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Abstract. This paper describes the performance of a simple counter based 
entropy coder, as compared to other entropy coders, especially Huffman coder. 
Lossless data compression, such as Huffman coder and arithmetic coder, are 
designed to perform well over a wide range of data entropy. As a result, the 
coders require significant computational resources that could be the bottleneck of 
a compression implementation performance. In contrast, counter-based coders 
are designed to be optimal on a limited entropy range only. This paper shows the 
encoding and decoding process of counter-based coder can be simple and fast, 
very suitable for hardware and software implementations. It also reports that the 
performance of the designed coder is comparable to that of a much more 
complex Huffman coder. 
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1 Introduction 

Compression schemes reduce the number of bits required to represent signals 
and data [1]. Image communication and storage are examples of applications 
that benefit from image compression, because the compression results in (i) 
faster (real–time) image transmission through bandlimited channels and (ii) 
lower requirements for storage space. Noncompressed images require many 
data bits, making it impossible for real–time transmission through bandlimited 
channels—such as 48 kbit per second (kpbs) and 112 kbps integrated services 
digital network (ISDN), as well as 9.6 kbps voice–grade telephone or radio 
channels [1]. For example, transmitting a 256×256 pixels grayscale still–image 
over the voice–grade line would require at least 54.61 s. Furthermore, one 
HDTV format needs 60 frames of 1280×720 pixels per second. Using 24 bpp 
colour pixels, this HDTV format would require an impractical channel capacity 
of 1,440 Mbps. For example, space explorations by National Aeronautics and 
Space Administration (NASA) missions generate huge science data, requiring 
real-time compression [2]. Consequently, international bodies such as 
Committee for Space Data Systems (CCDS) have defined compression 
standards for real-time systems [3]. 
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In signal and data compression cases, lossless compression in forms of entropy 
coders is always needed. As shown in Figure 1, a value quantization block 
converts any input samples into quantized values according to a prescribed 
target of compression ratio (CR) [4]. A lossless entropy encoder compresses 
quantized values to obtain the desired efficient representations (bitstreams). The 
quantized values can be recovered by inverting encoding process at the decoder. 
An entropy decoder recovers the values losslessly. A value dequantization block 
reconstructs the signal samples. 

 

Figure 1 A typical use of lossless coder in an image compression system. 

Since there are fast algorithms for value quantization, such as wavelet scalar 
quantization (WSQ) [5], the entropy coder is usually the time–performance 
bottleneck. Entropy coders such as zero run length (ZRL) coders and Huffman 
coders must perform statistical modeling of data distribution and assign shorter 
length codewords to samples that occur more often. This in effect reduces the 
average of representation bits, thus achieving on average a compression. 

If the codeword table does not have to be transmitted, Huffman code is the 
shortest length code for statistically independent data. However, the Huffman 
coder is designed to obtain optimal performance for all range of entropy values 
[4]. As a result, the encoding cost is high because the coder must create a table 
of codewords for input data through calculation of data distribution.  Such 
processing can be very time consuming. 

This paper then proposes to use counter-based coders [2] because such coders 
are much simpler. Counter based coder consists of a set of subcoders operating 
at specific range of entropy values (statistics). Such subcoders can be designed 
to be optimal only for a narrow range of entropy [2].  Each subcoder is simply a 
counter, counting number of zeros or ones in a data stream.  As a result, the 
encoder and decoder are very simple and fast. 
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However we need to study the performance of counter-based coder in practice 
in the context of transform coding, since the work in [2] was for differential 
pulse code modulation schemes.  Furthermore, Rice coders have always been 
thought to be a special purpose coder, as compare to Huffman coder. We study 
and design of such counter coders to be used in transform coder compression 
scheme. The entropy range of the wavelet coefficients can be used to design a 
particular Rice coder. We can then have a performance comparable to that of 
Huffman coder with a fraction of computational costs [6]. 

2 Entropy Coders 

In principle, an entropy coder is a coder that allocates a number of bits to a 
codeword proportionally to an information value of the codeword [4].  

2.1 First Order Entropy 

Let us assume that input data consist of a sequence of fixed length codewords 
coming from a zero-memory information source (i.e., a source that produces 
statistically independent codewords). The source has an alphabet S  having 

symbols qsss ,,, 21  . For a particular set of input data, the probabilities of 

symbol occurrences are 

  1sP ,  2sP , …,  qsP  (1) 

Satisfying 

   1
1




q

i
isP  (2) 

If a symbol is  rarely occurs (i.e.,  isP  is very small), its occurrence has a high 

suprising value. Hence symbol is  is said to have a high amount of 

information  isI , which is inversely proposional to magnitude of  isP . If a 

symbol is  occurs, we are said to have received an amount of information  isI  

from the source, defined as 

  
 i

i
sP

sI
1

log  (3) 
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Since the probability of receiving an amount of information  isI  is  isP , the 

average amount of information received for each symbol is called the first-order 

entropy of S , denoted as  sH ,  

        
 




q

i i

i

q

i
ii

sP
sPsIsPsH

11

1
log  (4) 

In other word, the source S  produces an average amount of information H for 

each occurrence of a symbol. If we use binary logarithm (i.e.,   isP/1log2 ) 

the information amount unit is in bits. 

To carry this amount of information, the source needs data resources namely 

codewords. Using a code W , each symbol  is  needs a distinct codeword iw . If 

each codeword iw  needs il  bits, then average bits required to transfer 

information from source S  using code W is 

  



q

i
ii lsPR

1

 (5) 

Since we have   ii lsI  , or 

   RsH   (6) 

This means for a zero-memory source, the entropy is the lower bound of 
average bits per symbol. In other words, an entropy coder will have an efficient 
representation of S , i.e, a small R , but will not be smaller than the entropy.  
The minimum length achievable is the data entropy. Thus the performance of an 

entropy coder is in how close the resulting R  to  sH . It should be noted that 

it is possible to have  sHR   if the source happens to have memory. For 

statistically independent data, the entropy is the simply the first–order entropy 
[2]. 

Efficient lossless codes depend on statistical distributions. An entropy coder 
allocates a number of bits proportional to the amount of information. A rarely 
occurring symbol will get more bits. Highly frequent symbols get codewords 
with fewer bits. As a result, we can have an efficient average of bit usages. 
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2.2 Zero Run-Length Coder 

Suppose that we have a source producing many consecutive zero symbols, i.e., 

 1sP  is high for s1 = 0x00. In this case we can use ZRL, which is a very simple 

code.  It simply counts the number of consecutive zeros in an input codeword 
and produces a zero symbol followed by a number representing the counting 
result. 

For example, consider a source that uses an alphabet consisting of fix 8 bits 
codewords, {0x00, 0x01, 0x02, …, 0xFF}. If a ZRL encoder encounters a 
stream of nine input data: 

 (0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x7F) (7) 

it will produce a stream of eight output data 

 (0x02, 0x01, 0x00, 0x04, 0x07, 0x00, 0x01, 0x7F) (8) 

Notice that there are five zeros (0x00) in the input stream, and the first four 
consecutive zeros are replaced by a zero symbol 0x00 and a counting result 
0x04. The last zero is replaced with a zero symbol 0x00 and a counting result 
0x01.  Given the simple coding rule, a ZRL decoder will be able to recover the 
original stream from the encoder output stream easily (uniquely decodable) 
without any data loss. 

However notice also that the number of data have been reduced from nine to 
eight, performing a lossless compression. This compression is effective as long 
as the input stream contains significant number of consecutive zeros. Otherwise, 
ZRL will in fact produce an expansion instead of a compression. 

2.3 Huffman Coder 

The variable-length Huffman coder is a well known and widely used coder 
because its compression ratio performance is close to optimal (i.e., the actual 
compression ratio is very close to the input entropy). In an optimal code, 
occurrences of long codewords are rare hence the number of bits is reduced.  A 
Huffman coder maps the input samples using a table of variable-length 
codewords. The codewords are designed such that the most frequent data 
sample has the shortest codeword. Consequently, the resulting bit rate is always 
within H and H+1, regardless of the input entropy H. 

A Huffman coder maintains statistical distributions of the source. The coder 
uses the distribution to estimate the information value of each symbol. It then 
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creates a codeword for each symbol according to its information value. Finally 
it uses that codeword to represent corresponding symbol from the source. 

Thus the process of a Huffman coder is usually computationally costly because 
it consists of two passes. The first pass reads all data samples to generate 
statistical distribution, to be used to allocate bits to the codewords.  It allocates 
bits variably for codewords according to a hierarchical tree structure of 
symbols, in which the hierarchy reflects the importance of the symbols. The 
first bit is distributed to the symbol with the lowest information values. The 
remaining bits are distributed by traversing through the tree structure in a way 
that symbols with more information value receive more bits, while ensuring that 
the resulting code is always uniquely decodable. The second pass encodes the 
sample data using the resulting codeword table. This two-pass Huffman code 
scheme must then include the codeword table in the bitstream to allow decoder 
to decode data correctly. 

A single-pass Huffman code is even more computationally expensive. To avoid 
having to send the codeword table, both encoder and decoder must maintain an 
adaptive codeword table. They adapt the table as each incoming data sample 
changes symbol distribution. As a result, both encoder and decoder must create 
a new tree structure and the codeword table periodically. 

3 Counter-Based Coders 

We then propose to use the counter coder as an alternative and more 

computationally efficient entropy coder. One basic counter coder called 1  (or 

PSI–1) works as follows [2]. Given a block of data samples (for j = 1, ..., J), 1  

replaces every sample in the block with a number of consecutive zero bits ‘0’ 
followed by a closing one bit ‘1’ (see Table 1). For example, if a sample 

happens to have a value of 55, the 1  encodes it using 56 bits, i.e., 55 zeros 

followed by a one. Hence, the encoding algorithm is simple. The reconstruction 

is obviously simple too. A 1  decoder just counts the number of zero bits until 

a one appears. The counting result is the sample value. 

Define now a function  ji  such that a particular data block consists of symbols 

{ )1(is , )2(is , …, )(Jis }. The total number of bits required to encode a data block 

is (for index j and block size J) 

 



J

j
jixJL

1
)(  (9) 
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Notice that this code basically allocates more codeword bits to data samples 

with higher sample values, i.e., jiji llxx  . This means 1  code is 

optimal if the statistical distribution of data samples is monotonically 

decreasing, i.e.,    jiji sPsPxx  .  The average codeword length of 1  

code is  

  



q

i
i isPR

1

 (10) 

It has been studied elsewhere [3] that this code is optimal for a (monotonically 
decreasing distribution) source with a first-order entropy around 1, i.e., 

5.25.1  H . It should be clear that in a monotonically decreasing 
distribution, the probability of a sample has a large value is low. As a result, the 
probability of long codeword length Eq. (11) is low. Thus it is optimal. We say 

that range is the natural entropy range of 1 . For sources with entropies outside 

that range, there are several variations of 1 . 

Table 1 A codeword table of 1  Code. 

i Symbols is  Samples ix  Sample Data id  Codewords iw  Length il  

1 1s  0 0000 0000 1 1 

2 
2s  1 0000 0001 01 2 

3 3s  2 0000 0010 001 3 

4 4s  3 0000 0011 0001 4 

… … … … … … 

256 256s  255 1111 1111 0000…00001 256 

For example, if 5.2H , it is safe to assume that the LSBs of sample data )( jid  

are completely random. In this case there is no need to perform any 

compression on those LSBs. We can then split )( jid  into two portions: k LSBs 

and (8-k) MSBs. The MSBs are coded using 1 code before being sent to 

bitstream, while the LSBs are sent uncoded. A decoder first recovers the MSBs 

using 1  decoder, and then concatenates the results with the uncoded LSBs, 
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resulting in the desired )( jid . It can be shown that this approach has a natural 

entropy range kHk  5.25.1 . This code is called k,1 . 

For 5.175.0  H  range, we can first use the 1 , resulting in a bitstream 

with many ‘1’ bits. To exploit this, we can cascade it using another simple code. 

The simple code first complements the results of 1  (i.e., converting ‘0’ into 

‘1’ and vice versa), and group the resulting bit into binary 3-tuples. It finally 
codes each binary 3-tuples in a way that a tuple with many ‘0’ bits will use 

short codewords. This code is called 0 .  

For sources with entropy 75.0H , we can cascade the coder with another 
coder, such as ZRL coder described above. A ZRL encoder processes samples, 
and provides its outputs to a counter coder. In effect the ZRL coder brings the 
data entropy into counter code natural range.  

4 Compression Performance 

To observe the performance of this simple counter, we have used a WSQ 
scheme shown in Figure 1 [5]. Here we used an image sample of Lena.pgm, 
having a dimension of 512×512 pixels at 8 bit per pixel (bpp) grayscale, hence a 
size of 2,097,152 bits. The scheme first quantizes the image according to a set 
of prescribed rates 0.1, 0.2, …,0.9, 1, 2, …,6, and 7 bpp.  The resulting data 
becomes input data to a lossless encoder. In addition to the counter code, we 
have used a Huffman coder for a comparison. The lossless encoder produces 
compressed bitstreams. A lossless decoder can then reproduce output data from 
the bitstreams. 

Given a prescribed rate, the value quantization block produces image data and 
then later the coder produces the bistream. We measured the size of the 
bitstream. The compression ratio (CR) is the ratio between the original image 
size (in this case 2,097,152 bits) and the bitstream size. We measured the CR 
for each prescribed rate for counter coder, and measure similar performance of 
Huffman coder for comparisons.  We expect that the resulting CRs should 
approximate the prescribed CR. 

Table 2 and Figure 2 show the results of the coders for various prescribed rates. 
Overall the performance of counter coder is comparable to that of Huffman 
coder. At very low rates Huffman Coder still outperforms counter coder. 
However in most cases both coders perform better than expected rates. 
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We can also measure the entropy the image data for each prescribed rate, and 
compare the CR performances relative over that of the entropy. As shown in 
Figure 2, for high prescribed CR (thus low entropy), both counter coder and 
Huffman coder are able to outperform the entropy. For high entropy (low 
prescribed CR), the counter coder outperforms the Huffman coder. The counter 
coder performance is comparable to entropy, while Huffman coder 
underperforms the entropy. 

Table 2 A comparison of compression ratio (CR) performance. 

Prescribed CR Performance 
Relative Performance Over 

Entropy 

Rate (bpp) CR Entropy Huffman Counter Huffman Counter 

0.1 80.00 44.44 53.33 50.00 120% 113% 

0.2 40.00 27.59 32.00 29.63 116% 107% 

0.3 26.67 21.05 24.24 22.86 115% 109% 

0.4 20.00 16.67 20.00 18.18 120% 109% 

0.5 16.00 14.81 17.78 16.33 120% 110% 

0.6 13.33 13.33 15.69 14.55 118% 109% 

0.7 11.43 11.94 13.79 12.70 116% 106% 

0.8 10.00 10.96 12.50 11.59 114% 106% 

0.9 8.89 10.13 11.43 10.67 113% 105% 

1 8.00 9.30 10.39 9.76 112% 105% 

2 4.00 4.97 4.79 4.85 96% 98% 

3 2.67 3.16 2.92 3.11 92% 98% 

4 2.00 2.30 2.16 2.32 94% 101% 

5 1.60 1.79 1.75 1.82 98% 101% 

6 1.33 1.47 1.44 1.47 98% 100% 

7 1.14 1.24 1.21 1.22 98% 98% 

What is the image quality associated with the CR performance level? For each 
prescribed rate the scheme can produce a bitstream. The decoder scans then use 
the bitstream to produce a reconstructed image. We then compare the quality of 
the reconstructed image, as compared to the original image. One way to 
measure image quality is through a measurement of peak signal to noise ratio 
(PSNR). This measure compares the two images, and calculates the energy of 
image differences. PSNR is then the ratio of peak-value energy and that of the 
image energy. A PSNR level of 30 dB or more is considered good quality. 
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Figure 2 Compression Ratio (CR) performances of counter code as compared 
to Huffman coder, relative to data entropy. 

Table 3 and Figure 3 show compression performances of the coders at various 
levels of image quality, after being combined with the WSQ scheme shown in 
Figure 1. The WSQ decoder uses the image data from the bitstream to generate 
a reconstructed image.  We can then compare the reconstructed image with the 
original one, and the measure its quality in terms of PSNR. Here, counter coder 
outperforms Huffman coder for high quality compression. Huffman coder 
outperformed counter coder at lower image quality levels, although both 
outperform the entropy. Beyond 37 dB PSNR, the CRs of the coders are 
basically similar. 

Table 3 Compression ratio performance over compression quality. 

Quality PSNR (dB) CR Entropy Coder CR Huffman Coder CR Counter Coder 

28.06 44.4 53.33 50.00 

31.56 27.6 32.00 29.63 

34.14 16.7 20.00 18.18 

36.42 11.0 12.50 11.59 

37.24 9.3 10.39 9.76 

40.95 5.0 4.79 4.85 

49.67 2.3 2.16 2.32 

51.14 1.5 1.44 1.47 
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Figure 3 Compression ratio performances in a scalar quantization scheme. 

5 Conclusions 

Simple counter coders can be used effectively to compress images in a WSQ 
scheme. The counter coders are optimal for monotonically decreasing 
distributions. This kind of distribution is natural for indices of the WSQ. In this 
paper we have shown the counter coder performance, especially CR and PSNR, 
matches that of Huffman coder. This results in an almost optimal performance 
comparable to Huffman coding with a fraction of code complexity. 
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