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Abstract. Data clustering is a data mining approach that assigns similar data to 

the same group. Traditionally, cluster similarity considers all attributes equally, 

but in real-world applications, some attributes may be more important than others. 

Therefore, this study proposes an algorithm that utilizes multivariate fuzzy 

weighting to demonstrate the varying importance of each attribute, using a Gini 

impurity measure for weight assignment. Additionally, the proposed algorithm 

implements probabilistic distance to reduce sensitivity to noise. Probabilistic 

distance offers more detailed information and better interpretation than Hamming 

distance, which ignores attribute positions. Probabilistic distance utilizes 

information about the attribute’s position within and between clusters. This 

enhances clustering performance by creating clusters with more similar attributes. 

Therefore, the proposed Multivariate Fuzzy Weighted K-Modes with Probabilistic 

Distance for Categorical Data (MFWKM-PD) algorithm, based on the multivariate 

fuzzy K-modes algorithm, not only considers detailed membership calculations 

but also considers the varying contributions of attributes and their positions in 

distance calculation. This study evaluated the proposed MFWKM-PD using 

several benchmark datasets. The experiments validated that the proposed 

MFWKM-PD shows promising results compared to other algorithms in terms of 

accuracy, NMI, and ARI. 

 

Keywords: categorical data; fuzzy clustering; Gini impurity; MFWKM-PD; 

probabilistic distance.  

1 Introduction 

Nowadays, the amount of digital data is growing exponentially and becoming 

more complex both on variety and sources. Therefore, the question of “how to 

effectively process this abundance of data to derive meaningful insight that can 

support decision makers” has become more crucial than in previous times when 

traditional data analysis methods were still effective. Data mining is an approach 

to explore and extract important information from data. It uses a variety of 

techniques, such as clustering and classification. Classification is a supervised 

learning method where the data is given predetermined labels. In contrast, 
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clustering groups similar data points together without using labels and is called 

an unsupervised learning technique. Clustering works without prior knowledge 

of specific labels to help make better decisions in many areas related to data 

segmentation and grouping. For example, customer segmentation on purchasing 

behavior, in which customers are grouped together according to similarities in 

their buying patterns. In molecular biology, cluster analysis can help scientists 

find the relationships between genes from large amounts of genomic data. 

Examples can also be found in other areas, such as medicine, biology, e-

commerce [1-3], and so on.  

Data clustering generates clusters according to the similarity of the data. 

Therefore, distance measurement is a critical issue in data clustering. The 

distance measurement used for calculating data similarity (or dissimilarity) 

should be defined based on the data type. The existing distance measurement, 

such as Hamming distance, has difficulty capturing the relation between the 

attributes since this metric only considers the dissimilarities between objects or 

objects with their centroids. Other distance measurements can be used, such as 

probabilistic distance based on kernel density estimation [4]. As opposed to the 

distance from the object to the centroid, probabilistic distance is specified as the 

distance from the object to the cluster. 

Moreover, clustering methods can be divided into two categories based on how 

the clusters are produced, i.e., hierarchical and partitional clustering. Hierarchical 

clustering allows clusters to have sub-clusters, while partitional clustering only 

assigns each unlabeled object to one cluster [5]. Furthermore, in partitional 

clustering, clustering methods can be divided into hard and soft clustering, which 

differ in membership weight. Hard clustering, such as K-means [6] or K-modes 

[7], assigns each instance to a single cluster. In contrast, soft or fuzzy clustering, 

like in the fuzzy c-means algorithm (FCM) [8] and the fuzzy K-modes algorithm 

(FKM) [9], assigns each instance to multiple clusters with different membership 

values. Unlike FCM, FKM was developed to cluster the categorical data. 

However, there are some drawbacks when the number of values of each attribute 

increases. For instance, they treat all attributes as equally important, while in a 

real application, the contribution of the attributes can be different. The 

multivariate fuzzy K-modes algorithm (MFKM) is an algorithm that can handle 

differences between the values of each attribute of different clusters [10].  

MFKM is an algorithm constructed by using the multivariate fuzzy c-means 

algorithm (MFCM) [11]. Both take a multivariate approach to determining the 

degree of membership. Certain methodologies employ a weighting technique. As 

an illustration, the weighted multivariate membership fuzzy c-means (WMFCM-

M) algorithm and the multivariate membership integrated with weighted 

distances by cluster and variable (WMFCM-D) algorithm use the distance 
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parameter’s weight to measure the variability dispersion within clusters, thereby 

facilitating the identification of cluster shapes [12]. Additional research has 

explored the utilization of impurity metrics, including entropy and Gini impurity, 

to enhance clustering performance [13-15]. Moreover, Kim [14] proposed a 

method for assigning weights that considers the attribute distributions within and 

between clusters. As a result, each attribute has a different weight and 

contribution that impacts the separation of objects into different clusters.  

This study intended to develop a clustering algorithm that addresses the 

limitations of the above-mentioned algorithms by combining a weighting method 

and probabilistic distance, namely the multivariate fuzzy weighted K-modes 

algorithm with probabilistic distance for categorical data (MFWKM-PD). Three 

validity indexes—accuracy, normalized mutual information, and modified Rand 

index—were used to measure the performance of MFWKM-PD. This study 

implemented the proposed algorithm on several benchmark datasets. The results 

were compared with some clustering algorithms.  

The remaining of this paper is organized as follows. Section 2 presents a brief 

review of the MFKM algorithm. Section 3 discusses the proposed MFWKM-PD 

algorithm. Section 4 presents the experimental results. Finally, the concluding 

remarks are given in Section 5.  

2 Multivariate Fuzzy K-Modes Algorithm (MFKM) 

The most popular fuzzy clustering algorithm to cluster categorical data is called 

the FKM algorithm; nevertheless, it reflects the same membership degrees for 

every attribute [9]. On the other hand, assigning different values for each attribute 

in different clusters is possible. Therefore, the FKM algorithm may be combined 

with the multivariate approach called multivariate fuzzy K-modes (MFKM) [10]. 

This algorithm was adopted from the multivariate fuzzy c-means algorithm for 

numerical data (MFCM) [12]. MFKM and MFCM are based on the same idea: to 

find a multivariate fuzzy partition and form multiple membership matrices. 

MFKM has three important characteristics: (1) being able to determine each 

object’s significance for a certain group based on each attribute; (2) being able to 

extract more information from data, which provides higher clustering quality; and 

(3) being a multivariate data analysis tool. Consequently, it produces different 

membership degrees, allowing it to handle the ambiguity of the data precisely 

[10]. 

In general, the MFKM algorithm has to represent the different memberships for 

each attribute in the different clusters and calculate the distance between clusters 

and centroids. The illustration of the membership distribution can be seen in 
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Table 1, where there are five records (i) with two attributes (l) and three clusters 

(j). 

Table 1 Membership distribution example of MFKM algorithm. 

 
X1 X2 

j = 1 j = 2 j = 3 
Total  l = 1 l = 2 l = 1 l = 2 l = 1 l = 2 

i = 1 1 2 0.08 0.22 0.20 0.23 0.03 0.24 1.00 

i = 2 1 1 0.37 0.30 0.03 0.11 0.15 0.04 1.00 

i = 3 4 5 0.01 0.02 0.10 0.11 0.17 0.59 1.00 

i = 4 9 8 0.32 0.09 0.09 0.32 0.02 0.16 1.00 

i = 5 8 7 0.07 0.13 0.59 0.16 0.01 0.04 1.00 
   1.61 1.94 1.45 5.00 

Given X, a set of n categorical objects. Each object 𝑥𝑖 is defined as a set of m 

categorical attributes so that 𝑥𝑖 = {𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑚}. MFKM partitions X into k 

clusters denoted as 𝐶1, 𝐶2, …, 𝐶𝑘 by minimizing the objective function in Eq. (1).  

 𝐽𝑀 = ∑ ∑ ∑ 𝑢𝑗𝑙𝑖
𝛼 𝑑(𝑥𝑖𝑙 , 𝑧𝑗𝑙)𝑚

𝑙
𝑛
𝑖=1

𝑘
𝑗=1  (1) 

with subject to constraints in Eqs. (2) to (4):  

 0 ≤ 𝑢𝑗𝑙𝑖 ≤ 1,     ∀𝑗 = 1, … , 𝑘; 𝑖 = 1, … , 𝑛; 𝑙 = 1, … , 𝑚, (2) 

 ∑ ∑ 𝑢𝑗𝑙𝑖
𝑚
𝑙=1 = 1,     ∀𝑖 = 1, … , 𝑛𝑘

𝑗=1 , (3) 

 0 < ∑ ∑ 𝑢𝑗𝑙𝑖
𝑚
𝑙=1 < 𝑛,     ∀𝑗 = 1, … , 𝑘𝑛

𝑖=1 ,  (4) 

where 𝛼 is a fuzziness component, and k is a predetermined number of clusters, 

while 𝑈 = [𝑢𝑖] with (i=1, 2, …, n) is a multivariate fuzzy partition. U contains n 

multivariate membership matrix 𝑢𝑖 = [𝑢𝑗𝑙𝑖] where 𝑢𝑗𝑙𝑖 is the membership degree 

of the object i to cluster j on attribute l. 𝑧𝑗𝑙 is the centroid of cluster j on attribute l. 

𝑑(𝑥𝑖𝑙 , 𝑧𝑗𝑙) is the distance between 𝑥𝑖𝑙 and its responding centroid 𝑧𝑗𝑙. The matching 

distance measure is represented in Eq. (5) as follows: 

 𝑑(𝑥𝑖𝑙 , 𝑧𝑗𝑙) = {
0 ,   𝑖𝑓 𝑥𝑖𝑙 = 𝑧𝑗𝑙

1 ,   𝑖𝑓 𝑥𝑖𝑙 ≠ 𝑧𝑗𝑙
, (5) 

where 𝑧𝑗𝑙 is the 𝑗𝑡ℎ element of 𝑍𝑗 and 𝑥𝑖 is the 𝑖𝑡ℎ point of 𝑋𝑖. 

The MFKM clustering algorithm is described as follows: 

1. Initialization 

(𝐹𝑖𝑥 𝑐, 2 ≤ 𝑘 ≤ 𝑛; 𝑓𝑖𝑥 𝑚, 1 ≤ 𝛼 ≤ ∞; 𝑓𝑖𝑥 𝑇; 𝑎𝑛𝑑 𝑓𝑖𝑥 𝜀 > 0 ) 

Randomly initialize 𝑢𝑗𝑙𝑖(𝑗 = 1, … , 𝑘; 𝑙 = 1, … , 𝑚; 𝑖 = 1, … , 𝑛) of pattern x 

belonging to cluster 𝐶𝑖 on attributes l such that 𝑢𝑗𝑙𝑖 ∈

[0,1] and ∑ ∑ 𝑢𝑗𝑙𝑖
𝑚
𝑙=1

𝑘
𝑗=1 = 1. Do t = 1.  
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2. Representation 

(Fix membership 𝑢𝑗𝑙𝑖 of pattern 𝑥(𝑥 = 1, … , 𝑛) belonging to class 𝐶𝑖 on the 

attributes 𝑙(𝑙 = 1, … , 𝑚)). Compute centroid 𝑧𝑗 of cluster 𝐶𝑗(𝑖 = 1, … , 𝑘) 

using Eq. (6): 

 𝑟∗ = 𝑎𝑟𝑔 𝑚𝑎𝑥
1≤𝑟≤𝑝𝑗

{∑ 𝑢𝑗𝑙𝑖
𝛼

𝑙:𝑥𝑗𝑙=𝑎𝑙
𝑟 }.                                              (6) 

3. Feature Membership 

(Fix centroid 𝑧𝑗 of cluster 𝐶𝑗(𝑖 = 1, … , 𝑘)). Update the fuzzy membership 

degree, 𝑢𝑗𝑙𝑖, using Eq. (7): 

 𝑢𝑗𝑙𝑖 = [∑ ∑ (
𝑑(𝑥𝑖𝑙,𝑧𝑗𝑙

𝑑(𝑥𝑖𝑞,𝑧𝑝𝑞
)𝑚

𝑞=1
𝑘
𝑝=1

1

𝛼−1
]

−1

.                                 (7) 

4. Stopping Criterion 

If ‖𝐽𝑀
𝑡+1 − 𝐽𝑀

𝑡 ‖ ≤ 𝜀 𝑜𝑟 𝑡 > 𝑇, go to Step (5); otherwise, update  t = t + 1 and 

go Step 2. 

5. Class Membership 

(Fix centroid 𝑧𝑗 and membership 𝑢𝑗𝑙𝑖 = (𝑗 = 1, … , 𝑘), (𝑙 = 1, … , 𝑚), (𝑖 =

1, … , 𝑛)). Compute the fuzzy membership degree of object x belonging to 

cluster 𝐶𝑗, (𝛾𝑗𝑖) using Eq. (8): 

 𝛾𝑗𝑖 = ∑ 𝑢𝑗𝑙𝑖
𝑚
𝑙=1 .                             (8) 

3 Proposed Algorithm  

In real-world applications, the attributes have different contributions; therefore, 

the importance of the attributes can be different. Using impurity metrics such as 

entropy and Gini impurity, each attribute can be weighed during the clustering 

process by considering the within-cluster and between-cluster relationship [14]. 

Moreover, the proposed algorithm uses probabilistic distance, which differs from 

possibilistic distance, instead of Hamming distance [4] to reduce the noise 

sensitivity. 

Thus, the MFKM algorithm, which integrates the weighting method and 

probabilistic distance, becomes the multivariate fuzzy weighted K-modes 

algorithm with probabilistic distance (MFWKM-PD).  

In Eq. (9), the objective function of the proposed MFWKM-PD is defined to find 

U, Z, and W to minimize F(U, Z, W) as follows: 

 𝐹(𝑈, 𝑍, 𝑊) = ∑ ∑ ∑ 𝑢𝑗𝑙𝑖
𝛼 𝑤𝑙𝑑(𝑥𝑖𝑙 , 𝑧𝑗𝑙)𝑚

𝑙=1
𝑛
𝑖=1

𝑘
𝑗=1   (9) 
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Give X, a set of n categorical objects. Each object 𝑥𝑖 is described by a set of m 

categorical attributes so that 𝑥𝑖 = {𝑥𝑖1 , 𝑥𝑖2, … , 𝑥𝑖𝑚}, 𝑘 is a predefined number of 

clusters denoted as 𝐶1, 𝐶2, …, 𝐶𝑘, 𝛼 is a fuzziness component, 𝑈 as a multivariate 

fuzzy partition contains n multivariate membership matrix 𝑢𝑖 = [𝑢𝑗𝑙𝑖] where 𝑢𝑗𝑙𝑖 

is the membership degree of the object i to cluster j on attribute l, 𝑍 represents 

cluster centers, and 𝑤𝑙 is the weight of attribute l.  

As 𝑤𝑙 is a weight of attribute l, consider 𝑤𝑙,𝑤 is a weight of attribute l based on 

within-cluster information as well as 𝑤𝑙,𝑏 as a weight of attribute l based on 

between-cluster information. Thus, in Eq. (10), the weight of attribute l (𝑤𝑙) is 

defined as follows: 

 𝑤𝑙 = 𝑎𝑤𝑙,𝑤 + (1 − 𝑎)𝑤𝑙,𝑏. (10) 

The adjusted parameter between two weight components wl,w and wl,b is defined 

as a, where 𝑎(0 ≤ 𝑎 ≤ 1). Since the probabilistic distance on the proposed 

algorithm uses Gini Impurity, the final weights of 𝑤𝑙,𝑤 and 𝑤𝑙,𝑏 are calculated 

based on Eqs. (11) and (12): 

 𝑤𝑙,𝑤 =
∑ 𝛿𝑗(1−𝐼𝑤(𝑓𝑙𝑗))𝑘

𝑗=1

∑ ∑ 𝛿𝑗(1−𝐼𝑤(𝑓𝑙𝑗))𝑘
𝑗=1

𝑚
𝑙=1

,  (11) 

 l𝑙,𝑏 =
1−𝐼𝑏(𝑔𝑙

𝑟)

∑ 1−𝐼𝑏(𝑔𝑙
𝑟)𝑚

𝑙=1
 (12) 

where ∑ wl,w
m
l=1 = 1, For categorical attributes, δj is a weight that is proportional 

to the number of data samples that are part of the j-th cluster. It can be defined as 

 δj =
nj

n
, where nj is the number of objects in cluster 𝐶𝑗. Furthermore, the Gini 

impurities of each category attribute, which are based on the distribution of 

categories within the clusters, are presented in Eq. (13) as 𝐼𝑤(𝑓𝑙𝑗): 

 𝐼𝑤(𝑓𝑙𝑗) = 1 − ∑ (𝑓𝑙𝑗
𝑟)

2ℎ𝑙
𝑟=1  (13) 

where ℎ𝑙  is the set of categories in attribute l. The Gini impurity, 𝐼𝑏(𝑔𝑙
𝑟), is a 

distribution of categories across clusters. It is defined in Eq. (14): 

 𝐼𝑏(𝑔𝑙
𝑟) = 1 − ∑ (𝑔𝑙𝑗

𝑟 )
2𝑘

𝑗=1 , (14) 

Regarding the distribution of categories, the distribution of categories of attribute 

l in cluster j can be considered as 𝑓𝑙𝑗 and 𝑓𝑙𝑗
𝑟 as the frequency ratio of category r of 

attribute l in cluster j. Moreover, the distribution of attribute l across clusters is 

considered as 𝑔𝑙
𝑟 and 𝑔𝑙𝑗

𝑟  as the frequency ratio of objects whose category value 

of the attribute l is 𝑎𝑙
𝑟.  

The fuzzy weighting method is used to compute 𝑓𝑙𝑗
𝑟 and 𝑔𝑙𝑗

𝑟  with membership 

degree u. Suppose the probability 𝑥𝑖𝑙 = 𝑎𝑙
𝑟 in the j-th cluster, and the probability 
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of the object with 𝑥𝑖𝑙 = 𝑎𝑙
𝑟 also belong to the j-th cluster, then 𝑓𝑙𝑗

𝑟 and 𝑔𝑙𝑗
𝑟  are 

defined in Eqs. (15) and (16): 

 𝑓𝑙𝑗
𝑟 =  

∑ 𝑢𝑗𝑖𝑥𝑖𝑙=𝑎𝑙
𝑟

∑ 𝑢𝑗𝑖
𝑛
𝑖=1

 (15) 

and 

 𝑔𝑙𝑗
𝑟 =  

∑ 𝑢𝑗𝑖𝑥𝑖𝑙=𝑎𝑙
𝑟

∑ ∑ 𝑢𝑗𝑖
𝑘
𝑗=1𝑥𝑖𝑙=𝑎𝑙

𝑟
 (16) 

The proposed MFWKM-PD algorithm employs probabilistic distance instead of 

Hamming distance [4]. Rather than calculating the object-to-centroid distance, 

this method computes the object-to-cluster distance. Therefore, distance 

𝑑(𝑥𝑖𝑙 , 𝑧𝑗𝑙) in Eq. (9) becomes 𝑑(𝑥𝑖𝑙 , 𝐶𝑗) which represents the distance of 𝑥𝑖 to 

cluster j on attribute l as defined in Eq. (17):  

 𝑑(𝑥𝑖𝑙 , 𝑍𝑗) = ∑ [𝑝(𝑥𝑙 = 𝑡|𝑥𝑖𝑙) − 𝑝(𝑥𝑙 = 𝑡|𝐶𝑗)]
2

𝑡∈ℎ𝑙
 (17) 

where the ℎ𝑙 is the set of categories. For instance, the attribute d takes |ℎ𝑙| discrete 

values. In the set, an arbitrary category is indicated by 𝑡 ∈ ℎ𝑙, where 𝑙 ∈ [1, |ℎ𝑙| ]. 

Since all the categories in ℎ𝑙 are assumed to be independent of one another, Eq. 

(18) is used to estimate the probability 𝑝(𝑥𝑙 = 𝑡|𝑥𝑖𝑙):  

 𝑝(𝑥𝑙 = 𝑡|𝑥𝑖𝑙) =  𝐼(𝑡 = 𝑥𝑖𝑙) (18) 

where 𝐼(𝑡 = 𝑥𝑖𝑙) = 0 𝑖𝑓 𝑥𝑖𝑙 ≠ 𝑡, and otherwise, 𝐼(𝑡 = 𝑥𝑖𝑙) = 0 

The kernel functions 𝑝(𝑥𝑙 = 𝑡|𝐶𝑗) determine the probability density of 𝑥𝑙, where 

𝑡 ∈ hl. It is defined in Eq. (19): 

 𝑝(𝑥𝑙 = 𝑡|𝐶𝑗) = 𝛽𝑗
1

|ℎ𝑙|
+ (1 − 𝛽𝑗)𝑓𝑗(𝑡) (19) 

The smoothing parameter, βj, is called the bandwidth, and the frequency estimator 

of t in cluster Cj is formulated in Eq. (20): 

 𝑓𝑗(𝑡) =
1

𝑛𝑗
∑ 𝐼(𝑡 = 𝑥𝑖𝑙)𝑥𝑖∈𝑗  (20) 

For categorical data, the optimal bandwidth of βj lies within [0, 1] and can be 

calculated using Eq. (21): 

 𝛽𝑗  =
∑ 𝑆𝑗𝑙

2𝑚
𝑙=1

(𝑛𝑗−1) ∑ (
|ℎ𝑙|−1

|ℎ𝑙|
−𝑆𝑗𝑙

2 )𝑚
𝑙=1

 (21) 

The number of objects in cluster j is represented as 𝑛𝑗. The sample dispersion of 

categorical attributes is measured by the Gini diversity index 𝑆𝑗𝑙
2, which is provided 

in Eq. (22): 
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 𝑆𝑗𝑙
2 = 1 − ∑ [𝑓𝑗(𝑡)]2

𝑡∈ℎ𝑙
 (22) 

Finally, the probabilistic distance is defined in  Eq. (23): 

 𝑑(𝑥𝑖𝑙 , 𝐶𝑗) =  ∑ [𝐼(𝑡 = 𝑥𝑖𝑙) − 𝛽𝑗
1

|ℎ𝑙|
− (1 − 𝛽𝑗)𝑓𝑗(𝑡)]

2

𝑡∈ℎ𝑙
 (23) 

Therefore, to minimize F(U, Z, W), the objective function of the proposed 

MFWKM-PD algorithm is presented in Eq. (24)” 

 𝐹(𝑈, 𝑍, 𝑊) = ∑ ∑ ∑ 𝑢𝑗𝑙𝑖
𝛼 𝑤𝑙𝑑(𝑥𝑖𝑙 , 𝐶𝑗)𝑚

𝑙=1
𝑛
𝑖=1

𝑘
𝑗=1   (24) 

3.1 Updating Rules 

Based on Eqs. (6-7), the cluster centroid 𝑧𝑗𝑙 of cluster j on attribute l and 

membership degree 𝑢𝑗𝑙𝑖 are updated using Eqs. (25) and (26) respectively: 

 𝑧𝑗𝑙 = 𝑎𝑙
(𝑟)

,  𝑟 = 𝑎𝑟𝑔1≤𝑟≤|ℎ𝑙|𝑚𝑎𝑥 {∑ 𝑢𝑗𝑣𝑙
𝑚

𝑣:𝑥𝑣𝑙=𝑎𝑙
𝑟 }  (25) 

and 

 𝑢𝑗𝑙𝑖 = [∑ ∑ (
𝑑(𝑥𝑖𝑙,𝐶𝑗)

𝑑(𝑥𝑖𝑠,𝐶ℎ)
)

1

𝛼−1𝑚
𝑠=1

𝑘
ℎ=1 ]

−1

 (26) 

The object-to-cluster distance 𝑑(𝑥𝑖𝑙 , 𝐶𝑗) is calculated using Eq. (21); the weight 

attribute l (𝑙𝑙) is calculated based on a fuzzy weighting method, 𝑓𝑙𝑗
𝑟 and 𝑔𝑙𝑗

𝑟 , using 

Eq. (10). 

The proposed MFWKM-PD follows the following procedures: 

Step 1: Initialization – Initialize multivariate fuzzy partition U1 which contains n 

membership matrix ui = [ujli], (j = 1, … , k; i = 1, … , n; l = 1, … , m) to satisfy 

the constraint. Generate the attribute weight W1 with wl = 1/m for all attributes. 

Identify the centroid Z1 such that cost F(U1, Z1, W1) is minimized. Set iteration 

t = 1. 

For t = 1 to max iteration  

Step 2:  Fix Zt and  Wt and update Ut+1.  

If F(Ut+1, Zt, Wt) =  F(Ut, Zt, Wt), then stop; 

Else go to Step 3 

Step 3:  Fix Wt and Ut+1 and update Zt+1 

If F(Ut+1, Zt+1, Wt) = F(Ut+1, Zt, Wt), then stop 

Else go to Step 4 

Step 4:  Fix Ut+1 and Zt+1 and update Wt+1.  

If  F(Ut+1, Zt+1, Wt+1) = F(Ut+1, Zt+1, Wt) or iteration t = max iteration, then 

stop. 

Else return to Step 2 

End for 
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4 Experimental Results 

This study evaluated the proposed MFWKM-PD algorithm using three 

benchmark datasets from different fields, i.e., molecular biology, balance, and 

lymphography. Table 2 shows the details of the datasets, which have different 

numbers of instances (N), categorical attributes (dc), and clusters (k) and were 

retrieved from the UCI machine learning repository. 

Table 2 Benchmark datasets. 

Datasets N dc k 

Molecular Biology [16] 106 57 2 

Balance [17] 625 18 3 

Lymphography [18] 148 18 4 

The molecular biology dataset (E. Coli promoter gene sequences) has 57 

categorical attributes and each attribute has four levels of categories; the balance 

dataset has 18 categorical attributes and each attribute has five levels of 

categories. Moreover, the lymphography dataset, even though it has a similar 

number of attributes to the balance dataset, has various levels of categories. There 

are ten attributes comprising two levels, two attributes comprising three levels, 

four attributes comprising four levels, and two attributes comprising eight levels.  

Accuracy (AC), normalized mutual information (NMI), and modified Rand index 

(ARI) were used to measure the performance of MFWKM-PD. The AC metric is 

defined in Eq. (29), where 𝑎𝑖 represents the correctness of cluster assignment and 

𝑛 is the total number of objects, 𝑥𝑖.  

 𝐴𝐶 =
∑ 𝑎𝑖

𝑛
𝑖=1

𝑛
. (29) 

The NMI metric is the normalized version of mutual information (MI). Its value 

is in the interval [0;1], where 1 indicates the perfect labeling between the 

clustering result and the class label. NMI is given by Eq. (30): 

 𝑁𝑀𝐼 =
𝐼(𝑋,𝑌)

√𝐻(𝑋)𝐻(𝑌)
 (30) 

The entropies of X and Y are represented by H(X) and H(Y), respectively, and I(X, 

Y) represents the mutual information between X and Y. Note that the attributes X 

and Y are random.  

The ARI metric considers all cluster pairwise combinations and contains values 

in the interval [-1;1], where 1 indicates that the clusters are identical [19]. ARI is 

defined in Eq. (31): 

 𝐴𝑅𝐼 =
𝑅𝐼−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)

𝑚𝑎𝑥(𝑅𝐼)−𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑(𝑅𝐼)
, (31) 
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where the Rand index (RI) measures the similarity between two cluster results by 

considering the number of pairs of elements belonging to the same or different 

clusters.  

4.1 Results 

In this experiment, the parameter settings for all algorithms were set as follows: 

1. The fuzziness component 𝛼 was 1.1 instead of 2 so the experiment gained 

better performance. Some papers performed better with a smaller 𝛼 value 

[9,14]. 

2. The initial weight wl was initialized as 1/m for each attribute l. 

3. The optimal value of the balancing parameter 𝑎 between two weight 

components for most cases was close to 0 or 1. Therefore, the 𝑎 value was set 

as 0.1 [14]. 

This study compared the performance of MFWKM-PD algorithm with several 

clustering algorithms, i.e., fuzzy K-modes (FKM), fuzzy weighted K-modes 

(FWKM), fuzzy K-modes with probabilistic distance (FKM-PD), fuzzy weighted 

K-modes with probabilistic distance (FWKM-PD), multivariate fuzzy K-modes 

(MFKM), multivariate fuzzy weighted K-modes (MFWKM), multivariate fuzzy 

K-modes with probabilistic distance (MFKM-PD), and multivariate fuzzy K-

modes with probabilistic distance (MFWKM-PD). 

Each algorithm was run 30 times with the same initial centroids for all algorithms 

and the average performance was calculated based on the average values. 

Therefore, the proposed algorithm had slightly modified steps regarding this 

experiment, using the random initial centroids instead of random multivariate 

membership. Tables 3, 4, and 5 present a summary of the computational results 

in terms of accuracy, NMI, and ARI, respectively. The standard deviation and 

average clustering accuracy for all algorithms are displayed in Table 3.  

Table 3 Average of accuracy (AC) and standard deviation (SD). 

Datasets Index FKM FWKM 
FKM-

PD 

FWKM-

PD 
MFKM MFWKM 

MFKM- 

PD 

MFWKM- 

PD 

Molecular  

Biology 

AC 55.031 56.824 58.491 60.377 58.742 60.126 60.912 61.509 

SD 3.471 3.697 4.439 5.920 4.765 5.997 7.526 8.573 

Balance 
AC 54.352 54.352 54.469 54.784 54.208 54.389 55.109 55.163 

SD 4.235 4.235 4.493 4.652 5.320 4.128 4.490 5.438 

Lympho 

graphy 

AC 65.698 65.811 65.450 68.311 63.941 65.766 55.856 55.901 

SD 4.942 5.027 6.514 6.706 5.937 6.578 0.648 0.613 
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The proposed algorithms won over the other algorithms for the molecular biology 

and balance datasets. This was because those algorithms have the same level of 

categories. The proposed algorithm also outperformed the other algorithms in 

terms of the average of NMI and ARI scores for two out of three datasets. 

However, the standard deviation of accuracy, NMI, and ARI scores obtained by 

the MFWKM-PD algorithm was not always better than that of the other 

algorithms. In general, FKM-based with weight and probabilistic distance (PD) 

algorithms had better results than FKM algorithms for all datasets. This proves 

that weight and probabilistic distance can improve FKM performance.    

Table 4 Average of NMI and standard deviation (SD). 

Datasets Index FKM FWKM 
FKM-

PD 

FWKM-

PD 
MFKM MFWKM 

MFKM-

PD 

MFWKM-

PD 

Molecular  

Biology 

NMI 0.011 0.018 0.029 0.046 0.031 0.044 0.090 0.099 

SD 0.012 0.016 0.029 0.049 0.027 0.046 0.079 0.086 

Balance 
NMI 0.028 0.028 0.028 0.030 0.028 0.028 0.030 0.032 

SD 0.023 0.023 0.027 0.029 0.029 0.023 0.024 0.031 

Lympho 

graphy 

NMI 0.127 0.126 0.130 0.157 0.125 0.128 0.091 0.094 

SD 0.055 0.054 0.064 0.065 0.048 0.060 0.043 0.040 

Table 5 Average of ARI and standard deviation (SD) 

Datasets Index FKM FWKM 
FKM-

PD 

FWKM-

PD 
MFKM MFWKM 

MFKM- 

PD 

MFWKM- 

PD 

Molecular  

Biology 

ARI 0.005 0.015 0.028 0.048 0.030 0.046 0.064 0.076 

SD 0.016 0.021 0.033 0.056 0.034 0.055 0.076 0.091 

Balance 
ARI 0.028 0.028 0.029 0.031 0.029 0.026 0.032 0.036 

SD 0.026 0.026 0.028 0.030 0.037 0.027 0.030 0.039 

Lympho 

graphy 

ARI 0.083 0.084 0.088 0.129 0.078 0.088 0.040 0.042 

SD 0.050 0.052 0.064 0.076 0.056 0.063 0.020 0.018 

4.2 Statistical Test 

This study also conducted a statistical test to analyze how significantly the 

proposed algorithm outperformed other algorithms. The null hypothesis for the 

statistical test was “the proposed algorithm did not perform significantly 

differently from the other algorithms”. The significant level was set as 95% 

between the algorithms, which implied that α was set as 5%. Table 6 shows the 

p-value for all datasets in terms of AC, ARI, and NMI. The result shows that two 

of three of the datasets had a p-value less than 0.05. Therefore, the null hypothesis 

was rejected. This means that the proposed algorithm had significantly different 

results from the other algorithms for the molecular biology and lymphography 

datasets. Furthermore, the Bonferroni adjustment was implemented to make a 

pairwise comparison between the algorithms to show how they were grouped. 
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Table 6 The statistic results of all datasets (p-value). 

Datasets AC ARI NMI 

Molecular Biology 0.000 0.000 0.000 

Balance 0.975 0.988 0.999 

Lymphography 0.000 0.000 0.000 

The results of the Bonferroni pairwise comparisons can be seen in Tables 7, 8, 

and 9. Three datasets were used to examine each group in terms of AC, ARI, and 

NMI. For the Balance dataset, MFWKM-PD performed slightly better than the 

other algorithms for all performance metrics. Still, in the molecular biology 

dataset, MFWKM-PD had a significantly better performance compared to the 

FKM-based algorithm, except for the FKM algorithms with probabilistic distance 

and weight. As shown in Table 7, the FKM-based algorithms, especially FWKM-

PD, had a significantly better result on the lymphography data, but the proposed 

algorithm did not perform well. 

Table 7 Bonferroni pairwise comparison for AC. 

Algorithm N 

Dataset: Molecular 

Biology 
Dataset: Balance 

Dataset: 

Lymphography 

Mean Grouping Mean Grouping Mean Grouping 

MFWKM-PD 30 61.5094 A  55.1627 A 55.9009   C 

MFKM-PD 30 60.9119 A  55.1093 A 55.8559   C 

FWKM-PD 30 60.3774 A  54.7840 A 68.3108 A   

MFWKM 30 60.1258 A  54.3893 A 65.7658 A B  

MFKM 30 58.7421 A B 54.2080 A 63.9414  B  

FKM-PD 30 58.4906 A B 54.4693 A 65.4505 A B  

FWKM 30 56.8239 A B 54.3520 A 65.8108 A B  

FKM 30 55.0314  B 54.3520 A 65.6982 A B  

Moreover, in terms of ARI and NMI, as shown in Tables 8 and 9, the MFWKM-

PD algorithm performed significantly different from the other algorithms on the 

molecular biology dataset. In contrast, the FKM-based algorithms had lower 

performances. With the Balance dataset, all algorithms were only slightly 

different; therefore, there were no significant differences among their 

performances. On the other hand, with the lymphography dataset, even though 

the proposed algorithms had the lowest ARI value, FKM with weight and 

probabilistic distance had the best performance.  
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Table 8 Bonferroni pairwise comparison for ARI. 

Algorithm N 

Dataset: Molecular 

Biology 
Dataset: Balance 

Dataset: 

Lymphography 

Mean Grouping Mean Grouping Mean Grouping 

MFWKM-PD 30 0.0762132 A   0.0359719 A 0.041697   C 

MFKM-PD 30 0.0637444 A B  0.0320827 A 0.040150   C 

FWKM-PD 30 0.0479689 A B C 0.0310023 A 0.129494 A   

MFWKM 30 0.0460753 A B C 0.0262616 A 0.087775 A B  

MFKM 30 0.0304458  B C 0.0289763 A 0.078398  B C 

FKM-PD 30 0.0276115  B C 0.0285140 A 0.088116 A B  

FWKM 30 0.0146631   C 0.0282712 A 0.083588  B C 

FKM 30 0.0054138   C 0.0282712 A 0.082640  B C 

Table 9 Bonferroni pairwise comparison for NMI. 

Algorithm N 

Dataset: Molecular 

Biology 
Dataset: Balance 

Dataset: 

Lymphography 

Mean Grouping Mean Grouping Mean Grouping 

MFWKM-PD 30 0.0992461 A  0.0315774 A 0.093781  B 

MFKM-PD 30 0.0902149 A  0.0297288 A 0.090752  B 

FWKM-PD 30 0.0461485  B 0.0299344 A 0.157197 A  

MFWKM 30 0.0438051  B 0.0282079 A 0.128155 A B 

MFKM 30 0.0309028  B 0.0281922 A 0.124625 A B 

FKM-PD 30 0.0294507  B 0.0284125 A 0.130448 A B 

FWKM 30 0.0178571  B 0.0277592 A 0.126420 A B 

FKM 30 0.0108815  B 0.0277592 A 0.127219 A B 

4.3 Computational Time  

Table 10 presents the average computational time for all algorithms for each 

iteration. It reveals that the proposed MFWKM-PD algorithm needed more 

computational time for almost all datasets, except the lymphography dataset, 

where the MFKM algorithm with weight and probabilistic distance converged 

very fast.. 

Table 10 Computational time (in seconds). 

Datasets FKM FWKM 
FKM-

PD 

FWKM-

PD 
MFKM MFWKM 

MFKM- 

PD 

MFWKM- 

PD 

Molecular Biology 0.372 0.124 0.169 0.874 2.453 5.874 4.870 7.101 

Balance 0.044 0.042 0.281 0.451 3.628 2.165 2.184 3.361 

Lymphography 0.167 0.163 0.134 0.567 8.222 3.521 3.200 3.195 

The molecular biology dataset having 57 categories compared to other datasets, 

which only have 18 categories, was the reason that the proposed algorithm needed 

more computational time. The impact of the number of attributes led to more 

computational time for the MFKM-based algorithm than the number of clusters. 
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Although the proposed MFWKM-PD did not have the lowest computational time, 

it could provide better performance in terms of AC, NMI, and ARI for the 

molecular biology and balance datasets 

5 Conclusions 

The MFWKM-PD algorithm, which is based on a multivariate approach, uses a 

Gini impurity weight that considers the distribution of attributes based on 

information from within and between clusters. This proposed algorithm also 

adopts probabilistic distance instead of Hamming distance to reduce the noise 

sensitivity. Evaluation results from three datasets showed that MFWKM-PD had 

better accuracy, ARI, and NMI performance, particularly with the molecular 

biology dataset. The proposed algorithm works well on datasets with the same 

category level regarding the number of categorical attributes and clusters; even 

compared to FKM-based algorithms with weight and probabilistic distance, it can 

perform well. This makes it useful for applications in molecular biology, such as 

identifying gene groups with similar functions or for clustering patients by 

molecular profiles. 

However, the centroids being initialized randomly can lead to unstable results, as 

indicated by higher standard deviations. To address this, the initial centroids can 

be optimized using metaheuristic approaches, such as a genetic algorithm or a 

particle swarm optimization algorithm. Additionally, future studies can focus on 

determining the optimal number of clusters, which may be used to address the 

unsupervised problem in real-world applications. 
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