space, as represented in Figure 6. For our problem, the mutation operator 
of the genetic algorithm was found suitable so it was used for on-wall 

ineffective collision. In the process of on-wall ineffective collision, one position 

i in solution ω will be chosen and the value of ωi is replaced with a test case that 

is not present in the molecule. 

 

Figure 6 On-wall ineffective collision algorithm and procedure. 

6.4  Decomposition 

Diversification in CRO is achieved by decomposition. It produces two solutions 
from one original solution. This is designed according to the half-total-exchange 

operator that was used to solve the channel assignment problem in [10]. The 

operator creates two solutions, ω1 and ω2, from solution ω. First, ω is duplicated 

to generate ω1 and ω2. After that, exchanges for n/2 positions in solutions ω1 and 
ω2 are made randomly, as shown in Figure 7. 

 
Figure 7 Decomposition algorithm and procedure. 
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6.5 Synthesis Operator 

The synthesis operator employed in [13] was used in this study. The operator 

produces a molecule, ω, by combining two molecules, ω1 and ω2. Each 

molecule ω(i) is randomly selected either from ω1(i) or ω2(i). The detailed 

process and algorithm are represented in Figure 8. 

 
Figure 8 Synthesis algorithm and procedure. 

6.6 Inter-Molecular Ineffective Collision  

 

 
Figure 9 Inter-molecular ineffective collision algorithm and procedure. 

Figure 9 represents intermolecular ineffective collision producing two new 
molecules, ω1 and ω2, from two old molecules, ω1 and ω2. For this, GA’s 
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popular crossover was used in this study. Two-point crossover is best suited, so 

this was applied. In two-point crossover, two points are randomly selected. 

These points separate a molecule in three parts. Solution ω1 is created from the 

even parts of ω1 combined with the odd parts of ω2. Solution ω2 is created from 
the even parts of ω2 combined with the odd parts of ω1.  

7 Experiments 

To investigate the effectiveness of our new technique, several empirical studies 

were performed. The techniques used for comparison were a random technique 

and the genetic algorithm-based technique of Sudhir, et al. [29]. In the 
following, we will refer to these techniques as ‘Random’ and ‘GA’. 

7.1 Research Questions 

Q1: Can the order sequence technique increase the rate of fault detection more 

significantly than the two compared techniques? 

Q2: Can the order sequence technique detect bugs in the loop more quickly than 

the other techniques? 

Q3: Is the order sequence technique efficient in terms of time and space 

complexity? 

7.2 Subject Program and Test Case 

Table 2 shows the details of the subject programs and the collected test case-
requirement matrixes. Column 1 lists all the subject programs. Column 2 lists 

the number of lines of code (LOC) of each subject program. Column 3 lists the 

size of the corresponding subject program’s test suit pool, where T denotes the 
number of all test cases and R denotes the number of test requirements. Three 

programs were studied, ranging from 1864 to 3095 lines of code (LOC). The 

three Java programs in our experiment were: Power Equalizer (PEQ), 
Transmission Control (TC), and Stock Index Prediction (STOCK), developed 

by students at the Master of Technology of SOA University. The features of 

these programs are given in Table 2. 

Table 2 Summary of programs used in experiment. 

Program 
Source file 

(LOC) 

Test suite pool 

(T X R) 

Mutation 

fault 

Total 

statement 

coverage 

PEQ 1864 169 X 98 520 79.2% 

TC 2987 228 X 96 891 58.1 % 

STOCK 3095 397 X 128 993 67.2% 
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7.3 Acquisition of Useful Information of Test Case 

Emma and Ant Tool were used to collect the coverage information of the 
system under test (SUT). The data collected were the code coverage and the 

time of execution of the test case; detailed information is given in Table 2. The 

process consisted of three steps: instrumentation, execution, and reporting. In 
the instrumentation phase, auxiliary information is added to the source program. 

Different granularities can be supported in this step. Next, the executable code 

can be generated. Lastly, the instrumentation code is executed and the coverage 

measurement is saved in the log. From this log, coverage metrics are calculated 
for report generation. 

7.4 Experimental Setup 

The three techniques were implemented using MATLAB. Once program 

specific information was gathered, the result was used by MATLAB to generate 

optimal ordering. All the implemented techniques were executed on a PC with 
an Intel Pentium 2.26 GHz CPU and 512 M memory running the Windows 

2000 Professional operating system. Statement-level granularity was used and 

statement coverage information of the individual programs was collected using 
Emma. To avoid randomness, 100 replications of each program were run. The 

effectiveness of the proposed prioritization technique was measured by 

collecting base version information and subsequently collecting faulty version 
information. Subsequently, faulty versions were generated by generating 

mutants using Jumble. The mutant fault information is given in Table 2. 

Q1:  In order to compare the fault detection rate, the APFD metric was used. A 

higher APFD value means a faster fault detection rate (APFD was discussed in 
Section 3 of this paper). 

Figure 10 shows box-whisker plots of the three subject programs. It contains the 

values of all 100 groups of data. Figure 9 clearly shows that the values of the 
CRO based technique were always higher than those of the other techniques. 

The mean value of the CRO technique was higher than that of the others. 

Therefore, we can conclude that the CRO based technique has a higher APFD 

value than the other two techniques, which indicates a faster rate of fault 
detection. We also did a T-test to check the consistency of the different APFD 

values of the above three techniques. The test returned a p-value of less than 

0.001. This is sufficient to reject the null hypothesis at 95% significance level. 

Q2: In this section, the potential of the algorithm to detect bugs in loops for the 

above three prioritizations is determined. The reason to choose loops is that this 

type of bugs has more chance to be relative to the ordered sequence of program 
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elements measured by execution frequency. The number of bugs present in the 

loop to be detected was 81, 90 and 778 respectively. 

 
 

 

Figure 10 Result of APFD on the three subject programs. 

The graphs in Figure 11 represent the test case number on the X-axis and bugs 

in loops on the Y-axis. It can be observed from this figure that for all the test 

programs, the CRO technique found more bugs at the beginning. Hence, this 
technique will also be helpful in a situation where regression testing is 

terminated due to limited resources. 

In Figure 12, the X-axis represents (number of generations, population size), 

while the Y-axis represents the time of execution of the CRO algorithm. The 
algorithms took a maximum of 11.66 minutes for the STOCK program. The 

memory requirement was less then 100KB, as found in the MATLAB 

implementation of the program. 
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Figure 11 Detection of bugs in loops on three subject programs. 

 

Figure 12 Graph showing the number of generations and the number of 
molecules per generation. 

7.5 Threat to Validity  

Our implementation and its correctness are subject to threats to internal validity. 
To reduce this threat, a thorough check of the programs and results was done 
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multiple times. Here, the proposed technique was only compared with Random 

and GA, but in future research it will be compared with more techniques. 

8 Conclusions 

In this research, the CRO algorithm was implemented to prioritize test cases. 

The experimental analysis demonstrated that this approach can create an order 

of test cases with a better APFD value while consuming a reasonable amount of 

time and memory. This technique is able to detect bugs in the early stages of 
execution, which can be useful in case of early termination of regression testing 

due to resource constraints. Future research will include the improvement of 

performance in real-life, large object-oriented applications. Also, some 
implementation techniques can be introduced that are commonly used by other 

test case prioritization techniques and implementing them in parallel. 
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