

ITB J. ICT, Vol. 5, No. 3, 2011, 173-184 173

Received December 22nd, 2010, Revised November 17th, 2011, Accepted for publication November 17th, 2011.
Copyright © 2011 Published by LPPM ITB, ISSN: 1978-3086, DOI: 10.5614/itbj.ict.2011.5.3.2

Lossless Compression Performance of a Simple Counter-
Based Entropy Coder

Armein Z. R. Langi 1,2

1ITB Research Center on Information and Communication Technology
2Information Technology RG, School of Electrical Engineering and Informatics

Institut Teknologi Bandung, Jalan Ganeca 10, Bandung, 40116, Indonesia
Email: armein.z.r.langi@stei.itb.ac.id

Abstract. This paper describes the performance of a simple counter based
entropy coder, as compared to other entropy coders, especially Huffman coder.
Lossless data compression, such as Huffman coder and arithmetic coder, are
designed to perform well over a wide range of data entropy. As a result, the
coders require significant computational resources that could be the bottleneck of
a compression implementation performance. In contrast, counter-based coders
are designed to be optimal on a limited entropy range only. This paper shows the
encoding and decoding process of counter-based coder can be simple and fast,
very suitable for hardware and software implementations. It also reports that the
performance of the designed coder is comparable to that of a much more
complex Huffman coder.

Keywords: entropy coder; counter-based coder; lossless compression; Rice coders.

1 Introduction

Compression schemes reduce the number of bits required to represent signals
and data [1]. Image communication and storage are examples of applications
that benefit from image compression, because the compression results in (i)
faster (real–time) image transmission through bandlimited channels and (ii)
lower requirements for storage space. Noncompressed images require many
data bits, making it impossible for real–time transmission through bandlimited
channels—such as 48 kbit per second (kpbs) and 112 kbps integrated services
digital network (ISDN), as well as 9.6 kbps voice–grade telephone or radio
channels [1]. For example, transmitting a 256×256 pixels grayscale still–image
over the voice–grade line would require at least 54.61 s. Furthermore, one
HDTV format needs 60 frames of 1280×720 pixels per second. Using 24 bpp
colour pixels, this HDTV format would require an impractical channel capacity
of 1,440 Mbps. For example, space explorations by National Aeronautics and
Space Administration (NASA) missions generate huge science data, requiring
real-time compression [2]. Consequently, international bodies such as
Committee for Space Data Systems (CCDS) have defined compression
standards for real-time systems [3].

Armein Z.R. Langi 174

In signal and data compression cases, lossless compression in forms of entropy
coders is always needed. As shown in Figure 1, a value quantization block
converts any input samples into quantized values according to a prescribed
target of compression ratio (CR) [4]. A lossless entropy encoder compresses
quantized values to obtain the desired efficient representations (bitstreams). The
quantized values can be recovered by inverting encoding process at the decoder.
An entropy decoder recovers the values losslessly. A value dequantization block
reconstructs the signal samples.

Figure 1 A typical use of lossless coder in an image compression system.

Since there are fast algorithms for value quantization, such as wavelet scalar
quantization (WSQ) [5], the entropy coder is usually the time–performance
bottleneck. Entropy coders such as zero run length (ZRL) coders and Huffman
coders must perform statistical modeling of data distribution and assign shorter
length codewords to samples that occur more often. This in effect reduces the
average of representation bits, thus achieving on average a compression.

If the codeword table does not have to be transmitted, Huffman code is the
shortest length code for statistically independent data. However, the Huffman
coder is designed to obtain optimal performance for all range of entropy values
[4]. As a result, the encoding cost is high because the coder must create a table
of codewords for input data through calculation of data distribution. Such
processing can be very time consuming.

This paper then proposes to use counter-based coders [2] because such coders
are much simpler. Counter based coder consists of a set of subcoders operating
at specific range of entropy values (statistics). Such subcoders can be designed
to be optimal only for a narrow range of entropy [2]. Each subcoder is simply a
counter, counting number of zeros or ones in a data stream. As a result, the
encoder and decoder are very simple and fast.

Value
Quantization

Input
Samples

Lossless
Encoder

Lossless
Decoder

Input
Data

Bitstream

Output
Data

Value De-
quantization

Output
Samples

Target CR

Lossless Compression Performance of Counter Based Coder 175

However we need to study the performance of counter-based coder in practice
in the context of transform coding, since the work in [2] was for differential
pulse code modulation schemes. Furthermore, Rice coders have always been
thought to be a special purpose coder, as compare to Huffman coder. We study
and design of such counter coders to be used in transform coder compression
scheme. The entropy range of the wavelet coefficients can be used to design a
particular Rice coder. We can then have a performance comparable to that of
Huffman coder with a fraction of computational costs [6].

2 Entropy Coders

In principle, an entropy coder is a coder that allocates a number of bits to a
codeword proportionally to an information value of the codeword [4].

2.1 First Order Entropy

Let us assume that input data consist of a sequence of fixed length codewords
coming from a zero-memory information source (i.e., a source that produces
statistically independent codewords). The source has an alphabet S having

symbols qsss ,,, 21  . For a particular set of input data, the probabilities of

symbol occurrences are

  1sP ,  2sP , …,  qsP (1)

Satisfying

   1
1




q

i
isP (2)

If a symbol is rarely occurs (i.e.,  isP is very small), its occurrence has a high

suprising value. Hence symbol is is said to have a high amount of

information  isI , which is inversely proposional to magnitude of  isP . If a

symbol is occurs, we are said to have received an amount of information  isI

from the source, defined as

  
 i

i
sP

sI
1

log (3)

Armein Z.R. Langi 176

Since the probability of receiving an amount of information  isI is  isP , the

average amount of information received for each symbol is called the first-order

entropy of S , denoted as  sH ,

        
 




q

i i

i

q

i
ii

sP
sPsIsPsH

11

1
log (4)

In other word, the source S produces an average amount of information H for

each occurrence of a symbol. If we use binary logarithm (i.e.,   isP/1log2)

the information amount unit is in bits.

To carry this amount of information, the source needs data resources namely

codewords. Using a code W , each symbol is needs a distinct codeword iw . If

each codeword iw needs il bits, then average bits required to transfer

information from source S using code W is

  



q

i
ii lsPR

1

 (5)

Since we have   ii lsI  , or

   RsH  (6)

This means for a zero-memory source, the entropy is the lower bound of
average bits per symbol. In other words, an entropy coder will have an efficient
representation of S , i.e, a small R , but will not be smaller than the entropy.
The minimum length achievable is the data entropy. Thus the performance of an

entropy coder is in how close the resulting R to  sH . It should be noted that

it is possible to have  sHR  if the source happens to have memory. For

statistically independent data, the entropy is the simply the first–order entropy
[2].

Efficient lossless codes depend on statistical distributions. An entropy coder
allocates a number of bits proportional to the amount of information. A rarely
occurring symbol will get more bits. Highly frequent symbols get codewords
with fewer bits. As a result, we can have an efficient average of bit usages.

Lossless Compression Performance of Counter Based Coder 177

2.2 Zero Run-Length Coder

Suppose that we have a source producing many consecutive zero symbols, i.e.,

 1sP is high for s1 = 0x00. In this case we can use ZRL, which is a very simple

code. It simply counts the number of consecutive zeros in an input codeword
and produces a zero symbol followed by a number representing the counting
result.

For example, consider a source that uses an alphabet consisting of fix 8 bits
codewords, {0x00, 0x01, 0x02, …, 0xFF}. If a ZRL encoder encounters a
stream of nine input data:

 (0x02, 0x01, 0x00, 0x00, 0x00, 0x00, 0x07, 0x00, 0x7F) (7)

it will produce a stream of eight output data

 (0x02, 0x01, 0x00, 0x04, 0x07, 0x00, 0x01, 0x7F) (8)

Notice that there are five zeros (0x00) in the input stream, and the first four
consecutive zeros are replaced by a zero symbol 0x00 and a counting result
0x04. The last zero is replaced with a zero symbol 0x00 and a counting result
0x01. Given the simple coding rule, a ZRL decoder will be able to recover the
original stream from the encoder output stream easily (uniquely decodable)
without any data loss.

However notice also that the number of data have been reduced from nine to
eight, performing a lossless compression. This compression is effective as long
as the input stream contains significant number of consecutive zeros. Otherwise,
ZRL will in fact produce an expansion instead of a compression.

2.3 Huffman Coder

The variable-length Huffman coder is a well known and widely used coder
because its compression ratio performance is close to optimal (i.e., the actual
compression ratio is very close to the input entropy). In an optimal code,
occurrences of long codewords are rare hence the number of bits is reduced. A
Huffman coder maps the input samples using a table of variable-length
codewords. The codewords are designed such that the most frequent data
sample has the shortest codeword. Consequently, the resulting bit rate is always
within H and H+1, regardless of the input entropy H.

A Huffman coder maintains statistical distributions of the source. The coder
uses the distribution to estimate the information value of each symbol. It then

Armein Z.R. Langi 178

creates a codeword for each symbol according to its information value. Finally
it uses that codeword to represent corresponding symbol from the source.

Thus the process of a Huffman coder is usually computationally costly because
it consists of two passes. The first pass reads all data samples to generate
statistical distribution, to be used to allocate bits to the codewords. It allocates
bits variably for codewords according to a hierarchical tree structure of
symbols, in which the hierarchy reflects the importance of the symbols. The
first bit is distributed to the symbol with the lowest information values. The
remaining bits are distributed by traversing through the tree structure in a way
that symbols with more information value receive more bits, while ensuring that
the resulting code is always uniquely decodable. The second pass encodes the
sample data using the resulting codeword table. This two-pass Huffman code
scheme must then include the codeword table in the bitstream to allow decoder
to decode data correctly.

A single-pass Huffman code is even more computationally expensive. To avoid
having to send the codeword table, both encoder and decoder must maintain an
adaptive codeword table. They adapt the table as each incoming data sample
changes symbol distribution. As a result, both encoder and decoder must create
a new tree structure and the codeword table periodically.

3 Counter-Based Coders

We then propose to use the counter coder as an alternative and more

computationally efficient entropy coder. One basic counter coder called 1 (or

PSI–1) works as follows [2]. Given a block of data samples (for j = 1, ..., J), 1

replaces every sample in the block with a number of consecutive zero bits ‘0’
followed by a closing one bit ‘1’ (see Table 1). For example, if a sample

happens to have a value of 55, the 1 encodes it using 56 bits, i.e., 55 zeros

followed by a one. Hence, the encoding algorithm is simple. The reconstruction

is obviously simple too. A 1 decoder just counts the number of zero bits until

a one appears. The counting result is the sample value.

Define now a function  ji such that a particular data block consists of symbols

{)1(is ,)2(is , …,)(Jis }. The total number of bits required to encode a data block

is (for index j and block size J)

 



J

j
jixJL

1
)((9)

Lossless Compression Performance of Counter Based Coder 179

Notice that this code basically allocates more codeword bits to data samples

with higher sample values, i.e., jiji llxx  . This means 1 code is

optimal if the statistical distribution of data samples is monotonically

decreasing, i.e.,    jiji sPsPxx  . The average codeword length of 1

code is

  



q

i
i isPR

1

 (10)

It has been studied elsewhere [3] that this code is optimal for a (monotonically
decreasing distribution) source with a first-order entropy around 1, i.e.,

5.25.1  H . It should be clear that in a monotonically decreasing
distribution, the probability of a sample has a large value is low. As a result, the
probability of long codeword length Eq. (11) is low. Thus it is optimal. We say

that range is the natural entropy range of 1 . For sources with entropies outside

that range, there are several variations of 1 .

Table 1 A codeword table of 1 Code.

i Symbols is Samples ix Sample Data id Codewords iw Length il

1 1s 0 0000 0000 1 1

2
2s 1 0000 0001 01 2

3 3s 2 0000 0010 001 3

4 4s 3 0000 0011 0001 4

… … … … … …

256 256s 255 1111 1111 0000…00001 256

For example, if 5.2H , it is safe to assume that the LSBs of sample data)(jid

are completely random. In this case there is no need to perform any

compression on those LSBs. We can then split)(jid into two portions: k LSBs

and (8-k) MSBs. The MSBs are coded using 1 code before being sent to

bitstream, while the LSBs are sent uncoded. A decoder first recovers the MSBs

using 1 decoder, and then concatenates the results with the uncoded LSBs,

Armein Z.R. Langi 180

resulting in the desired)(jid . It can be shown that this approach has a natural

entropy range kHk  5.25.1 . This code is called k,1 .

For 5.175.0  H range, we can first use the 1 , resulting in a bitstream

with many ‘1’ bits. To exploit this, we can cascade it using another simple code.

The simple code first complements the results of 1 (i.e., converting ‘0’ into

‘1’ and vice versa), and group the resulting bit into binary 3-tuples. It finally
codes each binary 3-tuples in a way that a tuple with many ‘0’ bits will use

short codewords. This code is called 0 .

For sources with entropy 75.0H , we can cascade the coder with another
coder, such as ZRL coder described above. A ZRL encoder processes samples,
and provides its outputs to a counter coder. In effect the ZRL coder brings the
data entropy into counter code natural range.

4 Compression Performance

To observe the performance of this simple counter, we have used a WSQ
scheme shown in Figure 1 [5]. Here we used an image sample of Lena.pgm,
having a dimension of 512×512 pixels at 8 bit per pixel (bpp) grayscale, hence a
size of 2,097,152 bits. The scheme first quantizes the image according to a set
of prescribed rates 0.1, 0.2, …,0.9, 1, 2, …,6, and 7 bpp. The resulting data
becomes input data to a lossless encoder. In addition to the counter code, we
have used a Huffman coder for a comparison. The lossless encoder produces
compressed bitstreams. A lossless decoder can then reproduce output data from
the bitstreams.

Given a prescribed rate, the value quantization block produces image data and
then later the coder produces the bistream. We measured the size of the
bitstream. The compression ratio (CR) is the ratio between the original image
size (in this case 2,097,152 bits) and the bitstream size. We measured the CR
for each prescribed rate for counter coder, and measure similar performance of
Huffman coder for comparisons. We expect that the resulting CRs should
approximate the prescribed CR.

Table 2 and Figure 2 show the results of the coders for various prescribed rates.
Overall the performance of counter coder is comparable to that of Huffman
coder. At very low rates Huffman Coder still outperforms counter coder.
However in most cases both coders perform better than expected rates.

Lossless Compression Performance of Counter Based Coder 181

We can also measure the entropy the image data for each prescribed rate, and
compare the CR performances relative over that of the entropy. As shown in
Figure 2, for high prescribed CR (thus low entropy), both counter coder and
Huffman coder are able to outperform the entropy. For high entropy (low
prescribed CR), the counter coder outperforms the Huffman coder. The counter
coder performance is comparable to entropy, while Huffman coder
underperforms the entropy.

Table 2 A comparison of compression ratio (CR) performance.

Prescribed CR Performance
Relative Performance Over

Entropy

Rate (bpp) CR Entropy Huffman Counter Huffman Counter

0.1 80.00 44.44 53.33 50.00 120% 113%

0.2 40.00 27.59 32.00 29.63 116% 107%

0.3 26.67 21.05 24.24 22.86 115% 109%

0.4 20.00 16.67 20.00 18.18 120% 109%

0.5 16.00 14.81 17.78 16.33 120% 110%

0.6 13.33 13.33 15.69 14.55 118% 109%

0.7 11.43 11.94 13.79 12.70 116% 106%

0.8 10.00 10.96 12.50 11.59 114% 106%

0.9 8.89 10.13 11.43 10.67 113% 105%

1 8.00 9.30 10.39 9.76 112% 105%

2 4.00 4.97 4.79 4.85 96% 98%

3 2.67 3.16 2.92 3.11 92% 98%

4 2.00 2.30 2.16 2.32 94% 101%

5 1.60 1.79 1.75 1.82 98% 101%

6 1.33 1.47 1.44 1.47 98% 100%

7 1.14 1.24 1.21 1.22 98% 98%

What is the image quality associated with the CR performance level? For each
prescribed rate the scheme can produce a bitstream. The decoder scans then use
the bitstream to produce a reconstructed image. We then compare the quality of
the reconstructed image, as compared to the original image. One way to
measure image quality is through a measurement of peak signal to noise ratio
(PSNR). This measure compares the two images, and calculates the energy of
image differences. PSNR is then the ratio of peak-value energy and that of the
image energy. A PSNR level of 30 dB or more is considered good quality.

Armein Z.R. Langi 182

0%

20%

40%

60%

80%

100%

120%

140%

0
.0

6

0
.1

2

0
.2

0

0
.3

0

0
.4

3

0
.6

0

0
.9

0

0
.9

5

1
.0

0

1
.0

6

1
.1

2

1
.2

0

1
.3

0

1
.4

3

1
.6

0

1
.9

0

C
R

 P
e

rf
o

rm
an

ce
 R

e
la

ti
ve

 t
o

 E
n

tr
o

p
y

Prescribed CR (In A Logarithmic Scale)

Huffman

Counter

Figure 2 Compression Ratio (CR) performances of counter code as compared
to Huffman coder, relative to data entropy.

Table 3 and Figure 3 show compression performances of the coders at various
levels of image quality, after being combined with the WSQ scheme shown in
Figure 1. The WSQ decoder uses the image data from the bitstream to generate
a reconstructed image. We can then compare the reconstructed image with the
original one, and the measure its quality in terms of PSNR. Here, counter coder
outperforms Huffman coder for high quality compression. Huffman coder
outperformed counter coder at lower image quality levels, although both
outperform the entropy. Beyond 37 dB PSNR, the CRs of the coders are
basically similar.

Table 3 Compression ratio performance over compression quality.

Quality PSNR (dB) CR Entropy Coder CR Huffman Coder CR Counter Coder

28.06 44.4 53.33 50.00

31.56 27.6 32.00 29.63

34.14 16.7 20.00 18.18

36.42 11.0 12.50 11.59

37.24 9.3 10.39 9.76

40.95 5.0 4.79 4.85

49.67 2.3 2.16 2.32

51.14 1.5 1.44 1.47

Lossless Compression Performance of Counter Based Coder 183

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

28.1 31.6 34.1 36.4 37.2 40.5 49.7 51.1

C
R

 (i
n

 a
 L

o
ga

ri
th

m
ic

 S
ca

le
)

PSNR (dB)

Entropy

Huffman

Counter

Figure 3 Compression ratio performances in a scalar quantization scheme.

5 Conclusions

Simple counter coders can be used effectively to compress images in a WSQ
scheme. The counter coders are optimal for monotonically decreasing
distributions. This kind of distribution is natural for indices of the WSQ. In this
paper we have shown the counter coder performance, especially CR and PSNR,
matches that of Huffman coder. This results in an almost optimal performance
comparable to Huffman coding with a fraction of code complexity.

Acknowledgements

This work was supported in part by Riset Unggulan (RU) ITB.

Nomenclature

CR = Compression ratio
dB = Decibel
SNR = Signal to noise ratio

PSNR = Peak SNR

References

[1] Jayant, N., Signal Compression: Technology Targets and Research
Directions, IEEE J. Selected Areas Communications, IEEE 0733-
8716/92, 10(5), pp. 796-818, July 1992.

Armein Z.R. Langi 184

[2] Rice, R.F., Some Practical Universal Noiseless Coding Coding
Techniques, Part III, Module PSI–14,K+, JPL Publication 91–3, NASA,
JPL California Institute of Technology, 124p, November 1991.

[3] CCSDS, Image Data Compression, Recommended Standard CCSDS
122.0-B-1, Consultative Committee for Space Data Systems, Nov, 2005.
(available at http://public.ccsds.org, accessed 4 March 2011)

[4] Langi, A., Review of Data Compression Methods and Algorithms,
Technical Report, DSP-RTG–2010–9, Institut Teknologi Bandung, Sep.
2010.

[5] Bradley, J.N. & Brislawn, C.N., The Wavelet/Scalar Quantization
Compression Standard for Digital Fingerprint Images, Proc. IEEE Int.
Symp. Circuits and Systems, London, May 3–June 2, 1994.

[6] Langi, A.Z.R., An FPGA Implementation of a Simple Lossless Data
Compression Coprocessor, Proc. International Conference on Electrical
Engineering and Informatics (ICEEI 2011), Bandung, July 2011.

http://public.ccsds.org/

	1 Introduction

	2 Entropy Coders

	2.1 First Order Entropy

	2.2 Zero Run-Length Coder

	2.3 Huffman Coder

	3 Counter-Based Coders

	4 Compression Performance

	5 Conclusions

