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Abstract. In Indonesia, many people with visual impairments are drawing public 

attention to their rights as fellow humans. One of the limitations that individuals 

with low vision face is their ability to recognize objects and navigate their 

surroundings due to difficulties in visual perception. In this modern era, deep 

learning technologies, especially in image classification, can help people with low 

vision overcome these challenges. In this paper, we discuss a deep learning system 

that optimizes image classification on users' smartphones to enhance visual 

support for individuals with low vision. We present an Android-based app, LoVi, 

designed to assist users with low vision. Powered by core systems within Sherpa 

models (TrotoarNet, IndoorNet, and CurrencyNet), LoVi has three modes: 

outdoor, indoor, and currency. The LoVi application provides over 80% accuracy 

for navigation on sidewalks, indoor object recognition, and currency 

identification. TrotoarNet aids in sidewalk navigation, IndoorNet assists with 

indoor object identification, and CurrencyNet recognizes Rupiah banknotes. 

Additionally, low-vision users can receive voice feedback for further accessibility. 

 

Keywords: convolutional neural network; deep learning; image classification; low 

vision; smartphone.  

1 Introduction 

As defined by the Ministry of Health of Indonesia, visually impaired people are 

those with partial vision impairments that cannot be fixed by ordinary means such 

as glasses. Low vision refers to individuals with partial vision impairments as 

members of the visually impaired, or diffable netra (DN). According to estimates, 

1.5% of Indonesians are blind [1]. Further, a study conducted by the Vision Loss 

Expert Group found that Indonesia has the highest percentage of people with 

vision impairment of any country in the world [2]. It has been reported that 20% 

of all Indonesians with disabilities in the categories of ‘very poor’, ‘poor’, and 

‘almost poor’ were blind, according to data from the Center for the Study of 

Disabilities, University of Indonesia (2010) [3]. The limitations caused by 

disabilities are possessed by people at the lower middle economic level. 
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Therefore, visually impaired people lack access to special tools to facilitate their 

daily lives. In the 2003 Indonesian census, 24.45% of disabilities were found in 

children and adolescents aged 0-18 and 21.4% in school-age children [4]. 

There are several smart sticks available to assist DNs, including WeWalk [5] and 

BriCane [6]. Both WeWalk and BriCane use ultrasonic sensors to detect obstacles 

within a 3 meter detection radius. Although this is effective for near-distance 

sensing, they cannot be used by DNs to navigate and perform remote sensing (>3 

m) on roads. The lack of tools to recognize the objects around them also reduces 

the level of independence of DNs. Students, teachers, and professional musicians 

are some examples of DN productive activities that require high levels of 

independence. Because of limited support and facilities from their families or 

communities, DNs in Indonesia still cannot engage in these activities. Compared 

to similar products from abroad, BriCane is relatively inexpensive. For BriCane, 

the price ranges from IDR 2 to 3 million, while for imported canes like WeWalk 

the price is double that [6]. For people in a lower middle economic level society, 

IDR 2 to 3 million is not an insignificant amount. Based on data from the Ministry 

of Health’s Research and Development Agency, disability and blindness 

prevalence are higher in the lower-income index [7, 8]. 

On the other hand, the mobile phone is almost a ‘primary’ need for everyone, 

including people with low vision. Deep learning and mobile phone technology 

may be combined to develop an assistance system for low-vision patients. 

According to a survey conducted by a non-profit organization [9], 71.4% of 

visually impaired respondents use smartphones. Moreover, the survey suggests 

that assistive devices are primarily developed on smartphones but still require 

sensors and embedded systems, which are more costly. Table 1 shows some 

systems that facilitate DN from previous studies. These systems serve several 

purposes, such as navigation and environmental recognition.  

Based on the YOLO3 model, Lee et al. [10] developed an assistant system for the 

visually impaired. Object recognition accuracy was 96.46%, Korean text 

detection accuracy was 98%, and face detection accuracy was 72.6%. However, 

each subtask is performed independently. In [11], Nguyen et al. used a web-based 

system to detect objects with sound feedback for low vision. With SSD-

MobileNetV2, the system gets a fast, small, and specific model optimized for 

mobile implementation. The model’s confidence score decreased as the number 

of detected objects increased. Won et al. [12] developed a transfer learning-based 

object detection system that uses Faster Region-Convolutional Neural Network 

Inception V2 (Faster R-CNN) and Single Shot Detector MobileNetV1. In the 

analysis, the R-CNN model produced better results for mAP but took longer to 

infer than SSD according to the results. 
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Table 1 Previous work of assistant system for visually impaired people. 

Category Technology  Accuracy Reference 

Object detection, text 

detection, face detection 
YOLO3 

96.46%; 98%; 

72.6% 
[10] 

Object detection (people, 

cars, dogs) 
SSD-MobileNetV2 >90% [13] 

Object detection (40 

objects) 

SSD-MobileNetV1, 

Faster R-CNN Inception 

V2 

89.61% [14] 

Object detection 

(technology, text, person, 

plant, color) 

CNN 91.5% [15] 

Object recognition 

(outdoor objects) 

ResNet50, Inception V3, 

VGG19 

94.78%; 

96.39%; 

90.88% 

[16] 

Object detection YOLO 85.5% [17] 

Obstacle detection Adaboost 84.7% [18] 

Obstacle detection, 

navigation 

Sensor, RFID, GPS 

(NavCane) 
– [19] 

Navigation: crosswalk 

detection 
YOLOv4, RGB Camera 93.46% [20] 

Navigation system NFC, RFID, iBeacon – [21] 

Reference [15] shows that CNN can be used indoors and outdoors to classify 

objects with high precision. Reference [16] only used CNN to detect outdoor 

objects. Inception V3, ResNet50, and VGG19 were the CNN models used to 

build the system. The accuracy of ResNet50 was 94.78%, that of Inception V3 

was 96.39%, and that of VGG19 was 90.88%. Many pre-trained models are 

available for object detection and classification, including MobileNet, VGG, 

ResNet, Inception, and YOLO. A pre-trained model may perform differently in 

terms of accuracy, latency, size, etc. Model architecture parameters, such as 

Adam, RMSprop, and SGD [16], also affect accuracy. According to [22], 

YOLACT image classification library provides a higher confidence level than 

TensorFlow but with a large delay. 

In addition to object detection, deep learning can also be used to develop a 

navigation system for low vision. Developers can explore deep learning, 

particularly object detection, to warn of obstacles while navigating [19, 23] and 

it can be used for navigation as well. Reference [20] detects crosswalks and 

recognizes traffic lights to create a navigation system for the visually impaired. 

A navigation system called TARSIUS [21] also provides code information via 

vibration, sounds and vocal instructions like ‘turn right’. Reference [24] used the 

same concept to develop an assistive cane with three ultrasonic sensors. 

We aimed to increase DN’s independence by developing the LoVi application, a 

smart assistant for low vision (LoVi), utilizing deep convolutional neural 

networks. Sherpa refers to Tibetans who act as climbing guides in the Himalayas 
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[25]. Based on the same spirit, the LoVi application aims to be a reliable guide 

for DNs or LoVi because it is embedded with advanced technologies from the 

present era of machine learning (ML). 

2 LoVi Application Design 

This paper presents the LoVi image classification application for Android. Using 

Android and artificial intelligence technology, LoVi was designed to help people 

with low vision perform daily tasks. Figure 1 illustrates its two subsystems: the 

LoVi mobile interface and the Sherpa model based on LoVi deep convolutional 

neural networks. LoVi displays three modes: outdoor, indoor, and currency. In 

addition, the Sherpa model needs to be capable of classifying images based on 

the mode selected in the application. Using TrotoarNet for outdoor use, 

IndoorNet for indoor use, and CurrencyNet for currency use, smartphones can 

run LoVi applications with lower power consumption. LoVi displays the three 

modes it offers users when they open it for the first time. The LoVi app’s first 

interface guides the user through the process of classifying images (videos split 

into frames) detected by the smartphone. Based on the selected mode and real-

time, the Sherpa model will then generate predictions based on the accuracy 

values and categories. Sound is used to communicate prediction results that meet 

a minimum accuracy threshold. In the event the prediction accuracy exceeds the 

threshold, a sound that mentions the category with the highest accuracy is played. 

Then, if the user presses the back or exit button, the LoVi application is 

terminated. 

2.1 User Interface of Lovi App 

Figure 2 illustrates the LoVi application user interface. The first interface displays 

the LoVi application logo. The second interface displays three buttons based on 

the user’s mode option. It appears for a few seconds and switches to the second 

interface when the application is opened. For mode selection, the application 

activates the guidance voice. The application will switch to the next activity after 

pressing the mode button. This activity uses the smartphone camera to capture 

real-time frames that the Sherpa model uses as input for inference. The secondary 

window (right side) reflects only the top three accuracies of the categories. If the 

category with the highest accuracy meets the threshold, the feedback sound will 

be activated. The TrotoarNet, IndoorNet, and CurrencyNet models were first 

evaluated with the same threshold value. As a result of observing the trial, we 

discovered that the results tended to fall into a particular category. Thus, the 

thresholds were adjusted accordingly. 
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Figure 1 Flowchart of LoVi app. 

 

Figure 2  User interface of LoVi app. 

2.2 Preprocessing Dataset 

The dataset was preprocessed into 224 x 224 dimensions and divided into 60% 

training, 30% validation, and 10% testing data. Tests were performed on the pre-

trained Sherpa model to establish a baseline model for testing the NN-
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Architecture. The NN-Architecture Sherpa model and pre-trained model testing 

process are shown in Figure 3.  

 

Figure 3  The flow of testing the Sherpa model along with the dataset distribution 

scheme, from training and testing to the final architecture. 

In LoVi, the final architecture of the Sherpa model was derived from these test 

types. Table 2 shows variations in testing the pre-trained and Sherpa models, 

including test accuracy, number of parameters, latency, frames per second (FPS), 

and model size. The only parameters that were used to measure the NN-

Architecture were accuracy and size. Table 3 shows a list of labels for each model 

and the average accuracy of the testing dataset. 

Table 2 Variations in testing pre-trained models and NN-architecture. 

Testing Parameter Variation 

Pre-trained 

model 
- 

EfficientNet, DenseNet 169, Inception-Resnet 

version 2, Inception version 3, MobileNet small, 

ResNet 50 version 1, ResNet 101 version 1, 

ResNet 152 version 1, VGG 16, VGG 19, dan 

Xception 

NN-

Architecture 

Unit size 16, 32, 64, 128, 256, 512, 1024, 2048 

Activation 

function 
hard_sigmoid, softsign, softmax, sigmoid, ReLU 

Learning-

rate 
0.00001, 0.0001, 0.001, 0.01, 0.1 

Optimizer 
SGD, RMSprop, Adam, Adadelta, Adagrad, 

Adamax, Nadam 

Loss 

function 

mean_squared_error, mean_absolute_error, 

mean_absolute_percentage_error, 

mean_squared_logarithmic_error, 

kullback_leibler_divergence, cosine_proximity, 

squared_hinge, hinge, categorical_hinge, logcosh, 

categorical_crossentropy, binary_crossentropy, 

poisson 
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Table 3 Details of the deep learning model on Sherpa. 

ModelID Function Label Dataset 

IndoorNet 

Helping LoVis to 

navigate outdoors, 

especially on 

sidewalks 

bottle, fruit, glass, scissors, 

keyboard, chair, laptop, table, 

monitor, mouse, person, 

toothpaste, plate, knife, mobile 

phone, spoon, toothbrush, bag, 

and unrecognizable object 

1972 

images 

TrotoarNet 

Helping LoVis to 

identify objects in the 

room, such as bottles, 

smartphones, plates, 

etc. 

turn right, turn left, stop, and 

straight 

9136 

images 

CurrencyNet 

Helping LoVis to 

classify rupiah 

currency (paper type) 

according to its 

nominal value 

IDR 1.000, IDR 2.000, IDR 

5.000, IDR 10.000, IDR 20.000, 

IDR 50.000, IDR 100.000, and 

unrecognizable object 

1842 

images 

A total of five variables were tested in the NN-Architecture test: units, unit size, 

activation function, learning rate, optimizer, and loss function. The pre-trained 

model and the NN-Architecture models were tested on all ModelIDs (TrotoarNet, 

IndoorNet, and CurrencyNet). In order to create the Sherpa model, 150x training 

and 150x testing were required. The training-to-testing process was built into the 

same program to train and test Sherpa models, import libraries, and then read 

preprocessed datasets for training and validation. This dataset was inserted into 

the training process. A deep convolutional neural network (CNN) model 

architecture was created before training began, and a fully connected layer was 

added before the output layer. As a result of completing the training process, the 

program saved the model in *.h5 format and the training process graph in the 

specified directory and then proceeded to test the model. 

2.3 Sherpa Model Deployment 

The developed Sherpa model became the LoVi application’s core, consisting of 

TrotoarNet, IndoorNet, and CurrencyNet. TrotoarNet categorizes sidewalks into 

four categories, i.e., turn right, turn left, go straight, and stop. IndoorNet classifies 

objects in a room, including laptops, scissors, glasses, and more. Then 

CurrencyNet classifies rupiah banknotes (paper type) from IDR 1,000 to 100,000, 

and one additional category ‘no money’. Coins were not included in the LoVi 

application due to their relative ease of identification. In order to use the Sherpa 

model in the LoVi application, we converted the model to an edge-supported 

format following the steps in Figure 4. A dotted line in Figure 4 indicates that this 

process does not occur continuously but is only considered in optimizing 

application functions. Using a CNN model architecture, we built the Sherpa 
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model. We converted the model into a lite version using TensorFlow Lite. 

Additionally, the model was optimized to reduce the deployment size in LoVi. 

Our optimization consisted of changing the data type of the model that was 

deployed in the application to an 8-bit integer to reduce the size and processing 

time. 

 

Figure 4 The flow of Sherpa model deployment into the LoVi application. 

3 Results and Discussion 

3.1 Sherpa Model Testing 

The Sherpa model was tested in three stages: (1) determining the best pre-trained 

model and the baseline, (2) determining the best neural network architecture (NN-

Architecture), and (3) testing the final architecture of the Sherpa model. The first 

stage is detailed in Appendix A, while the rest is included in this subsection. 

3.1.1 NN-Architecture 

In the NN-Architecture test, Table 4 shows the baseline Sherpa model. This 

baseline was obtained from the analysis of the pre-trained model test so that the 

optimum pre-trained model was obtained, which was VGG16, taking into account 

test accuracy, latency, model size, and frame rate. This subsection of the test used 

the default parameters of the NN-Architecture. As described in Appendix A, this 

parameter corresponds to the fully connected layer architecture. In testing the 

NN-Architecture, we sought to determine the optimal unit size, activation 

function, learning rate, optimizer, and loss function parameters to outperform the 

Sherpa baseline. Figure A.1 illustrates the accuracy and size of the model when 

unit size variation was carried out on ModelID, using the pre-trained VGG16 

model that was determined in the previous test. As the unit size increased, the 

model accuracy and size increased as well. Depending on the type of ModelID, 

accuracy varied, while model size tended to remain the same. We trained each 

model 24 times to get this data. Compared to the baseline Sherpa model (unit size 

= 1024), unit size 128 was most optimal because accuracy was maintained at 

>90% while model size decreased by 69% (~180 MB) to 81 MB. 
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Figure 5 shows the activation functions: sigmoid, hard_sigmoid, softsign, and 

softmax. The test showed that sigmoids on fully connected layers resulted in 

accuracy better than the baseline Sherpa model (activation function = ReLU-

ReLU- Softmax), which were +4.5% in IndoorNet, +6% in TrotoarNet, and +3% 

in CurrencyNet. In addition to the baseline Sherpa model, none of the other 

activation functions increased the accuracy for the three ModelIDs. Also, we 

conducted 12 times model training. With 66 times total model training, Figure 6 

shows the learning rate, optimizer, and loss function tests. The accuracy from the 

variation of the learning rate did not exceed the accuracy from the baseline Sherpa 

model (learning rate = 0.0001). Furthermore, the variations in the optimizer and 

loss function in Figure 6(b) and 6(c) did not result in better accuracy than the 

baseline Sherpa model (optimizer = RMSprop, loss function = categorical_cross-

entropy). 

Table 4 Baseline Sherpa model. 

ModelID 

Pre-

trained 

model 

Val_Acc 

(%) 

Test_Acc 

(%) 

Latency 

(ms) 

imag

es/s 

NOPs 

(million) 

Model size 

(MB) 

IndoorNet VGG 16 98.08 94.56 76 13 41.4 261 

TrotoarNet VGG 16 85.70 91.20 26 38 41.4 261 
CurrencyNet VGG 16 96.32 94.79 42 24 41.4 261 

 

 

Figure 5  Accuracy of the activation function test results. 
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Figure 6  Accuracy of (a) learning rate, (b) optimizer, (c) loss function, against ModelID. 
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3.1.2 Sherpa Model Analysis 

In order to get the baseline Sherpa model, we made a ranking based on four 

aspects: model size, latency versus NoPs, latency versus accuracy, and FPS, then 

averaged them to get the final ranking. A Sherpa model with the smallest NoP 

size is needed to prevent overloading the smartphone’s processing. The NoPs in 

Figure A.4(b) are proportional to the model size. Table 5 shows the top 3 ranking 

models, which were VGG16, VGG19, and MobileNet. 

Table 5 Ranking results of pre-trained models for determining the baseline Sherpa 

model. 

Pre-trained model 
Model 

size 

Latency vs 

NoPs 

Latency vs 

Accuracy 
FPS Average 

VGG 16 1 1 1 1 1.00 

VGG 19 2 2 2 2 2.00 

MobileNet  small 3 3 4 3 3.25 

Inception V3 5 5 7 4 5.25 

Xception 8 6 5 5 6.00 

EfficientNet 4 4 10 7 6.25 

ResNet 50 v1 9 7 3 6 6.25 

DenseNet 169 7 8 9 9 8.25 

ResNet 101 v1 10 9 6 8 8.25 

Inception-Resnet V2 6 10 11 11 9.50 

ResNet 152 V1 11 11 8 10 10.00 

Pre-trained models are better if they are more accurate and have lower latency. 

As shown in Figure A.2, 6 out of the 11 pre-trained models used in the Sherpa 

model yielded greater than 80% accuracy, i.e. MobileNet, ResNet50, ResNet101, 

ResNet152, VGG 16, and VGG 19. Table 5 shows the ranking results based on 

latency versus accuracy. If we want at least 10 frames per second, we can tolerate 

100 ms of latency with the Sherpa model. In accordance with these specifications, 

only two pre-trained models met the specifications for all ModelIDs (Figure A.1). 

VGG16 performed the best in all aspects. Testing the pre-trained model was used 

as a baseline for testing the Sherpa model, which is shown in Table 6 with the 

architecture and parameters of the fully connected layer shown in Figure A.4(a) 

and Table 6. 

Table 6 NN-Architecture from the baseline Sherpa model. 

Parameters Architecture 

Pre-trained model VGG16 

Unit size 1024 

Activation function ReLU, ReLu, Softmax 

Learning-rate 0.0001 

Optimizer RMSprop 

Loss function categorical_crossentropy 
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The final architecture was obtained from the results of the NN-Architecture test, 

which can be seen in Table 7. The final architecture was the reference for training 

the final Sherpa model, which became the core of the LoVi application. Based on 

the final architecture training results, a significant increase in the performance of 

the Sherpa model was obtained when compared to the baseline (Table 8), 

especially in the accuracy and size of the model. We used two metrics in terms 

of accuracy: testing accuracy and validation accuracy. Training accuracy 

measures how well the model is learning from the training data. It was calculated 

as the percentage of correctly predicted instances. As with training accuracy, 

validation accuracy evaluates the model’s generalization ability to new, unseen 

data. It was calculated similarly to training accuracy. 

Table 7 Comparison of the final and baseline Sherpa model architecture. 

Parameters Final Baseline 

Pre-trained model VGG16 VGG16 

Units 128 1024 

ActivationFunc Sigmoid (3x) ReLU, ReLu, Softmax 

learning-rate 0.0001 0.0001 

Optimizer RMSprop RMSprop 

loss function categorical_crossentropy categorical_crossentropy 

 

Table 8 The results of the final and baseline architecture of the Sherpa model. 

Result 
IndoorNet TrotoarNet CurrencyNet 

Final Baseline Final Baseline Final Baseline 

Testing accuracy (%) 95.5 94.56 96.79 91.20 93.35 94.79 

Validation accuracy (%) 96.64 98.08 86.45 85.70 96.32 96.32 

Latency (ms) 77.08 76.42 24.75 26.36 38.16 41.88 

Images/s 13 13 40 38 26 24 

NoPs (million) 17.9 41.5 17.9 41.5 17.9 41.5 

h5 size (MB) 81 261 81 261 81 261 

3.2 LoVi App Testing 

Figure 7 shows the LoVi application’s test result with TrotoarNet, IndoorNet, and 

CurrencyNet. As shown in Figure 8, the Sherpa model’s accuracy decreased after 

conversion to the lite version before being deployed in LoVi. We know from 

Figure 8 (a) that TrotoarNet was accurate in all four categories before converting 

to the lite version. While the lite version model yielded 5.13% accuracy loss, the 

quantization process resulted in 2.66% accuracy loss. However, TrotoarNet still 

had an accuracy value above 80% on average. Figure 8 (b) shows that IndoorNet 

only lost 1.38% accuracy when converted to the lite version model. IndoorNet’s 

accuracy was also reduced by 2.10 % by quantization, from 91.74% to 89.65%. 

According to Figure 8 (c), the average accuracy of CurrencyNet after conversion 
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and optimization was still over 80%. Only the image of an IDR 20,000 bill had 

an accuracy below 80%. 

Hence, based on three results of testing the model’s accuracy before deployment, 

it is evident that quantification did not significantly decrease the accuracy value. 

As a result, the quantized model was still suitable for TrotoarNet, IndoorNet, and 

CurrencyNet, as the accuracy per category remained above 80% in almost all 

categories. 

Our performance test included reviewing the model’s size and inference time 

after quantization in the LoVi application and its accuracy. It is possible to see 

the model size directly in the existing model details. Figure 9 (a) shows how the 

Sherpa model (VGG16 and MobileNet) is used in the LoVi application to 

calculate the inference time. In the graph, the model’s size is also shown before 

and after quantization. The figure shows a 73.56% reduction in model size before 

and after quantization. Furthermore, the inference time was reduced by 67.65%. 

According to Figure 9 (b), LoVi’s performance on a smartphone was linear over 

time. For approximately five minutes, the smartphone consumed about 17 to 22 

mAh. The TrotoarNet, IndoorNet, and CurrencyNet models, trained on 

MobileNet and quantized into an 8-bit integer model, consumed the same amount 

of smartphone power. However, the inference time differed by more than 50%. 

 

Figure 7 Recognition by LoVi app. Translations of the text from the left image: Belok 

Kiri [Turn Left], Lurus [Straight Ahead], Berhenti [Stop]; from the middle image: gunting 

[scissors], buah [fruit], tidak ada objek [no object detected]; from the right image: Seratus 

Ribu [One Hundred Thousand], Tidak ada uang [No money detected]; Lima Puluh Ribu 

[Fifty Thousand]. 
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Figure 8 Decreased accuracy of the Sherpa model due to the conversion process for: (a) 

TrotoarNet, (b) IndoorNet, (c) CurrencyNet. 
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Figure 9 Test results of (a) the inference time and size of the Sherpa model, and (b) the 

smartphone power consumption by the LoVi app. 

4 Conclusion 

LoVi was developed to make outdoor navigation easier for people with low 

vision. It can also identify indoor objects and Indonesian banknotes (paper type). 

Approximately 80% of the model used in the LoVi application was accurate. 

Moreover, the LoVi application allows users to hear prediction results via voice, 

making it easy for low-vision users. 

In terms of performance, the pre-trained model and NN-Architecture test 

variations differed depending on the ModelID (IndoorNet, TrotoarNet, and 
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CurrencyNet) created. Based on the NN-Architecture test, there were five 

variations: (1) units/unit size, with optimum performance when unit size = 128, 

which reduced 69% (-180MB) of the baseline model size while maintaining a test 

accuracy of >90% (91.42% on IndoorNet, 91.25% on TrotoarNet, and 93.76% on 

CurrencyNet); (2) activation function, with optimum performance when the 

activation function = sigmoid, with test accuracy increasing significantly 

compared to the Sherpa baseline model, i.e., 98.64% (+4.08%) on IndoorNet, 

96.88% (+5.68%) on TrotoarNet, and 96.8% (+2.01%) on CurrencyNet. The 

Sherpa model performed better when the baseline parameters were used, i.e., 

learning rate = 0.0001, optimizer = RMSprop, and loss function = 

categorical_cross-entropy, in testing the variables (3) learning rate, (4) optimizer, 

and (5) loss function. 

Inference time was reduced by 67.65% as a result of the optimization results used 

in the development of the TFLite model. It is therefore a relatively good choice 

for the LoVi application. The chosen model is based on transfer learning from 

MobileNet, quantized into 8-bit integers. 
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Appendix A. Pre-Trained Model Evaluation 

The images used in this experiment had size 224 x 224 pixels, batch_size 128, and epoch 

25. The pre-trained models were all trained with image size 224 x 224 pixels. To prevent 

overfitting, we used relatively small epoch values and relatively large batch sizes, since 

batch size and epoch cannot be determined from the data. NN-Architecture and Sherpa’s 

final architecture were benchmarked using a list of pre-trained models, as provided in 

Table A.1. In building the pre-trained models, we used ImageNet weights and 

TensorFlow libraries, excluding EfficientNet. Sherpa offers three models: IndoorNet, 

TrotoarNet, and CurrencyNet, each with a distinct function, label, and dataset. IndoorNet 

recognizes 19 different types of objects. TrotoarNet and CurrencyNet categorize images 

into four and eight categories, respectively. 

Table A.1. List of pre-trained image classification models from ImageNet for model 

training [26][27]. 

Pre-trained Models Abbreviation ML Library Input Size 

EfficientNet EfcNet Efficientnet 224 x 224 

DenseNet 169 DnsNet_169 Tensorflow 224 x 224 

Inception-Resnet version 2 Inc_Res_v2 Tensorflow 224 x 224 
Inception version 3 Inc_v3 Tensorflow 224 x 224 

MobileNet small Mob_v3_sml  Tensorflow 224 x 224 

ResNet 50 version 1 Rs_v1_50 Tensorflow 224 x 224 
ResNet 101 version 1 Rs_v1_101 Tensorflow 224 x 224 

ResNet 152 version 1 Rs_v1_152 Tensorflow 224 x 224 

VGG 16 Vgg_16 Tensorflow 224 x 224 
VGG 19 Vgg_19 Tensorflow 224 x 224 

Xception Xcp_v1 Tensorflow 224 x 224 

In Figure A.1(a), we compare pre-trained models to static variables for all ModelIDs. The 

NoPs were based on the pre-trained model used and the testing results. All ModelIDs had 

the same NoP value. ResNet152 had the highest NoPs at 162.3 million, while VGG16 

had the lowest, at 41.5 million. There was a difference in complexity and classification 

ability. Figure A.1(b) illustrates that IndoorNet, TrotoarNet, and CurrencyNet use 

different pre-trained models. IndoorNet, TrotoarNet, and CurrencyNet have identical 

models with the same pre-trained models at 261 MB, 281 MB, and 407 MB, respectively, 

while ResNet152 has a larger model, 1017 MB. NoPs and model sizes are generally 

similar. The more complex the model, the larger the model size. 

Figure A.2 illustrates the results of the latency versus accuracy test on all pre-trained 

models. According to the ModelID tests, the top-three optimum models, VGG16, 

VGG19, and MobileNet, had over 90% accuracy and varying latency. It is worth 

mentioning that the VGG16 and VGG19 generally had a latency of 100 ms.  
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Figure A.1. (a) Accuracy, (b) model size from the unit size test, and Model ID. 

 

Figure A.2.  The results of the latency vs accuracy test on the pre-trained model. 
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Figure A.3 (a) illustrates the test of a fully connected layer using the same 

parameters. Feature maps created by feature extraction are still multidimensional 

arrays, so they must be flattened or reshaped into vectors in order to be input into 

a fully connected layer. All neurons from the previous layer are connected to 

neurons in the next layer in the fully connected layer. Before the fully connected 

layer can be connected to all neurons, each activity must be converted to one-

dimensional data. To classify data from the previous layer, we used a fully 

connected layer. The difference between the fully connected layer and the 

ordinary convolutional layer is that the neurons in the convolutional layer are 

connected only to certain input regions. Conversely, the neurons in the fully 

connected layer are all connected. A batch normalization operation is also used 

in Figure A.4(a) to speed up the training process and increase learning rates. It 

equalizes the distribution of every input value during the training process because 

parameters change in the previous layer [28]. 

 

Figure A.3.  Test results of (a) NoPs on pre-trained models, (b) size across pre-trained 

models on ModelID. 
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(a) 

 
(b) 

Figure A.4.  (a) Fully connected layer, (b) Img/s test results on pre-trained models on 

ModelID. 

Several neurons were selected at random and not used during training to regularize the 

neural network after normalization. They were suspended during backpropagation, 

preventing overfitting and speeding up the learning process. Dropout will be used to 

remove neurons from hidden and visible layers using random selection. Each neuron will 

have a probability between 0 and 1. A fully connected layer architecture also uses 

activation functions, such as ReLU and Softmax, which determine whether neurons are 

active based on the weighted sum of their inputs. In this way, Softmax and ReLU provide 

non-linear decision boundaries that optimize training. According to Figure A.4(b), pre-

trained models differ in their inference latency. The smaller the latency, the higher the 

frames per second. More specifically, the optimal pre-trained models that produce high 

FPS are VGG16 and VGG19, with FPS values > 10, which both already meet the 

minimum FPS standard for the determined Sherpa model. 

 

1. output = Dense(1024,activation = 
"relu")(output) 

2. output = BatchNormalization()(output) 
3. output = Dropout(0.2)(output) 
4. output = Dense(1024,activation = 

"relu")(output) 
5. output = BatchNormalization()(output) 
6. output = Dropout(0.2)(output) 
7. output = Dense(19, 

activation=‘softmax’)(output) 


