

J. ICT Res. Appl., Vol. 11, No. 2, 2017, 113-130 113

Received January 28
th
, 2016, Revised December 14

th
, 2016, Accepted for publication April, 3

rd
, 2017.

Copyright © 2017 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2017.11.2.1

A Chemical Reaction Optimization Approach to Prioritize

the Regression Test Cases of Object-Oriented Programs

Sudhir Kumar Mohapatra
1,*

& Srinivas Prasad
2

1SOA University, Bhubaneswar, Odisha, India – 751030
2Dept. of Computer Science & Engineering, GMRIT, Andhra Pradesh, India – 532127

*E-mail: sk_mohapatra@rediffmail.com

Abstract. Regression test case prioritization is used to improve certain

performance goals. Limited resources force to choose an effective prioritization

technique, which makes an ordering of the test cases so that the most suitable test

case will be executed first. Executing regression test cases for a fixed time is all

about time aware test case prioritization. Regression test case prioritization using

chemical reaction optimization (CRO) for object-oriented programs is proposed

in this paper. The effectiveness of the test case ordering was measured using

average percentage of faults detected (APFD). Experiments on three object-
oriented subject programs involving three different techniques were performed to

judge the proposed approach. The empirical results indicate that the algorithm

implemented using CRO gives a higher APFD value than the other two

techniques.

Keywords: APFD; chemical reaction optimization; regression testing; test case

minimization; test case prioritization; test case reduction.

1 Introduction

High-quality software systems cannot be completed without developing

rigorous testing methodologies [1,2]. With the rise in size and complexity of

recent software system products, regression testing is becoming ever more

important. In the field of software system development, considering the
character of software system quality and growing stress on software system

products, test suit prioritization is of great importance and relevance to business.

The whole testing process consumes 30-50% of the development cost. It is
tough for the tester to create the product 100 percent bug-free in the limited

given time [3]. Additionally, as 365-day functionality of a product is commonly

used, the tester is required to target creating such functionality bug-free [4,5].
To undertake this, because of resource constraints, the application of all sets of

test cases is impractical. So a limited number of test cases are selected, which

may find most of the faults in the given version of the software system [6]. Such

a choice can amount to minimization of the number of test cases but may not

114 Sudhir Kumar Mohapatra & Srinivas Prasad

always be effective in finishing the method of finding faults. Test cases ought to

be prioritized according to code coverage and execution time. Test case

prioritization [7-9] orders test cases in such a way that the test cases with the

highest priority according to some fitness metric are executed first.

Rothermel, et al. [8] outline the test case prioritization problem and describe

many problems relevant to its solution. They define the problem as follows.

1.1 Test Case Prioritization (TCP) Problem

Given: T, a test suite; PT, the set of permutations of T; f, a function from PT to

real numbers.

Problem: Find T’ ∈ PT such that (∀ T’’ (T’’ ∈ PT) (T’’ ≠ T’) [f (T’’) ≥ (T’’)])

Here, PT represents the set of all possible prioritization (orderings) of T and f is

a function that, applied to any such ordering, yields an award value for that

ordering.

Meta-heuristic search techniques [10] are high-level frameworks that utilize the

automatic discovery of heuristics in order to search out solutions to

combinatorial problems at an inexpensive procedure price. Evolutionary

algorithms, of which genetic algorithms (GAs) are a subclass, are a form of
meta-heuristic searching that employ a Darwinian evolutionary metaphor to

guide the searching by a process of ‘survival of the fittest’. In the case of

scheduling problems, of which regression test case prioritization is an example,
the application of genetic algorithms has been shown to be effective [11]. As

such, an empirical study of the effectiveness of those and related meta-heuristic

techniques is timely. As a by-product of such a study, it is possible to realize an

insight into the character of the search space denoted by test case prioritization
and to review the fitness metrics used to guide the search.

This paper focuses on test case prioritization techniques for code coverage as

well as execution time. With totally different objective functions, techniques
can have totally different complexity and search-space characteristics. Given a

function f that assesses the rate of accomplishment of code coverage, an

economical answer to the test case prioritization problem would provide an
economical answer to the knapsack problem, which is understood to be NP-hard

[12]. Thus, prioritization techniques for code coverage are essentially heuristic

[13].

Chemical reaction optimization (CRO) is an optimization algorithm that has
recently been proposed in [14,15]. CRO includes a smart searching ability that

 A CRO Approach to Prioritize the Regression Test Cases 115

shows glorious operation in 2 necessary options of improvement meta-

heuristics: intensification and diversification. It conjointly enjoys the benefits of

GA by using crossover and mutation operators that are typically utilized in GAs

[14]. CRO, by outperforming several existing evolutionary algorithms, has
resolved several issues in recent years: it has been successfully applied to the

quadratic assignment problem [15], the resource-constrained project

programming problem [15], the stock portfolio choice problem [16], artificial
neural network training [17], network coding optimization [18], the channel

assignment problem in wireless mesh networks [14], and several alternative

problems.

2 Related Work

In [19-21], Rothermel, et al. formally outlined the drawbacks of test suite

prioritization and investigated six prioritization techniques using experiments.
Four of the techniques supported the coverage of either statements or branches

for a program and 2 of the techniques supported the calculable ability to reveal

faults. In [22], Srivastava and Thiagarajan studied a prioritization technique

supporting the changes that are created by the program. Their technique orders
the given test cases to maximally cover the affected elements of the program so

that defects are likely to be found quickly and inexpensively.

Panigrahi and Mall [23,24] proposed S-RTP and H-RTP, which determine the
affected nodes in the ESDG model based on an analysis of control and data

dependencies as well as dependencies arising from object relations, and then

prioritize regression test cases based on the number of affected nodes exercised
by a test case.

The use of greedy algorithms (total and additional) for regression TCP has been

widely studied in the literature [25]. However, results obtained from empirical

studies carried out by Rothermel, et al. [13] indicate that greedy strategies may
not always produce optimal ordering of test cases. To prioritize regression test

cases, Li, et al. [26] further proposed other greedy strategies, such as the 2-

optimal strategy and two meta-heuristic search strategies (hill-climbing and
genetic algorithms).

Jeffrey and Gupta [27] proposed an approach of prioritizing regression test

cases based on coverage of a relevant slice of the output of a test case. They

defined a relevant slice as the set of statements that influence or can influence
the output of a program when running on a regression test case [27]. The main

aim of their prioritization technique was to achieve higher rates of fault

detection.

116 Sudhir Kumar Mohapatra & Srinivas Prasad

Smith, et al. [28] used call tree for TCP. Mohapatra, et al. [29] proposed a GA-

based TCP, where the code coverage and severity of the test case are taken into

consideration.

3 Understanding Average Percentage of Fault Detected (APFD)

Rothermel, et al. [30] planned APFD to measure the average rate of fault

detection of a regression test suite. APFD has been used by many researchers

[27, 31] to determine the effectiveness of test prioritization schemes. For test
suites, APFD is calculated by taking the weighted average of the quantity of

faults detected throughout the execution of the program with the test suite.

APFD metric values range from 0-100, where a high APFD value indicates a
faster rate of fault detection.

Let a number n of test cases be present in test suite T and the set of faults

revealed by T be F. The total number of faults present will be m. In an ordering,
let TFi be the primary test case that reveals a fault i. Then the average

percentage of faults detected with said ordering is obtained using Eq. (1).

 APFD=
1 2 1

1
* 2

nTF TF TF

n m n

+ + +
− + (1)

To better understand the APFD matrix let us select a program that has 6 test

cases and exposes 9 faults, as represented in Table 1. The test cases are labeled

as T1,T2,T3,T4,T5,T6. Let us prioritize them in two ordering sequences O0<
T1,T2,T3,T4,T5,T6> and O1< T3,T4,T5,T1,T2,T6>. Figure 1 represents the detection

of faults in a fraction of the test cases. The area under the graph represents the

average percentage of faults detected. Figure 1(a) shows that in 0.17 percent of
the test cases 10% of the faults were detected, whereas in Figure 1(b), in the

same 0.17 percent of test cases 50% of the faults were detected. The ordering

sequence O1 represented in Figure 1(b) detects all faults quicker than order

O0(A).

Table 1 Test suite and faults detected.

Test Case
Fault

1 2 3 4 5 6 7 8 9

T1 ∎

T2 ∎ ∎ ∎ ∎

T3 ∎ ∎ ∎ ∎ ∎

T4 ∎ ∎ ∎ ∎

T5 ∎ ∎ ∎ ∎

T6 ∎

 A CRO Approach to Prioritize the Regression Test Cases 117

(a) (b)

Figure 1 Illustration of APFD measure.

4 Proposed Model

In this section, the procedure of execution of the CRO algorithm is described.
Before applying the TCP techniques, we collected the test case-requirement

metrics from the previous execution of test case T over program P. In the case

of regression testing the test cases, T is prioritized using CRO and give
prioritize test case T’. These test cases are run on the modified program P’ in

the maintenance stage (See Figure 2).

Figure 2 Model for execution of CRO prioritization procedure.

118 Sudhir Kumar Mohapatra & Srinivas Prasad

The initial test case T over program P is executed in the development stage.

This information of the test case is stored in a log file for future use. After the

program is modified (P’) some new test case is created and new modules are

added to P’. Let this new test case be TNEW. The set of new test cases T’ =
T U TNEW. Now this TNEW must be executed over P’ to test the new

functionalities of P’. Then what about T? Is it possible to execute all the test

cases present in T or should we take a subset of it? By prioritizing T, we will be
able to know the sequence of test cases that exposes the faults more quickly. For

this, the log file of T in the development phase is taken into consideration. This

information is used in the CRO algorithm, which is implemented using

MATLAB. The CRO algorithm gives an optimal sequence of test cases that is
used in the testing of P’. The details of the CRO algorithm and a flowchart are

shown in Figure 3 and 4 of Section 5 of this paper.

5 Proposed CRO Algorithm for Test Case Prioritization

Begin
Initialize PopSize, KELossRate, MoleColl, buffer, InitialKE, α and β in the initial
stage.

InitialSolGen(popSize , n)
Repeat
Calculate PE for each molecule and set InitialKE for each molecule
While (No molecule Left)
Repeat
generate a random number bϵ[0,1]
 if b>MoleColl
 if (number of hits - minimum hit number) > α

 decomposition(W)
 else

OnwallIneffectiveCollision(w)
 end if
 else
 if KE≤β
 Synthesis(w1,w2)
 else

 Inter-Molecular Ineffective Collision(w1,w2)
 enf if
 end if
while (PE of molecule remain constant for successive iteration)

End

Figure 3 CRO test case prioritization algorithm and flow chart.

The algorithm represented in Figure 3 starts with the creation of molecules

representing a set of randomly selected test cases, as represented in Figure 5.

Molecule fitness is calculated using PE. The molecules undergo CRO
operations like on-wall ineffective collision, decomposition, inter-molecular

 A CRO Approach to Prioritize the Regression Test Cases 119

ineffective collision, synthesis to generate new molecules at each iteration. The

algorithm will stop when the potential energy (PE) of the molecules does not

further optimize in the successive execution of the CRO method. These

operations and algorithms are discussed in Section 6.

Figure 4 CRO test case prioritization algorithm and flow chart.

6 CRO Operators for Test Case Prioritization

CRO mimics the operation of molecules in a chemical reaction. Low energy

gives high stability so the initial reactants create a high-energy and unstable
state. They undergo a sequence of collisions and produce a product in a stable

Yes

Yes

Stop

Yes

Yes

No
PE of molecule remain constant for

successive iteration

decomposition(�)

Onwall Ineffective Collision (w)

Inter-Molecular Ineffective

Collision (w1,w2)
Synthesis

Calculate PE for the entire molecule

No

No No

KE ≤ β

(number of hits -
minimum hit

number) > α

Start

Generate Random Number b ϵ [0, 1]

b>MoleColl

Prioritize Test Case Set

120 Sudhir Kumar Mohapatra & Srinivas Prasad

low-energy state. The correspondence between optimization and a chemical

reaction can be easily seen. This meta-heuristic algorithm was developed by

Lam, et al. [15] in 2010.

A molecule in CRO represents a candidate solution. Each molecule denotes a
solution of the specific problem and it also becomes a point in the search space.

Like genetic algorithms, where a population contains chromosomes, in this case

the population contains molecules. Each molecule’s fitness is decided by its
potential energy (PE), which is the same as the fitness function of a GA. New

molecules in CRO are generated using this potential energy and different CRO

operators. In CRO, different collisions occur either between molecules or with

the container. These collisions represent different operators or reactions in
CRO. The major elementary reactions of CRO are:

1. On-wall ineffective collision

2. Decomposition
3. Inter-molecular ineffective collision

4. Synthesis

CRO has been successfully used to solve optimization problems. It is better than
other heuristic techniques in both continuous as well as discrete problems. CRO

has several advantages over other techniques, as described by Lam [15]. The

definitions of the components of CRO for test case prioritization are as follows:

6.1 Potential Energy (PE)

The potential energy, represented by Eq. (6), assigns each test molecule a

potential energy based on two major factors:

1. Code coverage percentage of the molecule

2. Time at which each test covers its associated code in the program

The potential energy is divided into two parts. The first component, PEpri, is

used to calculate the code coverage of the entire test molecule ω. It ensures the
overall coverage of the molecule, which is more important for test case

prioritization than the ordering. PEpri is weighted by multiplying the percentage

of code covered by the program coverage weight, W. The selection of W’s
value should be sufficiently large so that when PEpri and PEsec are added

together, PEpri dominates the result. The primary potential energy PEpri for a

molecule ωi is given by Eq. (2):

 PEpri=code_coverage(P,ωi) * W (2)

The second component, PEsec, considers the individual coverage of the test case.

It uses incremental code coverage of the molecule, giving precedence to test

 A CRO Approach to Prioritize the Regression Test Cases 121

molecules whose earlier tests had greater coverage. PEsec is also calculated in

two parts. First, PEsec-actual is computed by adding the multiplication of the

execution time (<Tj>) and the code coverage of the sub-molecules

ωi(1,j)=<T1,T2,…Tj> for each test case Tj ϵ ωi . Formally, some molecule ωi
contains random test tuples, which are the power set of T (perms(2

T
)) as shown

in Eq. (3),

 PEsec-actual(P, ωi)=∑ ���	
� �
 ���
|��|

��� ���	_���	���	
�, ωi
1,
�� (3)

PEsec-max represents the possible maximum value that PEsec-actual can take (i.e. the

value of PEsec-actual if T1 covers 100% of the code covered by T). Some molecule
ωi contains random test tuples, which are the power set of T (perms(2

T
)) as

shown in Eq. (4),

 PEsec-max (P,ωi)= code_coverage(P,ωi) X ∑ time
� Tj ��
|��|

)�� (4)

Finally, PEsec-actual and PEsec-max are used to calculate PEsec. Specifically, some
molecule ωi contains random test tuples, which are the power set of T

(perms(2
T
)) as shown in Eq.(5),

 PEsec =
*+,-./0.1203	
*,5��

*+,-./607
*,5��
 (5)

The potential energy is given by following Eq.(6):

 PE= PEpri + PEsec (6)

6.2 Initial Solution Generator

This operator is used to generate molecules for CRO. It creates the molecules

with a size of MolSize. Initially, ω0 is empty. Test cases are added from the set

of available test cases, i.e. T =< T1,T2,…….,Tn>, where ωi contains random test
cases that are the power set of T (perms(2

T
)). The molecules and algorithm are

shown in Figure 5.

Figure 5 Initial solution generator algorithm and procedure.

122 Sudhir Kumar Mohapatra & Srinivas Prasad

6.3 On-Wall Ineffective Collision

In CRO, on-wall ineffective collision is used to find a neighbor of solution ω in

search space, as represented in Figure 6. For our problem, the mutation operator
of the genetic algorithm was found suitable so it was used for on-wall

ineffective collision. In the process of on-wall ineffective collision, one position

i in solution ω will be chosen and the value of ωi is replaced with a test case that

is not present in the molecule.

Figure 6 On-wall ineffective collision algorithm and procedure.

6.4 Decomposition

Diversification in CRO is achieved by decomposition. It produces two solutions
from one original solution. This is designed according to the half-total-exchange

operator that was used to solve the channel assignment problem in [10]. The

operator creates two solutions, ω1 and ω2, from solution ω. First, ω is duplicated

to generate ω1 and ω2. After that, exchanges for n/2 positions in solutions ω1 and
ω2 are made randomly, as shown in Figure 7.

Figure 7 Decomposition algorithm and procedure.

 A CRO Approach to Prioritize the Regression Test Cases 123

6.5 Synthesis Operator

The synthesis operator employed in [13] was used in this study. The operator

produces a molecule, ω, by combining two molecules, ω1 and ω2. Each

molecule ω(i) is randomly selected either from ω1(i) or ω2(i). The detailed

process and algorithm are represented in Figure 8.

Figure 8 Synthesis algorithm and procedure.

6.6 Inter-Molecular Ineffective Collision

Figure 9 Inter-molecular ineffective collision algorithm and procedure.

Figure 9 represents intermolecular ineffective collision producing two new
molecules, ω1 and ω2, from two old molecules, ω1 and ω2. For this, GA’s

124 Sudhir Kumar Mohapatra & Srinivas Prasad

popular crossover was used in this study. Two-point crossover is best suited, so

this was applied. In two-point crossover, two points are randomly selected.

These points separate a molecule in three parts. Solution ω1 is created from the

even parts of ω1 combined with the odd parts of ω2. Solution ω2 is created from
the even parts of ω2 combined with the odd parts of ω1.

7 Experiments

To investigate the effectiveness of our new technique, several empirical studies

were performed. The techniques used for comparison were a random technique

and the genetic algorithm-based technique of Sudhir, et al. [29]. In the
following, we will refer to these techniques as ‘Random’ and ‘GA’.

7.1 Research Questions

Q1: Can the order sequence technique increase the rate of fault detection more

significantly than the two compared techniques?

Q2: Can the order sequence technique detect bugs in the loop more quickly than

the other techniques?

Q3: Is the order sequence technique efficient in terms of time and space

complexity?

7.2 Subject Program and Test Case

Table 2 shows the details of the subject programs and the collected test case-
requirement matrixes. Column 1 lists all the subject programs. Column 2 lists

the number of lines of code (LOC) of each subject program. Column 3 lists the

size of the corresponding subject program’s test suit pool, where T denotes the
number of all test cases and R denotes the number of test requirements. Three

programs were studied, ranging from 1864 to 3095 lines of code (LOC). The

three Java programs in our experiment were: Power Equalizer (PEQ),
Transmission Control (TC), and Stock Index Prediction (STOCK), developed

by students at the Master of Technology of SOA University. The features of

these programs are given in Table 2.

Table 2 Summary of programs used in experiment.

Program
Source file

(LOC)

Test suite pool

(T X R)

Mutation

fault

Total

statement

coverage

PEQ 1864 169 X 98 520 79.2%

TC 2987 228 X 96 891 58.1 %

STOCK 3095 397 X 128 993 67.2%

 A CRO Approach to Prioritize the Regression Test Cases 125

7.3 Acquisition of Useful Information of Test Case

Emma and Ant Tool were used to collect the coverage information of the
system under test (SUT). The data collected were the code coverage and the

time of execution of the test case; detailed information is given in Table 2. The

process consisted of three steps: instrumentation, execution, and reporting. In
the instrumentation phase, auxiliary information is added to the source program.

Different granularities can be supported in this step. Next, the executable code

can be generated. Lastly, the instrumentation code is executed and the coverage

measurement is saved in the log. From this log, coverage metrics are calculated
for report generation.

7.4 Experimental Setup

The three techniques were implemented using MATLAB. Once program

specific information was gathered, the result was used by MATLAB to generate

optimal ordering. All the implemented techniques were executed on a PC with
an Intel Pentium 2.26 GHz CPU and 512 M memory running the Windows

2000 Professional operating system. Statement-level granularity was used and

statement coverage information of the individual programs was collected using
Emma. To avoid randomness, 100 replications of each program were run. The

effectiveness of the proposed prioritization technique was measured by

collecting base version information and subsequently collecting faulty version
information. Subsequently, faulty versions were generated by generating

mutants using Jumble. The mutant fault information is given in Table 2.

Q1: In order to compare the fault detection rate, the APFD metric was used. A

higher APFD value means a faster fault detection rate (APFD was discussed in
Section 3 of this paper).

Figure 10 shows box-whisker plots of the three subject programs. It contains the

values of all 100 groups of data. Figure 9 clearly shows that the values of the
CRO based technique were always higher than those of the other techniques.

The mean value of the CRO technique was higher than that of the others.

Therefore, we can conclude that the CRO based technique has a higher APFD

value than the other two techniques, which indicates a faster rate of fault
detection. We also did a T-test to check the consistency of the different APFD

values of the above three techniques. The test returned a p-value of less than

0.001. This is sufficient to reject the null hypothesis at 95% significance level.

Q2: In this section, the potential of the algorithm to detect bugs in loops for the

above three prioritizations is determined. The reason to choose loops is that this

type of bugs has more chance to be relative to the ordered sequence of program

126 Sudhir Kumar Mohapatra & Srinivas Prasad

elements measured by execution frequency. The number of bugs present in the

loop to be detected was 81, 90 and 778 respectively.

Figure 10 Result of APFD on the three subject programs.

The graphs in Figure 11 represent the test case number on the X-axis and bugs

in loops on the Y-axis. It can be observed from this figure that for all the test

programs, the CRO technique found more bugs at the beginning. Hence, this
technique will also be helpful in a situation where regression testing is

terminated due to limited resources.

In Figure 12, the X-axis represents (number of generations, population size),

while the Y-axis represents the time of execution of the CRO algorithm. The
algorithms took a maximum of 11.66 minutes for the STOCK program. The

memory requirement was less then 100KB, as found in the MATLAB

implementation of the program.

0.7

0.75

0.8

0.85

0.9

0.95

1

Random GA CRO
Programs

A
P

F
D

 V
a
lu

e
s

TC

0.8

0.85

0.9

0.95

1

Random GA CRO
Programs

A
P

F
D

 V
a
lu

e
s

PEQ

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Random GA CRO
Programs

A
P

F
D
 V

a
lu

e
s

STOCK

 A CRO Approach to Prioritize the Regression Test Cases 127

Figure 11 Detection of bugs in loops on three subject programs.

Figure 12 Graph showing the number of generations and the number of
molecules per generation.

7.5 Threat to Validity

Our implementation and its correctness are subject to threats to internal validity.
To reduce this threat, a thorough check of the programs and results was done

128 Sudhir Kumar Mohapatra & Srinivas Prasad

multiple times. Here, the proposed technique was only compared with Random

and GA, but in future research it will be compared with more techniques.

8 Conclusions

In this research, the CRO algorithm was implemented to prioritize test cases.

The experimental analysis demonstrated that this approach can create an order

of test cases with a better APFD value while consuming a reasonable amount of

time and memory. This technique is able to detect bugs in the early stages of
execution, which can be useful in case of early termination of regression testing

due to resource constraints. Future research will include the improvement of

performance in real-life, large object-oriented applications. Also, some
implementation techniques can be introduced that are commonly used by other

test case prioritization techniques and implementing them in parallel.

References

[1] Ostrand, T., Weyuker, E. & Bell, R., Where the Bugs Are, Proceedings of

the ACM SIGSOFT International Symposium on Software Testing and

Analysis, Boston, MA, pp. 86-96, 2004.
[2] Ahmed, A., Software Testing as a Service, Auerbach Publications, New

York, United States, 2009.

[3] Ramler R., Biffl, S. & Grunbacher, P., Value-Based Management of
Software Testing, ed., 1, Springer, 2006.

[4] Boehm B. & Huang, L., Value-Based Software Engineering: A Case

Study, IEEE Computer, 36(3), pp. 33-41, 2003.

[5] Zhang, L., Hou, S.S., Guo, C., Xie, T. & Mei, H., Time Aware Test-Case
Prioritization using Integer Linear Programming, ISSTA’09, Chicago,

Illinois, United States, 2009.

[6] Ashraf, E., Rauf, A. & Mahmood, K., Value based Regression Test Case
Prioritization, Proceedings of the World Congress on Engineering and

Computer Science, Vol. I, WCECS 2012, San Francisco, USA, 2012.

[7] Rothermel G., Untch R., Chu C. & Harrold M.J., Test Case
Prioritization: An Empirical Study, Proc. Int’l Conf. Software

Maintenance, pp. 179-188, 1999.

[8] G. Rothermel, Untch, R., Chu, C. & Harrold, M.J., Prioritizing Test

Cases for Regression Testing, IEEE Trans. Software Eng., 27(10), pp.
929-948, 2001.

[9] Wong, W.E., Horgan, J.R., London, S. & Agrawal, H., A Study of

Effective Regression Testing in Practice, Proc. Eighth Int’l Symp.
Software Reliability Eng., pp. 230-238, 1997.

[10] Reeves, C.R., Modern Heuristic Techniques for Combinatorial Problems,

ed., John Wiley & Sons, 1993.

 A CRO Approach to Prioritize the Regression Test Cases 129

[11] Husbands, P., Genetic Algorithms for Scheduling, Artificial Intelligence

and the Simulation of Behaviour (AISB), Quarterly, 89, pp. 38-45, 1994.

[12] Garey, M. & Johnson, D.S., Computers and Intractability: A Guide to the

Theory of NP-Completeness, ed. 1, Freeman, 1979.
[13] Rothermel, G., Untch, R., Chu, C. & Harrold, M.J., Prioritizing Test

Cases for Regression Testing, IEEE Trans. Software Eng., 27(10), pp.

929-948, 2001.
[14] Lam, A.Y.S. & Li,V.O.K., Chemical Reaction Optimization: a Tutorial,

Memetic Computing, 4(1), pp. 3-17, 2012.

[15] Lam, A.Y.S. & Li, V.O.K., Chemical-reaction-inspired Metaheuristic for

Optimization, IEEE Transactions on Evolutionary Computation, 14(3),
pp. 381-399, 2010.

[16] Xu, J., Lam, A.Y.S. & Li, V.O.K., Stock Portfolio Selection using

Chemical Reaction Optimization, Proceedings of International
Conference on Operations Research and Financial Engineering (ICORFE

2011), pp. 458-463, Paris, France, 2011.

[17] Yu, J.J.Q., Lam, A.Y.S. & Li, V.O.K., Evolutionary artificial neural
network based on chemical reaction optimization, IEEE Congress on

Evolutionary Computation (CEC), pp. 2083-2090, 2011.

[18] Pan, B., Lam, A.Y.S. & Li, V.O.K., Network Coding Optimization based

on Chemical Reaction Optimization, IEEE Global Telecommunications
Conference (GLOBECOM 2011), pp. 1-5, 2011.

[19] Elbaum, S., Malishevsky, A.G. & Rothermel, G., Test Case

Prioritization: A Family of Empirical Studies, IEEE Trans. Software
Eng., 28(2), pp. 159-182,2002.

[20] Rothermel, G., Untch, R., Chu, C. & Harrold, M.J., Test Case

Prioritization: An Empirical Study, Proc. Int’l Conf. Software

Maintenance, pp. 179-188, 1999.
[21] Rothermel, G., Untch, R., Chu, C. & Harrold, M.J., Prioritizing Test

Cases for Regression Testing, IEEE Trans. Software Eng., 27(10), pp.

929-948, 2001.
[22] Srivastava, A. & Thiagarajan, J., Effectively Prioritizing Tests in

Development Environment, Proc. ACM SIGSOFT Int’l Symp. Software

Testing and Analysis (ISSTA ’02), pp. 97-106, 2002.
[23] Panigrahi, C. & Mall, R., An Approach to Prioritize Regression Test

Cases of Object-oriented Programs, J CSI Trans ICT, 1(2), pp. 159-173

Springer, June 2013

[24] Panigrahi, C. & Mall, R., A Heuristic-based Regression Test Case
Prioritization Approach for Object-oriented Programs, Innovations Syst

Softw Eng, 10(3), pp. 155-163, 2014.

[25] Rothermel, G., Untch, R., Chu, C. & Harrold, M., Prioritizing Test Cases
for Regression Testing, IEEE Trans Softw Eng, 27(10), pp. 929-948,

2001.

130 Sudhir Kumar Mohapatra & Srinivas Prasad

[26] Li, Z., Harman, M. & Hierons, R., Search Algorithms for Regression Test

Case Prioritization, IEEE Trans Softw Eng, 33(4), pp. 225-237, 2007.

[27] Jeffrey, D. & Gupta, N., Experiments with Test Case Prioritization using

Relevant Slices, J Syst Softw, 81(2), pp. 196-221, 2008.
[28] Smith, A., Geiger, J., Kapfhammer, G.M. & Soffa, M.L., Test Suite

Reduction and Prioritization with Call Trees, Proceedings of ASE’07,

Atlanta, Georgia, United States, 2007.
[29] Mohapatra, S.K. & Prasad, S., Evolutionary Search Algorithms for Test

Case Prioritization, International Conference on Machine Intelligence

and Research Advancement (ICMIRA), pp. 115-119, 2013.

[30] Rothermel, G., Untch, R., Chu, C. & Harrold, M., Prioritizing Test Cases
for Regression Testing, IEEE Trans Softw Eng, 27(10), pp.929-948,2001

[31] Elbaum, S., Malishevsky, A. & Rothermel, G.,Incorporating Varying

Test Costs and Fault Severities into Test Case Prioritization, Proceedings
of the 23

rd
International Conference on Software Engineering, pp. 329-

338, Ontario, 2001.

