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Abstract. Data clustering is a data mining approach that assigns similar data to
the same group. Traditionally, cluster similarity considers all attributes equally,
but in real-world applications, some attributes may be more important than others.
Therefore, this study proposes an algorithm that utilizes multivariate fuzzy
weighting to demonstrate the varying importance of each attribute, using a Gini
impurity measure for weight assignment. Additionally, the proposed algorithm
implements probabilistic distance to reduce sensitivity to noise. Probabilistic
distance offers more detailed information and better interpretation than Hamming
distance, which ignores attribute positions. Probabilistic distance utilizes
information about the attribute’s position within and between clusters. This
enhances clustering performance by creating clusters with more similar attributes.
Therefore, the proposed Multivariate Fuzzy Weighted K-Modes with Probabilistic
Distance for Categorical Data (MFWKM-PD) algorithm, based on the multivariate
fuzzy K-modes algorithm, not only considers detailed membership calculations
but also considers the varying contributions of attributes and their positions in
distance calculation. This study evaluated the proposed MFWKM-PD using
several benchmark datasets. The experiments validated that the proposed
MFWKM-PD shows promising results compared to other algorithms in terms of
accuracy, NMlI, and ARI.

Keywords: categorical data; fuzzy -clustering; Gini impurity; MFWKM-PD;
probabilistic distance.

1 Introduction

Nowadays, the amount of digital data is growing exponentially and becoming
more complex both on variety and sources. Therefore, the question of “how to
effectively process this abundance of data to derive meaningful insight that can
support decision makers” has become more crucial than in previous times when
traditional data analysis methods were still effective. Data mining is an approach
to explore and extract important information from data. It uses a variety of
techniques, such as clustering and classification. Classification is a supervised
learning method where the data is given predetermined labels. In contrast,
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clustering groups similar data points together without using labels and is called
an unsupervised learning technique. Clustering works without prior knowledge
of specific labels to help make better decisions in many areas related to data
segmentation and grouping. For example, customer segmentation on purchasing
behavior, in which customers are grouped together according to similarities in
their buying patterns. In molecular biology, cluster analysis can help scientists
find the relationships between genes from large amounts of genomic data.
Examples can also be found in other areas, such as medicine, biology, e-
commerce [1-3], and so on.

Data clustering generates clusters according to the similarity of the data.
Therefore, distance measurement is a critical issue in data clustering. The
distance measurement used for calculating data similarity (or dissimilarity)
should be defined based on the data type. The existing distance measurement,
such as Hamming distance, has difficulty capturing the relation between the
attributes since this metric only considers the dissimilarities between objects or
objects with their centroids. Other distance measurements can be used, such as
probabilistic distance based on kernel density estimation [4]. As opposed to the
distance from the object to the centroid, probabilistic distance is specified as the
distance from the object to the cluster.

Moreover, clustering methods can be divided into two categories based on how
the clusters are produced, i.e., hierarchical and partitional clustering. Hierarchical
clustering allows clusters to have sub-clusters, while partitional clustering only
assigns each unlabeled object to one cluster [5]. Furthermore, in partitional
clustering, clustering methods can be divided into hard and soft clustering, which
differ in membership weight. Hard clustering, such as K-means [6] or K-modes
[7], assigns each instance to a single cluster. In contrast, soft or fuzzy clustering,
like in the fuzzy c-means algorithm (FCM) [8] and the fuzzy K-modes algorithm
(FKM) [9], assigns each instance to multiple clusters with different membership
values. Unlike FCM, FKM was developed to cluster the categorical data.
However, there are some drawbacks when the number of values of each attribute
increases. For instance, they treat all attributes as equally important, while in a
real application, the contribution of the attributes can be different. The
multivariate fuzzy K-modes algorithm (MFKM) is an algorithm that can handle
differences between the values of each attribute of different clusters [10].

MFKM is an algorithm constructed by using the multivariate fuzzy c-means
algorithm (MFCM) [11]. Both take a multivariate approach to determining the
degree of membership. Certain methodologies employ a weighting technique. As
an illustration, the weighted multivariate membership fuzzy c-means (WMFCM-
M) algorithm and the multivariate membership integrated with weighted
distances by cluster and variable (WMFCM-D) algorithm use the distance
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parameter’s weight to measure the variability dispersion within clusters, thereby
facilitating the identification of cluster shapes [12]. Additional research has
explored the utilization of impurity metrics, including entropy and Gini impurity,
to enhance clustering performance [13-15]. Moreover, Kim [14] proposed a
method for assigning weights that considers the attribute distributions within and
between clusters. As a result, each attribute has a different weight and
contribution that impacts the separation of objects into different clusters.

This study intended to develop a clustering algorithm that addresses the
limitations of the above-mentioned algorithms by combining a weighting method
and probabilistic distance, namely the multivariate fuzzy weighted K-modes
algorithm with probabilistic distance for categorical data (MFWKM-PD). Three
validity indexes—accuracy, normalized mutual information, and modified Rand
index—were used to measure the performance of MFWKM-PD. This study
implemented the proposed algorithm on several benchmark datasets. The results
were compared with some clustering algorithms.

The remaining of this paper is organized as follows. Section 2 presents a brief
review of the MFKM algorithm. Section 3 discusses the proposed MFWKM-PD
algorithm. Section 4 presents the experimental results. Finally, the concluding
remarks are given in Section 5.

2 Multivariate Fuzzy K-Modes Algorithm (MFKM)

The most popular fuzzy clustering algorithm to cluster categorical data is called
the FKM algorithm; nevertheless, it reflects the same membership degrees for
every attribute [9]. On the other hand, assigning different values for each attribute
in different clusters is possible. Therefore, the FKM algorithm may be combined
with the multivariate approach called multivariate fuzzy K-modes (MFKM) [10].
This algorithm was adopted from the multivariate fuzzy c-means algorithm for
numerical data (MFCM) [12]. MFKM and MFCM are based on the same idea: to
find a multivariate fuzzy partition and form multiple membership matrices.

MFKM has three important characteristics: (1) being able to determine each
object’s significance for a certain group based on each attribute; (2) being able to
extract more information from data, which provides higher clustering quality; and
(3) being a multivariate data analysis tool. Consequently, it produces different
membership degrees, allowing it to handle the ambiguity of the data precisely
[10].

In general, the MFKM algorithm has to represent the different memberships for
each attribute in the different clusters and calculate the distance between clusters
and centroids. The illustration of the membership distribution can be seen in
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Table 1, where there are five records (i) with two attributes (I) and three clusters
().

Table1l  Membership distribution example of MFKM algorithm.
j=1 j=2 j=3

XU X2 125 =1 1=2 1=1 1=z '@
i1 1 2 008 022 020 023 003 024 100
i—2 1 1 037 030 003 011 015 004 100
i=3 4 5 00l 002 010 011 017 059 100
i—4 9 8 032 009 009 032 002 016 100
i=5 8 7 007 013 059 016 001 004 100

1.61 1.94 1.45 5.00

Given X, a set of n categorical objects. Each object x; is defined as a set of m
categorical attributes so thatx; = {x;1, x;2, ..., x;n}. MFKM partitions X into k
clusters denoted as C,, C,, ..., C, by minimizing the objective function in Eq. (1).

JM =X Xy ZTwid (o 2n) (1)
with subject to constraints in Egs. (2) to (4):

O<uy<1 Vj=1..,ki=1..,nl=1,.,m, 2

T SRiuy =1, Vi=1,.,n, (3)

0<YL YPiupy <n, Vji=1,..,k, (4)

where «a is a fuzziness component, and k is a predetermined number of clusters,
while U = [w;] with (i=1, 2, ..., n) is a multivariate fuzzy partition. U contains n
multivariate membership matrix w; = [u;;] where w;; is the membership degree
of the object i to cluster j on attribute 1. z;, is the centroid of cluster j on attribute I.
d(xy, zy) is the distance between x;; and its responding centroid z;. The matching
distance measure is represented in Eq. (5) as follows:
(0, if xiy =2y
dCum) =7 ez ®

where z;; is the j** element of Z; and x; is the i*" point of X;.

The MFKM clustering algorithm is described as follows:

1. Initialization
(Fixc,2<k<n;fixm,1<a<oo;fixT;and fixe >0)
Randomly initialize w;;; G = 1,...,k; 1 =1,..,m;i = 1,...,n) of pattern x
belonging to cluster C; on attributes | such that w;; €
[0,1] and Zlezﬁl wj; =1.Dot=1
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2. Representation
(Fix membership w;;; of pattern x(x = 1, ..., n) belonging to class C; on the
attributes I(l = 1, ...,m)). Compute centroid z; of cluster C;(i = 1,...,k)
using Eq. (6):

* a
r-=argmax {Zl:x el ujli}' (6)
1srs<p; =

3. Feature Membership
(Fix centroid z; of cluster C;(i =1, ..., k)). Update the fuzzy membership

degree, u;;, using Eq. (7):

=
j d(XigZpq

1 1-1
215:1 2g=1 ( Ay )El : @)

4. Stopping Criterion
If /&2 —J&|| < e or t > T, go to Step (5); otherwise, update t=t+ 1 and
go Step 2.

5. Class Membership
(Fix centroid z; and membership wy; = (j =1,..,k),(I=1,..,m),(i =
1, ...,m)). Compute the fuzzy membership degree of object x belonging to
cluster Cj, (y;;) using Eq. (8):
Yii = Zi%1 Y- (8)

3 Proposed Algorithm

In real-world applications, the attributes have different contributions; therefore,
the importance of the attributes can be different. Using impurity metrics such as
entropy and Gini impurity, each attribute can be weighed during the clustering
process by considering the within-cluster and between-cluster relationship [14].
Moreover, the proposed algorithm uses probabilistic distance, which differs from
possibilistic distance, instead of Hamming distance [4] to reduce the noise
sensitivity.

Thus, the MFKM algorithm, which integrates the weighting method and
probabilistic distance, becomes the multivariate fuzzy weighted K-modes
algorithm with probabilistic distance (MFWKM-PD).

In Eq. (9), the objective function of the proposed MFWKM-PD is defined to find
U, Z, and W to minimize F(U, Z, W) as follows:

F(U,Z,W) = Z?=1 Di=1 2021 uﬁiwld(xil: Zj1) (9)
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Give X, a set of n categorical objects. Each object x; is described by a set of m
categorical attributes so that x; = {x;1, x5, ..., x;m}, k is a predefined number of
clusters denoted as Cy, C,, ..., Cy, a is a fuzziness component, U as a multivariate
fuzzy partition contains n multivariate membership matrix u; = [w;;;] where w;;
is the membership degree of the object i to cluster j on attribute I, Z represents
cluster centers, and w; is the weight of attribute I.

As w; is a weight of attribute I, consider w;,, is a weight of attribute | based on
within-cluster information as well as w;;, as a weight of attribute | based on
between-cluster information. Thus, in Eg. (10), the weight of attribute | (w,) is
defined as follows:

w; = awpy, + (1 — awy . (10)

The adjusted parameter between two weight components w;,, and w,, is defined
as a, where a(0 < a < 1). Since the probabilistic distance on the proposed
algorithm uses Gini Impurity, the final weights of w,,, and w,, are calculated
based on Egs. (11) and (12):

oK 85(1-1w(£1)))
iy Z?:1 5j(1_1W(flf)),

(11)

Wl,w =

__ 1-1p(g]) (12)

1 =
Lb L. 1-1p(97)

where Y2, wy,, = 1, For categorical attributes, §; is a weight that is proportional
to the number of data samples that are part of the j-th cluster. It can be defined as
8 = % where n; is the number of objects in cluster ¢;. Furthermore, the Gini

impurities of each category attribute, which are based on the distribution of
categories within the clusters, are presented in Eq. (13) as 1,,(f;,):

L(fy) =1-3m (1) (13)

where h, is the set of categories in attribute 1. The Gini impurity, I,(g]), is a
distribution of categories across clusters. It is defined in Eq. (14):

LD =1-35.(g7)", (14)
Regarding the distribution of categories, the distribution of categories of attribute
I'in cluster j can be considered as f;; and f;; as the frequency ratio of category r of
attribute I in cluster j. Moreover, the distribution of attribute | across clusters is
considered as gj and gj; as the frequency ratio of objects whose category value
of the attribute | is a].

The fuzzy weighting method is used to compute £; and g;; with membership
degree u. Suppose the probability x;; = a} in the j-th cluster, and the probability
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of the object with x;; = aj also belong to the j-th cluster, then £ and g;; are
defined in Egs. (15) and (16):

Yi=al Wji
r— =% 15
Ty I uji (15)
and
Ey=al Wit
ro— = 16
gij le.l:aer}‘:lujz (16)

The proposed MFWKM-PD algorithm employs probabilistic distance instead of
Hamming distance [4]. Rather than calculating the object-to-centroid distance,
this method computes the object-to-cluster distance. Therefore, distance
d(xy,2) in Eq. (9) becomes d(x;;, C;) which represents the distance of x; to
cluster j on attribute | as defined in Eq. (17):

d(xy,Z;) = Ztehl[p(xl =tlxy) —p(x = t|Cj)]2 (17)

where the h, is the set of categories. For instance, the attribute d takes |k, | discrete
values. In the set, an arbitrary category is indicated by ¢t € h;, where L € [1, || ].
Since all the categories in h; are assumed to be independent of one another, Eq.
(18) is used to estimate the probability p(x; = t|x;):

p(x = tlxy) = 1(t = xy) (18)
where I(t = x;;) = 0if x;; # t, and otherwise, I(t = x;) =0
The kernel functions p(x; = t|C;) determine the probability density of x;, where
t € hy. Itis defined in Eq. (19):

P = t16) = B+ (1= B)f;©) (19)

The smoothing parameter, B;, is called the bandwidth, and the frequency estimator
of tin cluster C; is formulated in Eq. (20):

fi(®) = 5 Te 16 = x0) (20)
For categorical data, the optimal bandwidth of p; lies within [0, 1] and can be
calculated using Eq. (21):
Z?;vgjzl

(nj-1) z?;("];'l‘ll

Bi = (21)

2
_Sjl)

The number of objects in cluster j is represented as n;. The sample dispersion of
categorical attributes is measured by the Gini diversity index S7, which is provided
in Eq. (22):
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S =1-Zeenfi(OT? (22)
Finally, the probabilistic distance is defined in Eq. (23):
1 2
d(xi, C;) = Tten, [I(t =xy) — PBj T (1- ﬁj)fj(t)] (23)

Therefore, to minimize F(U, Z, W), the objective function of the proposed
MFWKM-PD algorithm is presented in Eq. (24)”

F(U,Z,W) = Xf_ X Dk ufwid(x, G) (24)

3.1  Updating Rules

Based on Egs. (6-7), the cluster centroid z; of cluster j on attribute | and
membership degree w;; are updated using Egs. (25) and (26) respectively:

Zj = al(r), r = argisrsin,Max {Zv:xw:a{ u}‘;]ll} (25)
and
I
sk m [ A&iCj) \a-1
Ui = [Zh:l Yes1 (d(xiSvCh)) ] (26)

The object-to-cluster distance d(x;, C;) is calculated using Eq. (21); the weight
attribute I (Z;) is calculated based on a fuzzy weighting method, f;; and g;;, using
Eqg. (10).

The proposed MFWKM-PD follows the following procedures:

Step 1: Initialization — Initialize multivariate fuzzy partition U' which contains n
membership matrix u; = [uy;], (=1, .., ki=1,..,m;1=1,..,m) to satisfy
the constraint. Generate the attribute weight W with w; = 1/m for all attributes.
Identify the centroid Z* such that cost F(U?, Z!, W) is minimized. Set iteration
t=1.

For t = 1 to max iteration

Step 2: Fix Z*and W* and update U**?,

If F(U™L,Zt, Wb = F(UY, Zt, Wt), then stop;
Else go to Step 3

Step 3: Fix W' and U**! and update Z'**

If F(UYL, 241, W) = F(U'1, Z8, WY), then stop
Else go to Step 4

Step 4: Fix U and Z*+! and update W*t*?1,

If F(UYL, Z%1 wtl) = F(U?, Z91 W) or iteration t = max iteration, then
stop.

Else return to Step 2

End for
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4 Experimental Results

This study evaluated the proposed MFWKM-PD algorithm using three
benchmark datasets from different fields, i.e., molecular biology, balance, and
lymphography. Table 2 shows the details of the datasets, which have different
numbers of instances (N), categorical attributes (dc), and clusters (k) and were
retrieved from the UCI machine learning repository.

Table 2 Benchmark datasets.

Datasets N de k
Molecular Biology [16] 106 57 2
Balance [17] 625 18 3
Lymphography [18] 148 18 4

The molecular biology dataset (E. Coli promoter gene sequences) has 57
categorical attributes and each attribute has four levels of categories; the balance
dataset has 18 categorical attributes and each attribute has five levels of
categories. Moreover, the lymphography dataset, even though it has a similar
number of attributes to the balance dataset, has various levels of categories. There
are ten attributes comprising two levels, two attributes comprising three levels,
four attributes comprising four levels, and two attributes comprising eight levels.

Accuracy (AC), normalized mutual information (NMI), and modified Rand index
(ARI) were used to measure the performance of MFWKM-PD. The AC metric is
defined in Eq. (29), where q; represents the correctness of cluster assignment and
n is the total number of objects, x;.

AC = ZZT” (29)

The NMI metric is the normalized version of mutual information (MI). Its value
is in the interval [0;1], where 1 indicates the perfect labeling between the
clustering result and the class label. NMI is given by Eq. (30):
_IxY)

NMI = 2 (30)
The entropies of X and Y are represented by H(X) and H(Y), respectively, and I(X,
Y) represents the mutual information between X and Y. Note that the attributes X
and Y are random.

The ARI metric considers all cluster pairwise combinations and contains values
in the interval [-1;1], where 1 indicates that the clusters are identical [19]. ARI is
defined in Eq. (31):

_ RI—-expected (RI)
ARI = max(RI)—expected(RI)’ (31)




102 Ren-Jieh Kuo, et al.

where the Rand index (RI) measures the similarity between two cluster results by
considering the number of pairs of elements belonging to the same or different
clusters.

41  Results
In this experiment, the parameter settings for all algorithms were set as follows:

1. The fuzziness component a was 1.1 instead of 2 so the experiment gained
better performance. Some papers performed better with a smaller « value
[9,14].

2. The initial weight w, was initialized as 1/m for each attribute I.

3. The optimal value of the balancing parameter a between two weight
components for most cases was close to 0 or 1. Therefore, the a value was set
as 0.1 [14].

This study compared the performance of MFWKM-PD algorithm with several
clustering algorithms, i.e., fuzzy K-modes (FKM), fuzzy weighted K-modes
(FWKM), fuzzy K-modes with probabilistic distance (FKM-PD), fuzzy weighted
K-modes with probabilistic distance (FWKM-PD), multivariate fuzzy K-modes
(MFKM), multivariate fuzzy weighted K-modes (MFWKM), multivariate fuzzy
K-modes with probabilistic distance (MFKM-PD), and multivariate fuzzy K-
modes with probabilistic distance (MFWKM-PD).

Each algorithm was run 30 times with the same initial centroids for all algorithms
and the average performance was calculated based on the average values.
Therefore, the proposed algorithm had slightly modified steps regarding this
experiment, using the random initial centroids instead of random multivariate
membership. Tables 3, 4, and 5 present a summary of the computational results
in terms of accuracy, NMI, and ARI, respectively. The standard deviation and
average clustering accuracy for all algorithms are displayed in Table 3.

Table 3 Average of accuracy (AC) and standard deviation (SD).

FKM- FWKM- MFKM- MFWKM-
Datasets Index FKM FWKM PD PD MFKM MFWKM PD PD
Molecular AC 55.031 56.824 58.491 60.377 58.742 60.126 60.912 61.509
Biology SD 3.471 3.697 4.439 5920 4.765 5.997 7.526 8.573
AC 54352 54.352 54.469 54.784 54.208 54.389 55.109  55.163
SD 4.235 4235 4.493 4.652 5.320 4.128 4.490 5.438
Lympho AC 65.698 65.811 65.450 68.311 63.941 65.766 55.856  55.901

graphy SD 4.942 5027 6.514 6.706 5.937 6.578 0.648 0.613

Balance
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The proposed algorithms won over the other algorithms for the molecular biology
and balance datasets. This was because those algorithms have the same level of
categories. The proposed algorithm also outperformed the other algorithms in
terms of the average of NMI and ARI scores for two out of three datasets.
However, the standard deviation of accuracy, NMI, and ARI scores obtained by
the MFWKM-PD algorithm was not always better than that of the other
algorithms. In general, FKM-based with weight and probabilistic distance (PD)
algorithms had better results than FKM algorithms for all datasets. This proves
that weight and probabilistic distance can improve FKM performance.

Table 4 Average of NMI and standard deviation (SD).

FKM- FWKM- MFKM- MFWKM-
Datasets Index FKM FWKM PD PD MFKM MFWKM PD PD
Molecular NMI 0.011 0.018 0.029 0.046 0.031 0.044 0.090 0.099
Biology SD 0.012 0.016 0.029 0.049 0.027 0.046 0.079 0.086
Balance NMI 0.028 0.028 0.028 0.030 0.028 0.028 0.030 0.032
SD 0.023 0.023 0.027 0.029 0.029 0.023 0.024 0.031
Lympho NMI 0.127 0.126 0.130 0.157 0.125 0.128 0.091 0.094

graphy SD 0.055 0.054 0.064 0.065 0.048 0.060 0.043 0.040

Table5 Average of ARI and standard deviation (SD)

FKM- FWKM- MFKM- MFWKM-
Datasets Index FKM FWKM PD PD MFKM MFWKM PD PD
Molecular ARI 0.005 0.015 0.028 0.048 0.030  0.046 0.064 0.076
Biology SD 0.016 0.021 0.033 0.056 0.034  0.055 0.076 0.091
ARI 0.028 0.028 0.029 0.031 0.029  0.026 0.032 0.036
SD 0.026 0.026 0.028 0.030 0.037  0.027 0.030 0.039
Lympho ARI 0.083 0.084 0.088 0.129 0.078  0.088 0.040 0.042

graphy SD 0.050 0.052 0.064 0.076 0.056  0.063 0.020 0.018

Balance

4.2 Statistical Test

This study also conducted a statistical test to analyze how significantly the
proposed algorithm outperformed other algorithms. The null hypothesis for the
statistical test was “the proposed algorithm did not perform significantly
differently from the other algorithms™. The significant level was set as 95%
between the algorithms, which implied that a was set as 5%. Table 6 shows the
p-value for all datasets in terms of AC, ARI, and NMI. The result shows that two
of three of the datasets had a p-value less than 0.05. Therefore, the null hypothesis
was rejected. This means that the proposed algorithm had significantly different
results from the other algorithms for the molecular biology and lymphography
datasets. Furthermore, the Bonferroni adjustment was implemented to make a
pairwise comparison between the algorithms to show how they were grouped.



104 Ren-Jieh Kuo, et al.

Table 6 The statistic results of all datasets (p-value).

Datasets AC ARl NMI
Molecular Biology 0.000 0.000 0.000
Balance 0.975 0.988 0.999

Lymphography  0.000 0.000 0.000

The results of the Bonferroni pairwise comparisons can be seen in Tables 7, 8,
and 9. Three datasets were used to examine each group in terms of AC, ARlI, and
NMI. For the Balance dataset, MFWKM-PD performed slightly better than the
other algorithms for all performance metrics. Still, in the molecular biology
dataset, MFWKM-PD had a significantly better performance compared to the
FKM-based algorithm, except for the FKM algorithms with probabilistic distance
and weight. As shown in Table 7, the FKM-based algorithms, especially FWKM-
PD, had a significantly better result on the lymphography data, but the proposed
algorithm did not perform well.

Table 7 Bonferroni pairwise comparison for AC.

Dataset: Molecular Dataset: Balance Dataset:
Algorithm N Biology ’ Lymphography
Mean  Grouping Mean Grouping  Mean Grouping
MFWKM-PD 30 615094 A 55.1627 A 55.9009 C
MFKM-PD 30 60.9119 A 55.1093 A 55.8559 C
FWKM-PD 30 60.3774 A 54.7840 A 68.3108 A
MFWKM 30 60.1258 A 54.3893 A 65.7658 A B
MFKM 30 58.7421 A B 54.2080 A 63.9414 B
FKM-PD 30 584906 A B  54.4693 A 654505 A B
FWKM 30 56.8239 A B  54.3520 A 658108 A B
FKM 30 55.0314 B 543520 A 656982 A B

Moreover, in terms of ARI and NMI, as shown in Tables 8 and 9, the MFWKM-
PD algorithm performed significantly different from the other algorithms on the
molecular biology dataset. In contrast, the FKM-based algorithms had lower
performances. With the Balance dataset, all algorithms were only slightly
different; therefore, there were no significant differences among their
performances. On the other hand, with the lymphography dataset, even though
the proposed algorithms had the lowest ARI value, FKM with weight and
probabilistic distance had the best performance.
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Table 8  Bonferroni pairwise comparison for ARI.

Dataset: Molecular . Dataset:
: Dataset: Balance
Algorithm N Biology Lymphography
Mean Grouping Mean Grouping Mean Grouping
MFWKM-PD 30 0.0762132 A 0.0359719 A 0.041697 C
MFKM-PD 30 0.0637444 A B 0.0320827 A 0.040150 C
FWKM-PD 30 0.0479689 A B C 0.0310023 A 0.129494 A
MFWKM 30 0.0460753 A B C 0.0262616 A 0.087775 A B
MFKM 30 0.0304458 B C 0.0289763 A 0.078398 B C
FKM-PD 30 0.0276115 B C 0.0285140 A 0.088116 A B
FWKM 30 0.0146631 C 0.0282712 A 0.083588 B C
FKM 30 0.0054138 C 0.0282712 A 0.082640 B C
Table 9  Bonferroni pairwise comparison for NMI.
Dataset: Molecular Dataset: Balance Dataset:
Algorithm N Biology i Lymphography
Mean Grouping Mean Grouping  Mean Grouping
MFWKM-PD 30 0.0992461 A 0.0315774 A 0.093781 B
MFKM-PD 30 0.0902149 A 0.0297288 A 0.090752 B
FWKM-PD 30 0.0461485 B  0.0299344 A 0.157197 A
MFWKM 30 0.0438051 B  0.0282079 A 0.128155 A B
MFKM 30 0.0309028 B 0.0281922 A 0.124625 A B
FKM-PD 30 0.0294507 B  0.0284125 A 0.130448 A B
FWKM 30 0.0178571 B  0.0277592 A 0.126420 A B
FKM 30 0.0108815 B 0.0277592 A 0.127219 A B

4.3  Computational Time

Table 10 presents the average computational time for all algorithms for each
iteration. It reveals that the proposed MFWKM-PD algorithm needed more
computational time for almost all datasets, except the lymphography dataset,
where the MFKM algorithm with weight and probabilistic distance converged
very fast..

Table 10 Computational time (in seconds).

FKM- FWKM- MFKM- MFWKM-
Datasets FKM FWKM PD PD MFKM MFWKM PD PD
Molecular Biology 0.372 0.124 0.169 0.874 2453 5874 4.870 7.101
Balance 0.044 0.042 0.281 0451 3.628 2.165 2.184 3.361
Lymphography 0.167 0.163 0.134 0.567 8.222 3.521 3.200 3.195

The molecular biology dataset having 57 categories compared to other datasets,
which only have 18 categories, was the reason that the proposed algorithm needed
more computational time. The impact of the number of attributes led to more
computational time for the MFKM-based algorithm than the number of clusters.
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Although the proposed MFWKM-PD did not have the lowest computational time,
it could provide better performance in terms of AC, NMI, and ARI for the
molecular biology and balance datasets

5 Conclusions

The MFWKM-PD algorithm, which is based on a multivariate approach, uses a
Gini impurity weight that considers the distribution of attributes based on
information from within and between clusters. This proposed algorithm also
adopts probabilistic distance instead of Hamming distance to reduce the noise
sensitivity. Evaluation results from three datasets showed that MFWKM-PD had
better accuracy, ARI, and NMI performance, particularly with the molecular
biology dataset. The proposed algorithm works well on datasets with the same
category level regarding the number of categorical attributes and clusters; even
compared to FKM-based algorithms with weight and probabilistic distance, it can
perform well. This makes it useful for applications in molecular biology, such as
identifying gene groups with similar functions or for clustering patients by
molecular profiles.

However, the centroids being initialized randomly can lead to unstable results, as
indicated by higher standard deviations. To address this, the initial centroids can
be optimized using metaheuristic approaches, such as a genetic algorithm or a
particle swarm optimization algorithm. Additionally, future studies can focus on
determining the optimal number of clusters, which may be used to address the
unsupervised problem in real-world applications.
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