

108 J. ICT Res. Appl., Vol. 18, No. 2, 2024, 108-129

Received January 19th, 2024, Revised June 27th, 2024., Accepted for publication August 17th, 2024.
Copyright © 2024 Published by IRCS-ITB, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2023.18.2.3

LoVi App: Android Application-based Image

Classification for Low Vision

Mitra Sofiyati, Fandi Azam Wiranata, Wervyan Shalanannda*, Eueung Mulyana,

Isa Anshori & Ardianto Satriawan

School of Electrical Engineering and Informatics, Institut Teknologi Bandung,

Jalan Ganesa No. 10, Bandung 40132, Indonesia

*E-mail: wervyan@telecom.stei.itb.ac.id

Abstract. In Indonesia, many people with visual impairments are drawing public

attention to their rights as fellow humans. One of the limitations that individuals

with low vision face is their ability to recognize objects and navigate their

surroundings due to difficulties in visual perception. In this modern era, deep

learning technologies, especially in image classification, can help people with low

vision overcome these challenges. In this paper, we discuss a deep learning system

that optimizes image classification on users' smartphones to enhance visual

support for individuals with low vision. We present an Android-based app, LoVi,

designed to assist users with low vision. Powered by core systems within Sherpa

models (TrotoarNet, IndoorNet, and CurrencyNet), LoVi has three modes:

outdoor, indoor, and currency. The LoVi application provides over 80% accuracy

for navigation on sidewalks, indoor object recognition, and currency

identification. TrotoarNet aids in sidewalk navigation, IndoorNet assists with

indoor object identification, and CurrencyNet recognizes Rupiah banknotes.

Additionally, low-vision users can receive voice feedback for further accessibility.

Keywords: convolutional neural network; deep learning; image classification; low

vision; smartphone.

1 Introduction

As defined by the Ministry of Health of Indonesia, visually impaired people are

those with partial vision impairments that cannot be fixed by ordinary means such

as glasses. Low vision refers to individuals with partial vision impairments as

members of the visually impaired, or diffable netra (DN). According to estimates,

1.5% of Indonesians are blind [1]. Further, a study conducted by the Vision Loss

Expert Group found that Indonesia has the highest percentage of people with

vision impairment of any country in the world [2]. It has been reported that 20%

of all Indonesians with disabilities in the categories of ‘very poor’, ‘poor’, and

‘almost poor’ were blind, according to data from the Center for the Study of

Disabilities, University of Indonesia (2010) [3]. The limitations caused by

disabilities are possessed by people at the lower middle economic level.

 LoVi App: Android Application-based Image Classification 109

Therefore, visually impaired people lack access to special tools to facilitate their

daily lives. In the 2003 Indonesian census, 24.45% of disabilities were found in

children and adolescents aged 0-18 and 21.4% in school-age children [4].

There are several smart sticks available to assist DNs, including WeWalk [5] and

BriCane [6]. Both WeWalk and BriCane use ultrasonic sensors to detect obstacles

within a 3 meter detection radius. Although this is effective for near-distance

sensing, they cannot be used by DNs to navigate and perform remote sensing (>3

m) on roads. The lack of tools to recognize the objects around them also reduces

the level of independence of DNs. Students, teachers, and professional musicians

are some examples of DN productive activities that require high levels of

independence. Because of limited support and facilities from their families or

communities, DNs in Indonesia still cannot engage in these activities. Compared

to similar products from abroad, BriCane is relatively inexpensive. For BriCane,

the price ranges from IDR 2 to 3 million, while for imported canes like WeWalk

the price is double that [6]. For people in a lower middle economic level society,

IDR 2 to 3 million is not an insignificant amount. Based on data from the Ministry

of Health’s Research and Development Agency, disability and blindness

prevalence are higher in the lower-income index [7, 8].

On the other hand, the mobile phone is almost a ‘primary’ need for everyone,

including people with low vision. Deep learning and mobile phone technology

may be combined to develop an assistance system for low-vision patients.

According to a survey conducted by a non-profit organization [9], 71.4% of

visually impaired respondents use smartphones. Moreover, the survey suggests

that assistive devices are primarily developed on smartphones but still require

sensors and embedded systems, which are more costly. Table 1 shows some

systems that facilitate DN from previous studies. These systems serve several

purposes, such as navigation and environmental recognition.

Based on the YOLO3 model, Lee et al. [10] developed an assistant system for the

visually impaired. Object recognition accuracy was 96.46%, Korean text

detection accuracy was 98%, and face detection accuracy was 72.6%. However,

each subtask is performed independently. In [11], Nguyen et al. used a web-based

system to detect objects with sound feedback for low vision. With SSD-

MobileNetV2, the system gets a fast, small, and specific model optimized for

mobile implementation. The model’s confidence score decreased as the number

of detected objects increased. Won et al. [12] developed a transfer learning-based

object detection system that uses Faster Region-Convolutional Neural Network

Inception V2 (Faster R-CNN) and Single Shot Detector MobileNetV1. In the

analysis, the R-CNN model produced better results for mAP but took longer to

infer than SSD according to the results.

110 Mitra Sofiyati, et al.

Table 1 Previous work of assistant system for visually impaired people.

Category Technology Accuracy Reference

Object detection, text

detection, face detection
YOLO3

96.46%; 98%;

72.6%
[10]

Object detection (people,

cars, dogs)
SSD-MobileNetV2 >90% [13]

Object detection (40

objects)

SSD-MobileNetV1,

Faster R-CNN Inception

V2

89.61% [14]

Object detection

(technology, text, person,

plant, color)

CNN 91.5% [15]

Object recognition

(outdoor objects)

ResNet50, Inception V3,

VGG19

94.78%;

96.39%;

90.88%

[16]

Object detection YOLO 85.5% [17]

Obstacle detection Adaboost 84.7% [18]

Obstacle detection,

navigation

Sensor, RFID, GPS

(NavCane)
– [19]

Navigation: crosswalk

detection
YOLOv4, RGB Camera 93.46% [20]

Navigation system NFC, RFID, iBeacon – [21]

Reference [15] shows that CNN can be used indoors and outdoors to classify

objects with high precision. Reference [16] only used CNN to detect outdoor

objects. Inception V3, ResNet50, and VGG19 were the CNN models used to

build the system. The accuracy of ResNet50 was 94.78%, that of Inception V3

was 96.39%, and that of VGG19 was 90.88%. Many pre-trained models are

available for object detection and classification, including MobileNet, VGG,

ResNet, Inception, and YOLO. A pre-trained model may perform differently in

terms of accuracy, latency, size, etc. Model architecture parameters, such as

Adam, RMSprop, and SGD [16], also affect accuracy. According to [22],

YOLACT image classification library provides a higher confidence level than

TensorFlow but with a large delay.

In addition to object detection, deep learning can also be used to develop a

navigation system for low vision. Developers can explore deep learning,

particularly object detection, to warn of obstacles while navigating [19, 23] and

it can be used for navigation as well. Reference [20] detects crosswalks and

recognizes traffic lights to create a navigation system for the visually impaired.

A navigation system called TARSIUS [21] also provides code information via

vibration, sounds and vocal instructions like ‘turn right’. Reference [24] used the

same concept to develop an assistive cane with three ultrasonic sensors.

We aimed to increase DN’s independence by developing the LoVi application, a

smart assistant for low vision (LoVi), utilizing deep convolutional neural

networks. Sherpa refers to Tibetans who act as climbing guides in the Himalayas

 LoVi App: Android Application-based Image Classification 111

[25]. Based on the same spirit, the LoVi application aims to be a reliable guide

for DNs or LoVi because it is embedded with advanced technologies from the

present era of machine learning (ML).

2 LoVi Application Design

This paper presents the LoVi image classification application for Android. Using

Android and artificial intelligence technology, LoVi was designed to help people

with low vision perform daily tasks. Figure 1 illustrates its two subsystems: the

LoVi mobile interface and the Sherpa model based on LoVi deep convolutional

neural networks. LoVi displays three modes: outdoor, indoor, and currency. In

addition, the Sherpa model needs to be capable of classifying images based on

the mode selected in the application. Using TrotoarNet for outdoor use,

IndoorNet for indoor use, and CurrencyNet for currency use, smartphones can

run LoVi applications with lower power consumption. LoVi displays the three

modes it offers users when they open it for the first time. The LoVi app’s first

interface guides the user through the process of classifying images (videos split

into frames) detected by the smartphone. Based on the selected mode and real-

time, the Sherpa model will then generate predictions based on the accuracy

values and categories. Sound is used to communicate prediction results that meet

a minimum accuracy threshold. In the event the prediction accuracy exceeds the

threshold, a sound that mentions the category with the highest accuracy is played.

Then, if the user presses the back or exit button, the LoVi application is

terminated.

2.1 User Interface of Lovi App

Figure 2 illustrates the LoVi application user interface. The first interface displays

the LoVi application logo. The second interface displays three buttons based on

the user’s mode option. It appears for a few seconds and switches to the second

interface when the application is opened. For mode selection, the application

activates the guidance voice. The application will switch to the next activity after

pressing the mode button. This activity uses the smartphone camera to capture

real-time frames that the Sherpa model uses as input for inference. The secondary

window (right side) reflects only the top three accuracies of the categories. If the

category with the highest accuracy meets the threshold, the feedback sound will

be activated. The TrotoarNet, IndoorNet, and CurrencyNet models were first

evaluated with the same threshold value. As a result of observing the trial, we

discovered that the results tended to fall into a particular category. Thus, the

thresholds were adjusted accordingly.

112 Mitra Sofiyati, et al.

Figure 1 Flowchart of LoVi app.

Figure 2 User interface of LoVi app.

2.2 Preprocessing Dataset

The dataset was preprocessed into 224 x 224 dimensions and divided into 60%

training, 30% validation, and 10% testing data. Tests were performed on the pre-

trained Sherpa model to establish a baseline model for testing the NN-

 ar

 od

 o

 dan o

 o od

 od o door n r n
 a ra n ro oar od

 r d on r d p a

 od ndoor n r n
 a ra n ndoor od

 r d on r d p a

 od rr n n r n
 a ra n rr n od

 r d on r d p a

 a ra r o d

 nd

 r

 r na

 nd

 r

 LoVi App: Android Application-based Image Classification 113

Architecture. The NN-Architecture Sherpa model and pre-trained model testing

process are shown in Figure 3.

Figure 3 The flow of testing the Sherpa model along with the dataset distribution

scheme, from training and testing to the final architecture.

In LoVi, the final architecture of the Sherpa model was derived from these test

types. Table 2 shows variations in testing the pre-trained and Sherpa models,

including test accuracy, number of parameters, latency, frames per second (FPS),

and model size. The only parameters that were used to measure the NN-

Architecture were accuracy and size. Table 3 shows a list of labels for each model

and the average accuracy of the testing dataset.

Table 2 Variations in testing pre-trained models and NN-architecture.

Testing Parameter Variation

Pre-trained

model
-

EfficientNet, DenseNet 169, Inception-Resnet

version 2, Inception version 3, MobileNet small,

ResNet 50 version 1, ResNet 101 version 1,

ResNet 152 version 1, VGG 16, VGG 19, dan

Xception

NN-

Architecture

Unit size 16, 32, 64, 128, 256, 512, 1024, 2048

Activation

function
hard_sigmoid, softsign, softmax, sigmoid, ReLU

Learning-

rate
0.00001, 0.0001, 0.001, 0.01, 0.1

Optimizer
SGD, RMSprop, Adam, Adadelta, Adagrad,

Adamax, Nadam

Loss

function

mean_squared_error, mean_absolute_error,

mean_absolute_percentage_error,

mean_squared_logarithmic_error,

kullback_leibler_divergence, cosine_proximity,

squared_hinge, hinge, categorical_hinge, logcosh,

categorical_crossentropy, binary_crossentropy,

poisson

114 Mitra Sofiyati, et al.

Table 3 Details of the deep learning model on Sherpa.

ModelID Function Label Dataset

IndoorNet

Helping LoVis to

navigate outdoors,

especially on

sidewalks

bottle, fruit, glass, scissors,

keyboard, chair, laptop, table,

monitor, mouse, person,

toothpaste, plate, knife, mobile

phone, spoon, toothbrush, bag,

and unrecognizable object

1972

images

TrotoarNet

Helping LoVis to

identify objects in the

room, such as bottles,

smartphones, plates,

etc.

turn right, turn left, stop, and

straight

9136

images

CurrencyNet

Helping LoVis to

classify rupiah

currency (paper type)

according to its

nominal value

IDR 1.000, IDR 2.000, IDR

5.000, IDR 10.000, IDR 20.000,

IDR 50.000, IDR 100.000, and

unrecognizable object

1842

images

A total of five variables were tested in the NN-Architecture test: units, unit size,

activation function, learning rate, optimizer, and loss function. The pre-trained

model and the NN-Architecture models were tested on all ModelIDs (TrotoarNet,

IndoorNet, and CurrencyNet). In order to create the Sherpa model, 150x training

and 150x testing were required. The training-to-testing process was built into the

same program to train and test Sherpa models, import libraries, and then read

preprocessed datasets for training and validation. This dataset was inserted into

the training process. A deep convolutional neural network (CNN) model

architecture was created before training began, and a fully connected layer was

added before the output layer. As a result of completing the training process, the

program saved the model in *.h5 format and the training process graph in the

specified directory and then proceeded to test the model.

2.3 Sherpa Model Deployment

The developed Sherpa model became the LoVi application’s core, consisting of

TrotoarNet, IndoorNet, and CurrencyNet. TrotoarNet categorizes sidewalks into

four categories, i.e., turn right, turn left, go straight, and stop. IndoorNet classifies

objects in a room, including laptops, scissors, glasses, and more. Then

CurrencyNet classifies rupiah banknotes (paper type) from IDR 1,000 to 100,000,

and one additional category ‘no money’. Coins were not included in the LoVi

application due to their relative ease of identification. In order to use the Sherpa

model in the LoVi application, we converted the model to an edge-supported

format following the steps in Figure 4. A dotted line in Figure 4 indicates that this

process does not occur continuously but is only considered in optimizing

application functions. Using a CNN model architecture, we built the Sherpa

 LoVi App: Android Application-based Image Classification 115

model. We converted the model into a lite version using TensorFlow Lite.

Additionally, the model was optimized to reduce the deployment size in LoVi.

Our optimization consisted of changing the data type of the model that was

deployed in the application to an 8-bit integer to reduce the size and processing

time.

Figure 4 The flow of Sherpa model deployment into the LoVi application.

3 Results and Discussion

3.1 Sherpa Model Testing

The Sherpa model was tested in three stages: (1) determining the best pre-trained

model and the baseline, (2) determining the best neural network architecture (NN-

Architecture), and (3) testing the final architecture of the Sherpa model. The first

stage is detailed in Appendix A, while the rest is included in this subsection.

3.1.1 NN-Architecture

In the NN-Architecture test, Table 4 shows the baseline Sherpa model. This

baseline was obtained from the analysis of the pre-trained model test so that the

optimum pre-trained model was obtained, which was VGG16, taking into account

test accuracy, latency, model size, and frame rate. This subsection of the test used

the default parameters of the NN-Architecture. As described in Appendix A, this

parameter corresponds to the fully connected layer architecture. In testing the

NN-Architecture, we sought to determine the optimal unit size, activation

function, learning rate, optimizer, and loss function parameters to outperform the

Sherpa baseline. Figure A.1 illustrates the accuracy and size of the model when

unit size variation was carried out on ModelID, using the pre-trained VGG16

model that was determined in the previous test. As the unit size increased, the

model accuracy and size increased as well. Depending on the type of ModelID,

accuracy varied, while model size tended to remain the same. We trained each

model 24 times to get this data. Compared to the baseline Sherpa model (unit size

= 1024), unit size 128 was most optimal because accuracy was maintained at

>90% while model size decreased by 69% (~180 MB) to 81 MB.

 ra n od on r od p od
 p o od

a d ndro d

 a n r n

a ndro d

 n

 ndro d pp o

 r n

 ra r o d

116 Mitra Sofiyati, et al.

Figure 5 shows the activation functions: sigmoid, hard_sigmoid, softsign, and

softmax. The test showed that sigmoids on fully connected layers resulted in

accuracy better than the baseline Sherpa model (activation function = ReLU-

ReLU- Softmax), which were +4.5% in IndoorNet, +6% in TrotoarNet, and +3%

in CurrencyNet. In addition to the baseline Sherpa model, none of the other

activation functions increased the accuracy for the three ModelIDs. Also, we

conducted 12 times model training. With 66 times total model training, Figure 6

shows the learning rate, optimizer, and loss function tests. The accuracy from the

variation of the learning rate did not exceed the accuracy from the baseline Sherpa

model (learning rate = 0.0001). Furthermore, the variations in the optimizer and

loss function in Figure 6(b) and 6(c) did not result in better accuracy than the

baseline Sherpa model (optimizer = RMSprop, loss function = categorical_cross-

entropy).

Table 4 Baseline Sherpa model.

ModelID

Pre-

trained

model

Val_Acc

(%)

Test_Acc

(%)

Latency

(ms)

imag

es/s

NOPs

(million)

Model size

(MB)

IndoorNet VGG 16 98.08 94.56 76 13 41.4 261

TrotoarNet VGG 16 85.70 91.20 26 38 41.4 261
CurrencyNet VGG 16 96.32 94.79 42 24 41.4 261

Figure 5 Accuracy of the activation function test results.

 o d ard o d o n o a

ra

 a on n on

 ra a ro d r n a on n on and od

 a ndoor a ro oar a rr n

 a n ndoor a n ro oar a n rr n

 LoVi App: Android Application-based Image Classification 117

Figure 6 Accuracy of (a) learning rate, (b) optimizer, (c) loss function, against ModelID.

ra

 arn n ra

 a

 ra a ro d r n arn n a and od

 a ndoor a ro oar a rr n

 a n ndoor a n ro oar a n rr n

 ada da da a da rad dad a

ra

 p r

 ra a ro d r n p r and od

 a ndoor a ro oar a rr n

 a n ndoor a n ro oar a n rr n

ra

 o n on

 ra a ro d r n o n on and od

 a ndoor a ro oar a rr n
 a n ndoor a n ro oar a n rr n

118 Mitra Sofiyati, et al.

3.1.2 Sherpa Model Analysis

In order to get the baseline Sherpa model, we made a ranking based on four

aspects: model size, latency versus NoPs, latency versus accuracy, and FPS, then

averaged them to get the final ranking. A Sherpa model with the smallest NoP

size is needed to prevent overloading the smartphone’s processing. The NoPs in

Figure A.4(b) are proportional to the model size. Table 5 shows the top 3 ranking

models, which were VGG16, VGG19, and MobileNet.

Table 5 Ranking results of pre-trained models for determining the baseline Sherpa

model.

Pre-trained model
Model

size

Latency vs

NoPs

Latency vs

Accuracy
FPS Average

VGG 16 1 1 1 1 1.00

VGG 19 2 2 2 2 2.00

MobileNet small 3 3 4 3 3.25

Inception V3 5 5 7 4 5.25

Xception 8 6 5 5 6.00

EfficientNet 4 4 10 7 6.25

ResNet 50 v1 9 7 3 6 6.25

DenseNet 169 7 8 9 9 8.25

ResNet 101 v1 10 9 6 8 8.25

Inception-Resnet V2 6 10 11 11 9.50

ResNet 152 V1 11 11 8 10 10.00

Pre-trained models are better if they are more accurate and have lower latency.

As shown in Figure A.2, 6 out of the 11 pre-trained models used in the Sherpa

model yielded greater than 80% accuracy, i.e. MobileNet, ResNet50, ResNet101,

ResNet152, VGG 16, and VGG 19. Table 5 shows the ranking results based on

latency versus accuracy. If we want at least 10 frames per second, we can tolerate

100 ms of latency with the Sherpa model. In accordance with these specifications,

only two pre-trained models met the specifications for all ModelIDs (Figure A.1).

VGG16 performed the best in all aspects. Testing the pre-trained model was used

as a baseline for testing the Sherpa model, which is shown in Table 6 with the

architecture and parameters of the fully connected layer shown in Figure A.4(a)

and Table 6.

Table 6 NN-Architecture from the baseline Sherpa model.

Parameters Architecture

Pre-trained model VGG16

Unit size 1024

Activation function ReLU, ReLu, Softmax

Learning-rate 0.0001

Optimizer RMSprop

Loss function categorical_crossentropy

 LoVi App: Android Application-based Image Classification 119

The final architecture was obtained from the results of the NN-Architecture test,

which can be seen in Table 7. The final architecture was the reference for training

the final Sherpa model, which became the core of the LoVi application. Based on

the final architecture training results, a significant increase in the performance of

the Sherpa model was obtained when compared to the baseline (Table 8),

especially in the accuracy and size of the model. We used two metrics in terms

of accuracy: testing accuracy and validation accuracy. Training accuracy

measures how well the model is learning from the training data. It was calculated

as the percentage of correctly predicted instances. As with training accuracy,

validation accuracy evaluates the model’s generalization ability to new, unseen

data. It was calculated similarly to training accuracy.

Table 7 Comparison of the final and baseline Sherpa model architecture.

Parameters Final Baseline

Pre-trained model VGG16 VGG16

Units 128 1024

ActivationFunc Sigmoid (3x) ReLU, ReLu, Softmax

learning-rate 0.0001 0.0001

Optimizer RMSprop RMSprop

loss function categorical_crossentropy categorical_crossentropy

Table 8 The results of the final and baseline architecture of the Sherpa model.

Result
IndoorNet TrotoarNet CurrencyNet

Final Baseline Final Baseline Final Baseline

Testing accuracy (%) 95.5 94.56 96.79 91.20 93.35 94.79

Validation accuracy (%) 96.64 98.08 86.45 85.70 96.32 96.32

Latency (ms) 77.08 76.42 24.75 26.36 38.16 41.88

Images/s 13 13 40 38 26 24

NoPs (million) 17.9 41.5 17.9 41.5 17.9 41.5

h5 size (MB) 81 261 81 261 81 261

3.2 LoVi App Testing

Figure 7 shows the LoVi application’s test result with TrotoarNet, IndoorNet, and

CurrencyNet. As shown in Figure 8, the Sherpa model’s accuracy decreased after

conversion to the lite version before being deployed in LoVi. We know from

Figure 8 (a) that TrotoarNet was accurate in all four categories before converting

to the lite version. While the lite version model yielded 5.13% accuracy loss, the

quantization process resulted in 2.66% accuracy loss. However, TrotoarNet still

had an accuracy value above 80% on average. Figure 8 (b) shows that IndoorNet

only lost 1.38% accuracy when converted to the lite version model. IndoorNet’s

accuracy was also reduced by 2.10 % by quantization, from 91.74% to 89.65%.

According to Figure 8 (c), the average accuracy of CurrencyNet after conversion

120 Mitra Sofiyati, et al.

and optimization was still over 80%. Only the image of an IDR 20,000 bill had

an accuracy below 80%.

Hence, based on three results of testing the model’s accuracy before deployment,

it is evident that quantification did not significantly decrease the accuracy value.

As a result, the quantized model was still suitable for TrotoarNet, IndoorNet, and

CurrencyNet, as the accuracy per category remained above 80% in almost all

categories.

Our performance test included reviewing the model’s size and inference time

after quantization in the LoVi application and its accuracy. It is possible to see

the model size directly in the existing model details. Figure 9 (a) shows how the

Sherpa model (VGG16 and MobileNet) is used in the LoVi application to

calculate the inference time. In the graph, the model’s size is also shown before

and after quantization. The figure shows a 73.56% reduction in model size before

and after quantization. Furthermore, the inference time was reduced by 67.65%.

According to Figure 9 (b), LoVi’s performance on a smartphone was linear over

time. For approximately five minutes, the smartphone consumed about 17 to 22

mAh. The TrotoarNet, IndoorNet, and CurrencyNet models, trained on

MobileNet and quantized into an 8-bit integer model, consumed the same amount

of smartphone power. However, the inference time differed by more than 50%.

Figure 7 Recognition by LoVi app. Translations of the text from the left image: Belok

Kiri [Turn Left], Lurus [Straight Ahead], Berhenti [Stop]; from the middle image: gunting

[scissors], buah [fruit], tidak ada objek [no object detected]; from the right image: Seratus

Ribu [One Hundred Thousand], Tidak ada uang [No money detected]; Lima Puluh Ribu

[Fifty Thousand].

 LoVi App: Android Application-based Image Classification 121

Figure 8 Decreased accuracy of the Sherpa model due to the conversion process for: (a)

TrotoarNet, (b) IndoorNet, (c) CurrencyNet.

 a

122 Mitra Sofiyati, et al.

Figure 9 Test results of (a) the inference time and size of the Sherpa model, and (b) the

smartphone power consumption by the LoVi app.

4 Conclusion

LoVi was developed to make outdoor navigation easier for people with low

vision. It can also identify indoor objects and Indonesian banknotes (paper type).

Approximately 80% of the model used in the LoVi application was accurate.

Moreover, the LoVi application allows users to hear prediction results via voice,

making it easy for low-vision users.

In terms of performance, the pre-trained model and NN-Architecture test

variations differed depending on the ModelID (IndoorNet, TrotoarNet, and

 LoVi App: Android Application-based Image Classification 123

CurrencyNet) created. Based on the NN-Architecture test, there were five

variations: (1) units/unit size, with optimum performance when unit size = 128,

which reduced 69% (-180MB) of the baseline model size while maintaining a test

accuracy of >90% (91.42% on IndoorNet, 91.25% on TrotoarNet, and 93.76% on

CurrencyNet); (2) activation function, with optimum performance when the

activation function = sigmoid, with test accuracy increasing significantly

compared to the Sherpa baseline model, i.e., 98.64% (+4.08%) on IndoorNet,

96.88% (+5.68%) on TrotoarNet, and 96.8% (+2.01%) on CurrencyNet. The

Sherpa model performed better when the baseline parameters were used, i.e.,

learning rate = 0.0001, optimizer = RMSprop, and loss function =

categorical_cross-entropy, in testing the variables (3) learning rate, (4) optimizer,

and (5) loss function.

Inference time was reduced by 67.65% as a result of the optimization results used

in the development of the TFLite model. It is therefore a relatively good choice

for the LoVi application. The chosen model is based on transfer learning from

MobileNet, quantized into 8-bit integers.

Acknowledgments

This work was partially supported by the School of Electrical Engineering and

Informatics, Bandung Institute of Technology.

References

[1] Press Release: Pertuni’s Strategic Role in Empowering the Blind in

Indonesia), Pertuni (Persatuan Tunanetra Indonesia), 04 Maret 2017. (Text

in Indonesian) Available: https://pertuni.or.id/siaran-pers-peran-strategis-

pertuni-dalam-memberdayakan-tunanetra-di-indonesia/ (08 July 2023).

[2] Vision Loss Expert Group, Magnitude, Temporal Trends, and Projections

of the Global Prevalence of Blindness and Distance and Near Vision

Impairment: A Systematic Review and Meta-analysis, Lancet Glob Healt,

5(9), pp. e888-e897, 2017.

[3] Irwanto, E.R., Kasim, A., Fransiska, M., Lusli & Siradj, O., Situation

Analysis of People with Disabilities in Indonesia: A Desk-Review, Pusat

Kajian Disabilitas Fakultas Ilmu-ilmu Sosial dan Politik, Universitas

Indonesia, Depok, 2010. (Text in Indonesian)

[4] Garina, L., Prevalence, Characteristics, and Health Services for Children

with Special Needs in Indonesia, 2012.

[5] WeWALK, WeWalk, Available: https://wewalk.io/en/.

[6] Tempo, Introducing BriCane, Modern Cane for the Blind Made in

Bandung, tempo.co, 31 October 2020. (Text in Indonesian). Available:

https://difabel.tempo.co/read/1400939/perkenalkan-bricane-tongkat-

difabel-netra-kekinian-buatan-bandung (08 July 2023).

124 Mitra Sofiyati, et al.

[7] Ministry of Health of the Republic of Indonesia, Disability Situation,

December 2014. (Text in Indonesian) Available:

https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/bul

etin/buletin-disabilitas.pdf (07 July 2023).

[8] Ministry of Health of the Republic of Indonesia, Situation of Vision

Impairment and Blindness, October 2014. (Text in Indonesian). Available:

https://pusdatin.kemkes.go.id/download.php?file=download/pusdatin/info

datin/infodatin-Gangguan-penglihatan-2018.pdf (08 July 2023).

[9] Karkar, A. & Al-Maadeed, S., Mobile Assistive Technologies for Visual

Impaired Users: A Survey, in International Conference on Computer and

Applications (ICCA), Doha, 2018.

[10] Lee, C.S., Lee, J.I. & Han, S.E. Deep Learning Based Mobile Assistive

Device for Visually Impaired People, in International Conference on

Consumer Electronics-Asia (IOCE-Asia), 2021. DOI: 10.1109/ICCE-

Asia53811.2021.9641925

[11] Nguyen, H., Nguyen, M., Yang, S. & Le, H., Web-based Object Detection

and Sound Feedback System for Visually Impaired People, in International

Conference on Multimedia Analysis and Pattern Recognition (MAPR),

2020. DOI: 10.1109/MAPR49794.2020.9237770

[12] Wei-Cheng, W., Yoke-Leng, Y. & Kok-Chin, K., Object Detection and

Recognition for Visually Impaired Users: A Transfer Learning Approach,

in 2nd International Conference on Artificial Intelligence and Data

Sciences (AiDAS), 2021. DOI: 10.1109/AIDAS53897.2021.9574220

[13] Nguyen, H., Nguyen, M., Nguyen, Q., Yang, S. & Le, H. Web-based

Object Detection and Sound Feedback System for Visually Impaired

People, in International Conference on Multimedia Analysis and Pattern

Recognition (MAPR), 2020. DOI: 10.1109/MAPR49794.2020.9237770

[14] Won, W.-C., Yong Y.-L. & Khor, K.-C., Object Detection and Recognition

for Visually Impaired Users: A Transfer Learning Approach, in 2nd

International Conference on Artificial Intelligence and Data Sciences

(AiDAS), 2021. DOI: 10.1109/AIDAS53897.2021.9574220

[15] Caballero, A.R. Catli, K.E.I. & Babierra, A.G.F., Object Recognition and

Hearing Assistive Technology Mobile Application using Convolutional

Neural Network, in International Conference on Wireless Communication

and Sensor Networks (icWCSN), New York, 2020.

[16] Parikh, N., Shah, I. & Vahora, S., Android Smartphone based Visual

Object Recognition for Visually Impaired using Deep Learning, in

International Conference on Communication and Signal Processing, 2018.

DOI: 10.1109/ICCSP.2018.8524493.

[17] Vaidya, S., Shah, N., Shah, S. & Shankarmani, R., Real-Time Object

Detection for Visually Challanged People, in 4th International Conference

on Intelligent Computing and Control Systems (ICICCS), 2020. DOI:

10.1109/ICICCS48265.2020.9121085.

 LoVi App: Android Application-based Image Classification 125

[18] Sunitha, M. R, F. Khan, G. Ghatge R & H. S, Object Detection and Human

Identification using Rasberry Pi, 1st International Conference on Advances

in Information Technology (ICAIT), 2019. DOI:

10.1109/ICAIT47043.2019.8987398.

[19] Meshram, V.V., Patil, K., Meshram V.A. & Shu, F.C. An Astute Assistive

Device for Mobility and Object Recognition for Visually Impaired People,

IEEE Transactions on Human-Machine Systems, 49(5), pp. 449-460, 2019.

[20] Tian, S., Zheng, M., Zou, W., Li. X. & L. Zhang, Dynamic Crosswalk

Scene Understanding for the Visually Impaired, IEEE Transactions on

Neural Systems and Rehabilitation Engineering, 29, pp. 1478-1486, 2021.

[21] Mataro, T.V., Masulli, F., Rovetta, S., Cabri, A., Traverso, C., Capris, E.,

& Torretta, S., An Assistive Mobile System Supporting Blind and Visual

Impaired People when Are Outdoor, in IEEE 3rd International Forum on

Research and Technologies for Society and Industry (RTSI), 2017. DOI:

10.1109/RTSI.2017.8065886.

[22] Sivate, T.M., Pillay, N., Moorgas, K. & Singh, N., Autonomous

Classification and Spatial Location of Objects from Stereoscopic Image

Sequences for the Visually Impaired, in 2022 International Conference on

Electrical, Computer and Energy Technologies (ICECET), 2022.

[23] Widayani, A., Kusuma, H. & Purwanto, D., Visually Impaired Person

Detection Using Deep Learning for Dangerous Area Warning System, in

2022 International Seminar on Intelligent Technology and Its Applications

(ISITIA), 2022.

[24] Basheshankar, A., Lande, A., Nandeshwar, A., Sarkar, Udapure, A. &

Chandankhede, D.H., Assistive Cane for Visually Impaired People, in 2022

10th IEEE International Conference on Emerging Trends in Engineering

& Technology Signal and Information Processing (ICETET-SIP-22),

2022.

[25] Wikipedia, Sherpa People, Available:

https://en.wikipedia.org/wiki/Sherpa_people. (8 March 2022).

[26] TensorFlow, Available: https://www.tensorflow.org/lite. (01 March 2022)

[27] Keras, Available: https://keras.io/. (01 March 2022)

[28] Ioffe, S. & Szegedy, C., Batch Normalization: Accelerating Deep Network

Training by Reducing Internal Covariate Shift, in 32nd International

Conference on International Conference on Machine Learning, 2015. DOI:

10.48550/arXiv.1502.03167.

126 Mitra Sofiyati, et al.

Appendix A. Pre-Trained Model Evaluation

The images used in this experiment had size 224 x 224 pixels, batch_size 128, and epoch

25. The pre-trained models were all trained with image size 224 x 224 pixels. To prevent

overfitting, we used relatively small epoch values and relatively large batch sizes, since

batch size and epoch cannot be determined from the data. NN-Architecture and Sherpa’s

final architecture were benchmarked using a list of pre-trained models, as provided in

Table A.1. In building the pre-trained models, we used ImageNet weights and

TensorFlow libraries, excluding EfficientNet. Sherpa offers three models: IndoorNet,

TrotoarNet, and CurrencyNet, each with a distinct function, label, and dataset. IndoorNet

recognizes 19 different types of objects. TrotoarNet and CurrencyNet categorize images

into four and eight categories, respectively.

Table A.1. List of pre-trained image classification models from ImageNet for model

training [26][27].

Pre-trained Models Abbreviation ML Library Input Size

EfficientNet EfcNet Efficientnet 224 x 224

DenseNet 169 DnsNet_169 Tensorflow 224 x 224

Inception-Resnet version 2 Inc_Res_v2 Tensorflow 224 x 224
Inception version 3 Inc_v3 Tensorflow 224 x 224

MobileNet small Mob_v3_sml Tensorflow 224 x 224

ResNet 50 version 1 Rs_v1_50 Tensorflow 224 x 224
ResNet 101 version 1 Rs_v1_101 Tensorflow 224 x 224

ResNet 152 version 1 Rs_v1_152 Tensorflow 224 x 224

VGG 16 Vgg_16 Tensorflow 224 x 224
VGG 19 Vgg_19 Tensorflow 224 x 224

Xception Xcp_v1 Tensorflow 224 x 224

In Figure A.1(a), we compare pre-trained models to static variables for all ModelIDs. The

NoPs were based on the pre-trained model used and the testing results. All ModelIDs had

the same NoP value. ResNet152 had the highest NoPs at 162.3 million, while VGG16

had the lowest, at 41.5 million. There was a difference in complexity and classification

ability. Figure A.1(b) illustrates that IndoorNet, TrotoarNet, and CurrencyNet use

different pre-trained models. IndoorNet, TrotoarNet, and CurrencyNet have identical

models with the same pre-trained models at 261 MB, 281 MB, and 407 MB, respectively,

while ResNet152 has a larger model, 1017 MB. NoPs and model sizes are generally

similar. The more complex the model, the larger the model size.

Figure A.2 illustrates the results of the latency versus accuracy test on all pre-trained

models. According to the ModelID tests, the top-three optimum models, VGG16,

VGG19, and MobileNet, had over 90% accuracy and varying latency. It is worth

mentioning that the VGG16 and VGG19 generally had a latency of 100 ms.

 LoVi App: Android Application-based Image Classification 127

Figure A.1. (a) Accuracy, (b) model size from the unit size test, and Model ID.

Figure A.2. The results of the latency vs accuracy test on the pre-trained model.

 a

a

128 Mitra Sofiyati, et al.

Figure A.3 (a) illustrates the test of a fully connected layer using the same

parameters. Feature maps created by feature extraction are still multidimensional

arrays, so they must be flattened or reshaped into vectors in order to be input into

a fully connected layer. All neurons from the previous layer are connected to

neurons in the next layer in the fully connected layer. Before the fully connected

layer can be connected to all neurons, each activity must be converted to one-

dimensional data. To classify data from the previous layer, we used a fully

connected layer. The difference between the fully connected layer and the

ordinary convolutional layer is that the neurons in the convolutional layer are

connected only to certain input regions. Conversely, the neurons in the fully

connected layer are all connected. A batch normalization operation is also used

in Figure A.4(a) to speed up the training process and increase learning rates. It

equalizes the distribution of every input value during the training process because

parameters change in the previous layer [28].

Figure A.3. Test results of (a) NoPs on pre-trained models, (b) size across pre-trained

models on ModelID.

a

 LoVi App: Android Application-based Image Classification 129

(a)

(b)

Figure A.4. (a) Fully connected layer, (b) Img/s test results on pre-trained models on

ModelID.

Several neurons were selected at random and not used during training to regularize the

neural network after normalization. They were suspended during backpropagation,

preventing overfitting and speeding up the learning process. Dropout will be used to

remove neurons from hidden and visible layers using random selection. Each neuron will

have a probability between 0 and 1. A fully connected layer architecture also uses

activation functions, such as ReLU and Softmax, which determine whether neurons are

active based on the weighted sum of their inputs. In this way, Softmax and ReLU provide

non-linear decision boundaries that optimize training. According to Figure A.4(b), pre-

trained models differ in their inference latency. The smaller the latency, the higher the

frames per second. More specifically, the optimal pre-trained models that produce high

FPS are VGG16 and VGG19, with FPS values > 10, which both already meet the

minimum FPS standard for the determined Sherpa model.

1. output = Dense(1024,activation =
"relu")(output)

2. output = BatchNormalization()(output)
3. output = Dropout(0.2)(output)
4. output = Dense(1024,activation =

"relu")(output)
5. output = BatchNormalization()(output)
6. output = Dropout(0.2)(output)
7. output = Dense(19,

activation=‘softmax’)(output)

