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Abstract. Due to their similar appearance, skin disorders frequently disguise their 

early warning signs from our skin, which is the defense system of the body. 

Preventing serious disorders requires their early detection. This work investigated 

the use of fine-tune transfer learning as a fast and accurate way to diagnose skin 

diseases. To classify different skin issues, we used pre-trained models, i.e., 

InceptionV3, DenseNet201, and Xception. This work examined 17,500 photos 

from three sources. It was found that fine-tune Xception performed exceptionally 

well, with an accuracy rate of 99.14%. It was closely followed by DenseNet201 

and InceptionV3, each with different processing speeds, 98.74% and 98.46%, 

respectively. We used transfer learning with data sets validated by medical 

experts, outperforming earlier research in precision. This more accurate detection 

of skin diseases could greatly improve patient outcomes and expedite medical 

procedures. This approach is new in that it fine-tunes transfer learning by utilizing 

a vast number of data to increase accuracy compared to other researcher works. 
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1 Introduction 

Skin diseases have a profound global impact, affecting around 900 million people 

worldwide with over 3,000 different skin-related conditions [1]. As the body’s 

largest organ, the skin serves multiple functions, including protection, nutrient 

absorption, waste disposal, temperature regulation, and sensation perception. The 

burden of skin diseases extends beyond personal well-being, putting significant 

financial pressure on healthcare systems, covering a spectrum from common 

issues like acne to life-threatening diseases like melanoma. 

Rapid detection of skin diseases is crucial to halt their progression, reduce 

healthcare costs, and enhance patients quality of life. The objective of this study 
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was to improve the precision of skin disease diagnosis by several different data 

sets and cutting-edge methodologies. 

Recent advancements in machine learning and artificial intelligence have 

revolutionized medical diagnostics [2]. Transfer learning, a prominent technique 

in machine learning, offers a promising approach to complex medical diagnostic 

challenges, even with limited data. This study aimed to enhance skin disease 

detection precision by exploring transfer learning strategies, adapting pre-trained 

models initially designed for tasks like image identification. Employing a fine-

tune convolutional multi-layer feature network, this research addressed the 

limitations of single-source data and manual diagnosis, using a fine-tune CNN 

model for higher accuracy. The primary research question focused on the need 

for an effective and precise approach to skin disorder detection, utilizing various 

data sources. The goal was to create and apply artificial intelligence and machine 

learning algorithms for automated skin disease diagnosis, improving accuracy 

without the need for large, specialized data sets. 

2 Literature Review 

Numerous studies have delved into skin disease diagnosis using various machine 

learning and deep learning techniques. Hosny et al. [3] used AlexNet, surpassing 

existing skin cancer classification methods with 96.82% accuracy. El Gannour et 

al. [4] employed ensemble learning, achieving 96.03% accuracy using the ISIC 

2018 data set.  

Domain-specific augmentation approaches were explored by Jahanifar et al. [5], 

enhancing model generalization. Bakkouri et al. [6] used Convolutional Fusion 

Unit (CFU) to improve skin abnormality classification. Abunadi et al. [7] used 

hybrid features and neural networks, achieving 97.91% accuracy for the PH2 data 

set. Shaheen et al. [8] applied particle swarm optimization and pre-trained CNNs 

for skin disease classification, achieving 97.82% accuracy. Raghavendra et al. [9] 

proposed a DCNN model with a graphical user interface, achieving 97.20% 

accuracy. Thanka [10] achieved 99.1% accuracy using ISIC data sets with 

VGG16 + XGBOOST. Alani et al. [11] presented a multiclass skin lesion 

diagnosis system, achieving 95% accuracy. Adegun et al. [12] combined 

segmentation and classification with an FCN-based DenseNet, obtaining 98% 

accuracy. Mehmood [13] introduced SBXception with 96.97% accuracy on the 

HAM10000 data set. Goyal et al. [14] used deep learning for multi-class 

segmentation, achieving 84.62% accuracy for melanoma diagnosis. Balaji et al. 

[15] employed dynamic graph cut and Naive Bayes, achieving 92.8% accuracy. 

Al-Masni et al. [16] integrated skin disease classification and segmentation, 

achieving 89.28% accuracy with ResNet-50. Sonawane et al. [17] developed a 

web-based application with DenseNet-121, achieving 84.64% accuracy. Usama 
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et al. [18] proposed an automated approach for skin lesion segmentation, 

achieving 95.9% accuracy. Gairola et al. [19] proposed a fully fused network 

(FFN), which consists of an improved fusion block (IFB) and an improved single 

block (ISB). The greatest accuracy utilizing HAM10000 (for ResNet101V2), 

HAM10000 (for Resnet50 + ResNet101V2), and HAM10000 (for Resnet50 + 

ResNet101V2) was 86% for ISB, 90% for IFB, and 92% for FFN in the 

experiments. Purni et al. [20] employed the ISIC 2018 and 2019 public data sets 

to identify and detect multi-class skin cancer using an enhanced deep learning 

technique called convolution neural network (CNN) for classification and an 

improved canny edge for detection, with an accuracy of 99%. 

These studies showcase the diversity of approaches in skin disease diagnosis, 

using advanced technologies to achieve high accuracies across various data sets. 

The challenges of data imbalance, model interpretability, and ethical 

considerations remain essential areas for future research. We used diverse data 

set for large scale data set with fine-tune transfer learning to gain more accuracy 

compared to other research with a balanced data set and with ethical 

considerations.  

3 Methodology 

The stepwise approach to achieving our goal involved various phases, including 

data set collection, data preprocessing, splitting the data set for training and 

testing then model development, with model fine-tuning, performance selection 

and best model selection. Figure 1 illustrates the operational procedure. 

 

Figure 1 Step-by-step representation of our working procedure. 
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3.1 Data Set 

We gathered data from Kaggle [21] for 10 classes, each having 1,250 data points 

(Eczema, Melanoma, Atopic Dermatitis, Basal Cell Carcinoma, Melanocytic 

Nevi, Benign Keratosis-like Lesions, Psoriasis, Lichen Planus, and related 

diseases, Seborrheic Keratoses and other Benign Tumors, Tinea Ringworm 

Candidiasis, and other Fungal Infections, Warts Molluscum, and other Viral 

Infections). Additionally, we collected 480 data points of Squamous cell 

carcinoma, 650 data points of Acne, and 344 data points of Dermatofibroma from 

HARVARD DATAVERSE [22]. Furthermore, 570 data points of Vascular lesion 

were obtained from STANFORD AIMI [23]. We combined these to create a 

single data set with medical verification from Dr. Mohammad Kykobad Hosain, 

MBBS, MCPS, DMF (BSMMU), CCD (BIRDEM), Managing Director, Sahara 

Modern Hospital & Diagnostic Centre, Bangladesh. 

3.2 Data Preprocessing 

To enhance the effectiveness of image classification, several crucial 

preprocessing steps are employed on the images in the proposed method [24]. 

These include rotation, scaling, and translation. The images are scaled to a 448 x 

448 size for Inception V3, DenseNet201, and Xception, with a batch size of 64 

and a learning rate of 0.01 for each model, ensuring compliance with specified 

requirements while maintaining photo quality. The pixel value is normalized 

between -1 and +1. Augmentation techniques such as rotation, width shift, height 

shift, shear range, and horizontal flip are employed to enhance the images. 

While 10 classes had sufficient images (1,250), the remaining 4 classes did not 

(480 data of Squamous cell carcinoma, 650 data of Acne, 344 data of 

Dermatofibroma, 570 of vascular lesion). Augmentation was used to balance all 

classes to 1,250 images for each of the 4 classes. We used 14,000 images for 

training, 1,750 images for testing, and 1,750 for validation. 

3.3 Performance Calculation 

Several image classification performance evaluation metrics have already been 

evaluated by other researchers [25,26]. We employed Equations 1-4 to estimate 

the effectiveness of the classifiers in identifying skin conditions. In the formulas 

below, TP represents true positive, FP is false positive, TN is true negative, and 

FN is false negative. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑚𝑎𝑔𝑒𝑠
× 100% (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = (
𝑇𝑃

  𝑇𝑃+𝐹𝑃     
) × 100% (2) 
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𝐹1 𝑆𝑐𝑜𝑟𝑒 = (2 ×
     𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙      

   𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙      
) × 100% (3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
     𝑇𝑃      

   (𝑇𝑃+𝐹𝑁)     
× 100% (4) 

4 Analysis and Discussion 

The experiment was conducted on 17,500 images related to skin diseases. The 

images were categorized into 80% for training, 10% for testing and 10% for 

validation, i.e., 14,000 training images, 1,750 test images, and 1,750 validation 

images. In the whole model, the learning rate during training was modified (lr = 

0.01) based on training and validation accuracy using a custom callback class 

called LRA. The models were constructed using categorical cross-entropy loss 

and the Adamax optimizer.  

For learning rate changes, the LRA callback was utilized after a predetermined 

50 epochs of training. Figure 2 shows plots of the training and validation loss 

(best number of epochs = 50) and the training and validation accuracy (best 

number of epochs = 46) over the number of epochs, executed by the script after 

training for Inception V3. The model’s final few layers were unfrozen to allow 

for another 20 epochs of fine-tuning. Figure 3 shows that, after fine-tuning over 

70 epochs, the best number of epochs was 70 for training and validation loss and 

the best number of epochs was 51 for training and validation accuracy. Model 

metrics after training gave a loss of 0.25455 and an accuracy of 0.98457. A 

function called print_info was defined in the script to print details concerning 

model predictions, such as incorrectly categorized images and class-wise errors 

shown in Figure 4. Table 1 shows the class wise performance on the Inception 

V3 model. 

 

Figure 2 Training and validation loss and accuracy over 50 epochs for 

Inception V3. 



    Enhancing Skin Disease Diagnosis through Fine-tune CNN       135 

 

Figure 3 Fine-tune training and validation loss and accuracy over 70 epochs for 

Inception V3. 

 

Figure 4 Errors by class set on Inception V3. 

Table 1 Class wise performance on Inception V3. 

Classes Precision Recall F1 Support 

Eczema 1.00 1.00 1.00 129 

Warts molluscum and other viral infections 0.99 0.98 0.99 114 

Acne 1.00 1.00 1.00 131 

Squamous cell carcinoma 0.98 0.98 0.98 121 

Vascular lesion 0.96 0.96 0.96 112 

Dermatofibroma 0.96 0.99 0.98 133 

Melanoma 0.96 0.99 0.98 130 

Atopic dermatitis 0.98 0.99 0.99 130 

Basal cell carcinoma (BCC) 0.98 0.99 0.99 125 

Melanocytic nevi (NV) 0.98 0.97 0.98 110 

Benign keratosis-like lesions 0.98 0.94 0.96 149 

Psoriasis pictures lichen planus and related 1.00 1.00 1.00 134 

Seborrheic keratosis and benign tumours 0.99 1.00 0.99 99 

Tinea ringworm and other fungal infections 1.00 0.99 1.00 133 

Next, for the Xception model, Figure 5 shows 50 epochs of training for 

training/validation and loss/accuracy. The base Xception model was unfrozen 
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after fine-tuning for an extra 20 epochs, with training and validation loss/ 

accuracy after 70 epochs as shown in Figure 6. For the test set, the errors by class 

are shown in Figure 7. The evaluation metrics of the trained model show that loss 

= 0.19959 and accuracy = 0.99143. Table 2 shows the class-wise performance on 

the Xception model. 

 

Figure 5 Training and validation loss and accuracy for 50 epochs on Xception. 

 

Figure 6 Fine-tune training and validation loss and accuracy for 70 epochs on 

Xception. 

 

Figure 7 Errors by class set on Xception. 
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Table 2 Class-wise performance on Xception. 

Classes Precision Recall F1 Support 

Eczema 1.00 1.00 1.00 129 

Warts molluscum and other viral infections 1.00 0.99 1.00 114 

Acne 1.00 0.98 0.99 131 

Squamous cell carcinoma 1.00 0.97 0.98 121 

Vascular lesion 0.99 0.97 0.98 112 

Dermatofibroma 0.96 1.00 0.98 133 

Melanoma 0.98 1.00 0.99 130 

Atopic dermatitis 0.99 0.99 0.99 130 

Basal cell carcinoma (BCC) 0.98 1.00 0.99 125 

Melanocytic nevi (NV) 1.00 0.98 0.99 110 

Benign keratosis-like lesions (BKL) 1.00 0.99 1.00 149 

Psoriasis pictures lichen planus and related 1.00 1.00 1.00 134 

Seborrheic keratosis and other benign tumours 1.00 1.00 0.99 99 

Tinea ringworm and other fungal infections 0.99 1.00 0.99 133 

In terms of DenseNet201 models, like other models, Figure 8 shows training for 

50 epochs of training/validation, loss/accuracy. The base Xception model was 

unfrozen after fine-tuning for an extra 20 epochs showing training and validation 

loss/accuracy after 70 epochs, as shown in Figure 9. The DenseNet201 model 

demonstrated an impressive accuracy of 98.74%, highlighting its efficacy in 

precisely categorizing skin disease images. Figure 10 shows the class-wise errors 

on DenseNet-201. Table 3 shows the class-wise performance on the DenseNet-

201 model. 

 

Figure 8 Training and validation loss and accuracy for 50 epochs on DenseNet-

201. 
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Figure 9 Fine-tune training and validation loss and accuracy for 70 epochs on 

DenseNet-201. 

 

Figure 10  Errors by class set on DenseNet-201. 

Table 3 Class-wise result of DenseNet-201. 

Classes Precision Recall F1 Support 

Eczema 0.99 1.00 1.00 133 

Warts molluscum and other viral infections 0.98 1.00 0.99 131 

Acne 1.00 1.00 1.00 129 

Squamous cell carcinoma 0.99 0.95 0.97 125 

Vascular lesion 0.97 0.97 0.97 130 

Dermatofibroma 1.00 0.97 0.99 149 

Melanoma 1.00 1.00 1.00 110 

Atopic dermatitis 1.00 0.99 1.00 133 

Basal cell carcinoma (BCC) 0.98 1.00 0.99 112 

Melanocytic nevi (NV) 0.95 1.00 0.98 99 

Benign keratosis-like lesions (BKL) 0.95 0.97 0.96 121 

Psoriasis pictures lichen planus and related 0.99 1.00 1.00 134 

Seborrheic keratosis and other benign tumours 1.00 0.99 1.00 114 

Tinea ringworm and other fungal infections 1.00 0.98 0.99 130 

Our research emphasized furthering transfer learning through fine-tuning, 

following established studies, on a balanced data set with strict ethical 

considerations taken directly from the medical field. It was this careful attitude 
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that helped us to optimize the chosen CNN model and increase the accuracy 

considerably compared to earlier research.  

As indicated in Table 4, the Xception model performed best, with test set 

accuracy as high as 99.14%. By comparison, DenseNet201 realized an accuracy 

of 98.74%, and InceptionV3 followed with an accuracy of 98.46%. These results 

demonstrate that our fine-tuning approach was very effective, especially in the 

detection of complex skin diseases. Moreover, the training loss values support 

the strength of our models, where Xception always remained at a lower loss of 

0.19959, proving that it is efficient in learning from the data.  

Table 5 compares our study with previous studies. This comparison shows that 

our model did not only perform more accurately than previous studies but also 

did so using a much larger and more diversified data set. For instance, while 

Vgg16 combined with Xgboost realized an accuracy of 99.10% on a far smaller 

data set of 1,416 images, our Xception model was able to surpass this with 

99.14% on a data set with 17,500 images in 14 classes. 

This study makes significant contribution to the field in the form of a more correct 

and complete solution for skin disease detection, outperforming the available 

methodologies. The increased data set and number of classes also give 

importance and strength to our model in helping medical professionals diagnose 

a wide variety of skin conditions. 

Table 4 Proposed models’ accuracy on test set with training loss and accuracy value. 

Models 
Accuracy on test 

set (%) 

Loss value after 

training 

Accuracy value 

after training 

Xception 99.14% 0.19959 0.99143 

DenseNet201 98.74% 0.16492 0.98743 

InceptionV3 98.46% 0.25455 0.98457 

Table 5 Comparison with other researcher work. 

Reference study Data set No. of classes Best method Accuracy (%) 

[10] 1,416 2 Vgg16 + Xgboost 99.10% 

[16] 12,900 12 ResNet50 83.62% 

[17] 1,800 2 DenseNet121 84.64% 

This study* 17,500 14 Xception 99.14% 

5 Conclusion 

This study highlighted the application of deep feature extraction and transfer 

learning for the identification of skin diseases from a diverse global skin disease 

image collection. Three widely recognized and updated deep CNN architectures 

– DenseNet201, Xception, and Inception V3 – were employed for deep feature 
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extraction and transfer learning. The data set used in our experimental work 

stands out due to its substantial quantity of example images and a diverse range 

of classes compared to other reviewed studies. Xception demonstrated 

exceptional performance, achieving a remarkable 99.14% accuracy rate, 

outperforming other algorithms considered in our analysis of existing research 

articles on skin disease detection. In future work we will aim to further enhance 

classification accuracy by incorporating various CNN models. This research 

contributes to the overarching goal of developing an automated system capable 

of real-time skin disease diagnosis through the scanning of personal skin images. 

Such an automated system has the potential to assist the medical field in promptly 

identifying and addressing skin issues. In the future, we will use our approach to 

create an automated disease detection app with precision medicine. 
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