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Abstract. This study proposes a scalable and efficient approach for predicting
student behaviour in large-scale educational environments. It introduces a
parallelized hybrid model that combines Density-Based Optimized K-Means
clustering, Analytic Hierarchy Process (AHP) feature weighting, and Hierarchical
K-Nearest Neighbours (KNN), implemented using Apache Spark. The main
research question is how to improve scalability, accuracy, and computational
efficiency of student behaviour prediction when dealing with large, complex
datasets. The model addresses key limitations of traditional methods, such as
handling heterogeneous data, treating all features equally, and high computational
cost. Two main innovations are presented. First, AHP is used to assign structured
importance to features, allowing critical factors like attendance and study time to
have greater influence on prediction accuracy. Second, clustering and prediction
are parallelized using Spark, enabling efficient real-time processing of large
datasets. The approach was evaluated using 18,586 student records and more than
20 million behavioural entries. Results show that Hierarchical KNN consistently
outperforms standard KNN as dataset size increases. While traditional KNN
shows unstable error rates, peaking at 9.4%, Hierarchical KNN maintains lower
and more stable errors between 5.16% and 6.08%. Execution time was also
significantly reduced through parallel processing, though gains were limited by
communication overhead. Overall, the proposed model offers a robust framework
for real-time behaviour analysis, academic risk detection, and targeted educational
intervention.

Keywords: analytic hierarchy process (ahp); density-based optimized k-means;
educational data mining; feature weighting,; hybrid model; parallelized feature
selection; parallelized model training; student behavior prediction.

1 Introduction

The increased enrolment in higher education institutions highlights the need for
more sophisticated data mining approaches that can handle big data, including
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student behaviour analytics [1]. Traditional data management systems offer basic
statistical insights, but they lack the depth required for comprehensive student
profiling and performance prediction [2]. Consequently, modern approaches that
utilize clustering algorithms integrated with machine learning and big data
analytics are necessary to provide accurate and efficient results. These
technologies offer real-time, data-driven insights into student behaviour, which
can be used to improve teaching methods, identify students at risk of failure, and
foster a more supportive learning environment [3][4].

In predictive modelling, particularly in educational data mining, feature
importance plays a crucial role in improving the accuracy of predictions. When
certain features (such as study time, participation, and exam performance) are
more predictive of student behaviour, placing appropriate weight on these
features can significantly enhance the model’s effectiveness. For instance, K-
Nearest Neighbours (KNN), a commonly used algorithm for student behaviour
prediction, is sensitive to the scale and importance of input features. If all features
are treated equally, the model may be influenced by irrelevant or less important
features, leading to suboptimal results. Therefore, feature weighting is a critical
step to ensure that the most relevant factors receive more influence in the distance
calculations that KNN relies on for prediction [5]-[7].

In current literature, Analytic Hierarchy Process (AHP) has been applied in multi-
criteria decision-making scenarios and has shown promise in improving model
performance by providing more accurate feature weighting. However, limited
studies have specifically examined the impact of AHP feature weighting on
student behaviour prediction models such as KNN, making this research question
timely and relevant [8]. AHP offers the advantage of considering human expertise
and domain knowledge in assigning feature importance. Given its multi-criteria
decision-making nature, AHP could provide a more robust way to rank student
behaviour features in educational datasets, resulting in improved predictive
accuracy when integrated into KNN models [9].

There are several hybrid models involving clustering, feature selection, and KNN
in various applications. For instance, KNN was integrated with Fuzzy C-Means
(FCM) clustering to improve prediction accuracy, particularly in classification
tasks [10]. While similar in using feature weighting and KNN, the distinction lies
in the AHP-based feature weighting in your model, which offers a systematic
decision-making approach for prioritizing features, and no parallelization
approach applied in these works. Another related work is the development of a
novel parallel hybrid model based on series hybrid models of ARIMA and ANN
Models [11]. The ARIMA-ANN hybrid models are primarily time-series
prediction models, where ARIMA handles linear patterns and ANN captures non-
linear trends. These models benefit from parallelization mainly in the ANN
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component, which can use parallel computing during backpropagation and model
training. However, ARIMA itself is a sequential model, limiting the overall
parallel efficiency. Parallelism is mainly achieved by running both models
(ARIMA and ANN) in parallel, but it is less flexible compared to the multi-stage
parallelism in the model proposed in this paper.

A hybrid model was also introduced for traffic flow prediction integrates KNN
with multiple clustering algorithms to handle varying feature distributions across
regions [12]. The focus is on optimizing KNN performance through better
clustering, though the feature weighting mechanism differs, as this model does
not use AHP and parallelization. Another hybrid model was also proposed for
heart disease prediction using a combination of unsupervised clustering and
supervised learning [13]. This model employs collaborative clustering, where
multiple clustering algorithms share information to enhance accuracy, combined
with ensemble learning for final predictions. Although this model focuses on a
different domain (heart disease prediction), its hybrid nature and the use of
multiple clustering techniques for behaviour classification align with the
proposed approach in this paper, albeit without the application of AHP-based
feature weighting for feature selection [34] and the application of parallelization
to improve the execution efficiency of the hybrid model [14].

Some models combine KNN with LSTM for trajectory prediction, leveraging
KNN for high-density data and LSTM for time series data with low-density points
[15]. While trajectory prediction is different in scope, the idea of hybridizing
different methods (KNN and clustering) resonates with the proposed model's
design in this work. However, in this work, the proposed model emphasis on
parallelization for execution efficiency of the proposed hybrid model and the
application of AHP for feature weighting in behaviour prediction offers a more
tailored approach for feature relevance in behavioural data.

In summary, while similar hybrid models exist, the proposed model in this work
stands out by integrating the AHP method for feature weighting, adding a
structured decision-making process to feature importance and the application of
parallelization for efficient execution, which are not explored thoroughly in other
hybrid KNN models. The use of hybrid models (e.g., combining clustering,
feature weighting, and classification techniques) has been shown to outperform
single method approaches in predicting student success. However, current
research lacks sufficient exploration of AHP’s role in feature weighting,
particularly in the context of KNN models for educational applications [16].
Current student behaviour prediction methods face significant challenges,
particularly with traditional clustering techniques like K-Means, which struggle
to accurately segment students due to their inability to manage varying densities
in engagement and learning patterns, resulting in less meaningful and
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representative clusters. Additionally, many prediction models fail to optimize
accuracy by treating all features equally, neglecting structured approaches like
the Analytic Hierarchy Process (AHP), which can prioritize the most relevant
features for models such as K-Nearest Neighbours (KNN). However, as the
volume of educational data grows, the computational demands of algorithms like
K-Means and KNN become a major bottleneck, hindering real-time analysis and
decision-making. This underscores the critical need for parallelization to improve
both the efficiency and scalability of these algorithms, enabling them to process
large educational datasets rapidly and support real-time student behaviour
predictions in dynamic learning environments. By leveraging parallel computing
frameworks, such as Apache Spark, the performance of these algorithms can be
significantly enhanced, making them more suitable for large-scale educational
data mining applications.

The purpose of this paper is to develop and evaluate a parallelized hybrid model
that integrates Density-Based Optimized K-Means clustering, Analytic Hierarchy
Process (AHP)-based feature weighting, and K-Nearest Neighbours (KNN) for
predicting student behaviour based on the running or execution time. In other
words, the study aims to evaluate the overall performance of the proposed
parallelized hybrid model, which combines clustering, AHP-based feature
weighting, and KNN, for efficient and accurate student behaviour prediction,
particularly when applied to large-scale educational datasets. By implementing
parallelization techniques, the paper seeks to address scalability challenges and
improve the real-time processing capability of the model in dynamic educational
environments.

2 Methods

This study uses a quantitative experimental design to develop and evaluate
clustering and predictive models for student behavior analysis. It combines
descriptive analytics, using clustering to segment students by engagement
patterns, with predictive modeling to forecast academic success or risk. By
integrating both approaches, the study offers deeper insights into student
behaviors. To ensure scalability, the models are implemented using Apache Spark
for parallel processing, enabling efficient handling of large educational datasets.
This approach enhances processing speed and supports real-time data analysis,
making it suitable for large-scale learning environments and practical deployment
in educational systems. The methodology involves a multi-stage machine
learning pipeline that integrates three key components:

Density-Based Optimized K-Means Clustering: This algorithm is used to
segment students into meaningful clusters based on their engagement levels and
learning patterns. It improves upon traditional K-Means by handling varying
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densities in student behavior, resulting in more representative and compact
clusters.

Analytic Hierarchy Process (AHP) for Feature Weighting: AHP is applied to
prioritize the most relevant features in the data, ensuring that features critical to
predicting student behavior receive appropriate weighting. This structured feature
weighting is integrated into the predictive modelling stage to enhance the
accuracy of predictions.

K-Nearest Neighbours (KNN) for Prediction: KNN is employed to predict
student behaviour by identifying similar students based on the weighted features.
The inclusion of AHP helps improve the accuracy of KNN by ensuring that more
relevant features have a greater influence on the prediction process.

The integration of these techniques forms the foundation of the proposed hybrid
model. A key innovation of this study is the parallelization of clustering and KNN
algorithms, allowing for efficient processing of large datasets in real-time or near-
real-time environments. This is achieved using the Spark platform, which
distributes computational tasks across multiple nodes, significantly improving
scalability and reducing execution time. The research methodology also places a
strong emphasis on data preprocessing, model evaluation, and performance
optimization. Each stage of the pipeline is rigorously tested to ensure that the
models achieve optimal performance in terms of both clustering accuracy and
predictive power. This includes evaluating the compactness and separation of the
clusters formed by the Density-Based Optimized K-Means algorithm and
assessing the accuracy and efficiency of the AHP-weighted KNN predictions.
Figure 1 illustrates the flowchart that describes the key phases of the proposed
research that will be executed in this thesis. All three research objectives are also
mapped into the research methodology to ensure all of them are covered and
achieved successfully.
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Figure 1 Flowchart illustrating the key phases of the proposed research.

2.1 Data Sources

The dataset for this study was collected from Chinese universities and colleges,
covering student behavior indicators such as library visits, physical activity, and
consumption patterns. The data, extracted from the university’s digital campus
infrastructure, spans the period from March 2015 to March 2017, and includes
18,586 student records. These records include consumption data (8,332,810
entries), library book borrowing (1,568,347 entries), attendance records
(8,595,864 entries), and library access logs (2,370,988 entries). The dataset also
contains academic performance, physical exercise records, and wireless network
access logs, making it suitable for a comprehensive analysis of student behavior
[16][17]. Two main datasets are used call the consumption patterns and the
learning efforts.

2.2 Data Collection and Preprocessing

The original dataset was subjected to preprocessing steps, including handling
missing values through techniques like mean/mode imputation and normalization
of numerical data such as study hours and spending using the min-max
normalization method (Eq. (1)). Categorical data, like student demographics, were
one-hot encoded to convert them into a machine-readable format. These
preprocessing steps ensured that the data were suitable for clustering and
predictive models [16].

' |x—min|

x| = Emnl (1)

max — min
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2.3 Machine Learning Algorithm — Hierarchical KNN

In this study, the term Hierarchical KNN refers to a two-level or multi-stage
enhancement of the traditional KNN algorithm, designed to improve scalability
and prediction accuracy in large datasets. Unlike standard KNN, which calculates
distances across the entire dataset uniformly, the Hierarchical KNN
implementation first performs a pre-clustering step (Modified Optimized
Density-based clustering) to group similar data points. Then, Analytic Hierarchy
Process (AHP)-based feature weighting is used to prioritize the most relevant
features in the data, ensuring that features critical to predicting student behavior
receive appropriate weighting and finally, KNN is applied within or across
selected clusters, thereby narrowing the search space and reducing computational
complexity. This hierarchical structure introduces a layered decision process:

1. Macro-level grouping (clustering) to localize similar behaviour patterns.
2. AHP-based feature weights integration that will significantly improve the
prediction accuracy for identifying student behaviours.

In the context of Spark, this structure also aligns with the parallel computing
architecture, where clustering and neighbour search can be independently
distributed across nodes. As a result, this hierarchical approach improves both the
efficiency and accuracy of the prediction model, particularly when working with
high-dimensional or large-scale student behaviour datasets.

2.3.1 Macro-level Grouping (Clustering)

Two clustering approaches were implemented, Traditional K-Means and
Density-Based Optimized K-Means. The clustering results were validated by
assessing intra-cluster compactness and inter-cluster separation using evaluation
metrics like cluster validity index (V(k)) for k clusters, where intra-class similarity
is represented by the average distance between each sample point within each
cluster and its corresponding cluster centroid, as shown in Eq. (2).
Doyt—Din

Dout+Din
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In Eq. (3), D(xj, pi) represents the distance between sample point xj, and the
centroid pi of its corresponding cluster. The dissimilarity between clusters
measures the degree of separation between different clusters and is expressed as
the average distance between cluster centers, as shown in Eq. (4), where D(p;, p;)
represents the distance between centroid p; and centroid p; of two different
clusters.
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A Hierarchical KNN model is then developed and implemented to predict student
behavior based on the clusters and weighted features. Predictions were evaluated
using Relative Error (RE) (See Eq. (5)) and Standard Error (SE) (See Eq. (6)) [3].

Number of Incorrect Predictions

RE =

Total number of prediction x 100 (5)
sd

SE = N (6)

The Analytic Hierarchy Process (AHP) is applied to prioritize the most relevant

features for the predictive model. Using a pairwise comparison matrix, features

like attendance, academic performance, and study time were weighted according

to their importance in predicting student behavior.

In this study, the AHP pairwise comparison matrix was constructed using five
primary behavioural features: attendance, study time, academic performance,
library access, and consumption pattern. Expert input from faculty members was
used to establish the relative importance of each feature in predicting student
behaviour. The comparison was based on Saaty’s 1-9 scale, where 1 indicates
equal importance and 9 indicates extreme importance of one feature over another.

The resulting normalized weights were as follows: Attendance: 0.32, Study Time:
0.27, Academic Performance: 0.2, Library Access: 0.12, Consumption Pattern:
0.08.

These weights indicate that attendance and study time are the most influential
features, aligning with domain knowledge that consistent class participation and
dedicated study hours strongly impact academic outcomes. The Consistency
Ratio (CR) was calculated at 0.07 (< 0.1), confirming acceptable consistency in
expert judgments. These AHP-derived weights were then applied to the feature
set before KNN distance calculations, ensuring that more predictive features had
proportionally greater influence in the similarity assessment.

This weighting improved the accuracy of the subsequent KNN model by
emphasizing the most relevant features [9]. The hierarchical KNN model
integrated the AHP-based feature weights, significantly improving the
prediction accuracy for identifying student behaviors.

2.3.2 AHP-based Feature Weights Integration with KNN

The produced cluster results are then used as the class label for predicting the
student's behavior. Before performing the predictions, the Analytic Hierarchy
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Process (AHP) model is applied to the Learning Efforts and Consumption
Patterns features compute produce the weighted features. These weighted
features and class labels are combined to create an Updated Dataset. Finally, the
updated dataset, containing both class labels and feature weights, is used to
predict student behavior using a Hierarchical K-NN (K-Nearest Neighbors)
algorithm.

It is important to clarify that the term Hierarchical KNN in this study does not
refer to a tree-based nearest neighbor search structure, as sometimes used in
literature. Instead, the ‘hierarchical’ aspect arises from the multi-stage pipeline
designed in this work, which integrates (1) clustering through the Density-Based
Optimized K-Means algorithm, (2) Analytic Hierarchy Process (AHP)-based
feature weighting, and (3) K-Nearest Neighbours (KNN) prediction. This layered
sequence of clustering, weighting, and classification is what constitutes the
hierarchical design in our approach, ensuring improved scalability and accuracy
for large-scale educational datasets.

In summary, the process starts with student data, applies clustering and AHP to
generate class labels and weighted features, and ultimately predicts student
behavior using a hierarchical K-NN model. Based on the cluster label produced
using the modified density-based optimize k-means clustering, the similarity
between the target student and the existing students is calculated based on the
updated student features. To improve the accuracy of the prediction, the data is
standardized before calculating the similarity between two students' behaviors.
Subsequently, k£ students having the most similar characteristics with the target
student x are identified based on their similarity and the predicted class for the
target student x is determined by the majority of labels in the K students. The
similarity between the target student and the K students in the training sample is
reflected by the weighted Euclidean distance.

2.3.3 Parallelization

In this stage, the task of implementing the Density-Based Optimized K-Means
and Hierarchical KNN models in parallel on the Spark cluster is performed. The
performance of the parallelization approach is measured based on the execution
time and speedup ratio as the number of worker nodes and the dataset size
increase.

2.3.3.1 Parallelization Implementation of Density-based
Optimized K-Means Algorithm

Given the substantial volume of data involved in student clustering for this study,
and to ensure the system's scalability for processing larger datasets in the future,
the algorithm was designed and implemented in a parallelized manner on Spark
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[19]. The parallel implementation of the Density-Based Optimized K-means
algorithm, based on student behavior characteristics, is illustrated in Figure 2.
Notably, the parallel implementation of density-based optimized K-means
clustering is divided into two stages. In the first stage, students who meet the
density requirements are clustered based on the density of all students that have
been scanned. In the second stage, all students are scanned to assign students to
a cluster and update the cluster center points. The task of Submission & Data
Loading Process is the entry point for the entire parallel program.

Task submission & Data Loading: Apache Spark is a unified computing engine
for parallel data processing, widely used in big data analytics and supporting
languages like Python, SQL, and machine learning tasks. In this study, Spark was
used for data submission, clustering, and analysis on a local computer [14].
Execution began with the spark-submit command, specifying the Python
application file and configurations such as driver memory, executor memory,
deploy mode, and core usage. This enabled efficient processing of large datasets
using pre-written Spark applications.
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Figure 2 Parallelization of Optimized K-means Algorithm Based on Spark.



152 Li Guozhang, et al.

Initial Cluster Centroids Selection: The initial £ centroids are randomly
selected since true cluster centers are unknown. Each data point is then assigned
to the nearest centroid based on Euclidean distance. Centroids are updated by
averaging the data points in each cluster, and the process repeats until the
centroids stabilize, typically after several iterations. However, random
initialization can lead to high errors and poor clustering accuracy. To address this,
the initial centroid selection is optimized using a density-based approach, which
improves starting positions and reduces the need for excessive iterations,
ultimately enhancing clustering performance and reducing error rates in the
results.

Density-Based Optimized K-Means: Density-Based Optimized K-Means was
used in this study. In this case, the clusters were assigned to where there is a
high density of the data points within a dataset. The clusters are thus assigned
wherever there is a high density of data points, separated by low-density
areas [23][24]. Most importantly, the user is not required to specify the
number of clusters, since there exists a distance-based parameter, which serves
as a tunable threshold. The threshold in this respect determines the closeness
of the cluster members. The centroids, which represent the center of the clusters,
are critical components in the clustering process using Python, in expectation
maximization; expectation assigns each data point the nearest centroid.
Secondly, the maximization step computes the mean of all the points for every
cluster, thereby establishing the new centroids.

The Density-Based Optimized K-Means used in this study differs significantly
from the traditional DBSCAN (Density-Based Spatial Clustering of Applications
with Noise) algorithm in several key aspects. While both approaches are designed
to identify clusters based on data density and do not require the user to predefine
the number of clusters, the modified version introduces enhancements that
improve scalability and integration with iterative centroid-based refinement.
Unlike DBSCAN, which forms clusters through the concept of density
reachability and connectivity without relying on centroids, the modified approach
incorporates centroid computation and iterative expectation-maximization steps
like those used in K-Means. In this process, each data point is assigned to the
nearest centroid, and cluster centres are recalculated based on the mean of the
assigned points, refining cluster structure with each iteration. Moreover,
DBSCAN labels low-density points as noise and does not attempt to reassign
them, whereas the modified algorithm performs a secondary scan to reassign
previously un-clustered data points and update cluster centres, ensuring more
comprehensive coverage. Another critical distinction lies in computational
design: the Density-Based Optimized K-Means was specifically structured to
support parallelization, making it suitable for large-scale data processing using
platforms like Apache Spark. In contrast, DBSCAN’s recursive neighbourhood
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expansion and dependency on sequential region-growing make it less efficient
and harder to scale in parallel computing environments. Thus, while DBSCAN is
effective for discovering arbitrary-shaped clusters in smaller datasets, the
modified method offers a more structured, centroid-driven, and parallelizable
approach that is better suited for big data scenarios and high-performance
educational analytics.

The Combiner Process: The Combiner process, also known as the semi-reducer,
is an optional step in Spark that summarizes Map output before passing it to the
Reducer. In the context of K-Means, it combines results from multiple parallel
executions to improve clustering efficiency. The process involves four main
steps: (a) the dataset is split into subsets, and K-Means is run on each in parallel;
(b) centroids from each subset are collected; (c) these centroids are averaged to
form unified cluster centers; and (d) K-Means is re-run on the full dataset using
the combined centroids to enhance accuracy. This process is implemented using
Spark MLIib.

Cluster Merging: Cluster merging is an unsupervised learning technique that
combines smaller clusters with larger ones based on similarity measures. This
process simplifies data structure and improves clustering accuracy by refining
group boundaries and enhancing overall data representation.

2.3.3.2 Parallelization Implementation of Hierarchical
KNN Algorithm

The core of the student behavior prediction model involves using the K-nearest
neighbor (KNN) algorithm to predict a student’s behavior by analyzing the
behavior of their K most similar peers [22]. This process is parallelized in Apache
Spark using Resilient Distributed Datasets (RDDs) and involves six main steps.
First, training and test data are loaded as RDDs or DataFrames and distributed
across worker nodes, with training data optionally broadcasted. Second, the
Euclidean distance between test and training points is computed in parallel using
Spark's map function. Third, each test point's K nearest neighbors is selected
using takeOrdered(), also in parallel. Fourth, predictions are made via majority
voting from the K neighbors. Fifth, the predicted results are evaluated by
comparing with actual labels, and accuracy is computed in parallel. Finally,
performance is optimized by tuning Spark configurations and testing with various
dataset sizes to ensure scalability and efficiency.
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3 Results and Discussion

3.1 Accuracy Performance of the Hierarchical KNN in Predicting
Student Behavior Characteristics

Figure 3 demonstrates that Hierarchical KNN consistently outperforms standard
KNN (Without AHP-weighted features filtering) in predicting student behavior
across all population sizes, with notably lower average relative error percentages.
As the number of students increases from 100 to 10,000, the relative error for
KNN fluctuates more significantly, peaking at 9.4% for 5,000 students, while
Hierarchical KNN maintains greater stability and lower error rates, ranging from
5.16% to 6.08%. This indicates that Hierarchical KNN scales are more effective
and are more robust in handling larger datasets, likely due to its structured
clustering approach that reduces computational overhead and improves local
neighbor accuracy. The most optimal performance for Hierarchical KNN appears
at a population size of 2,000, where it achieves the lowest error of 5.16%,
suggesting a potential balance between accuracy and complexity. These findings
underscore the practical advantage of Hierarchical KNN for educational
institutions, particularly those managing large student populations, as it ensures
higher predictive accuracy and greater reliability in real-world deployment
scenarios.

The Relative Error of Student Behavior Prediction Evaluation Using
Different Number of Students Population
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Figure 3 Comparison of Accuracy Performance of the Hierarchical KNN
Prediction Vs KNN prediction models using different sizes of student’s
population.
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3.2 Parallelization Approach Performance of the Density-based
Optimized K-means

Figure 4 compares the efficiency (running time in seconds) between Spark cluster
and standalone mode when clustering different numbers of student data points
(ranging from 100 to 10,000). The findings clearly show that the Spark cluster
mode offers significantly better scalability and consistent performance across all
data sizes. While the running time for Spark cluster remains nearly constant,
ranging only slightly from 13.12 seconds (100 students) to 14.36 seconds (10,000
students), the standalone mode becomes increasingly inefficient as the data size
grows. Specifically, the standalone running time escalates from 13.12 seconds at
100 students to 300 seconds at 5,000 students, indicating a steep rise in processing
cost. This demonstrates that Spark cluster is highly efficient and scalable,
handling larger datasets without a significant increase in computation time. In
contrast, the standalone setup struggles with larger data volumes, resulting in an
over 20x increase in processing time from 100 to 5,000 students. Therefore, for
large-scale clustering tasks, Spark cluster is the clearly superior choice, offering
both speed and stability.

Comparison of efficiency (Running Time in Seconds)
between Spark cluster and standalone mode
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Figure 4 Comparison of efficiency (Running Time in Seconds) between Spark
cluster and standalone mode when running Density-based Optimized K-Means
clustering process.
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Comparison of Speedup Ratios for Spark Clusters
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Figure 5 Comparison of Speedup Ratios for Spark Clusters when running
Density-based Optimized K-Means clustering process with different number of
worker nodes.

The graph shown in Figure 5 presents a comparison of speedup ratios (S) for
Spark clusters using different numbers of worker nodes (1 to 6) and varying data
volumes, 100%, 50%, and 10% of student datasets. The findings reveal a clear
trend: as the number of worker nodes increases, the speedup ratio improves across
all dataset sizes, confirming the scalability of Spark for parallel processing.
Notably, the largest dataset (100% of students) achieves the highest speedup,
reaching 3.67 speedup at 6 nodes, followed by 50% at 3.28 times, while the
smallest dataset (10%) reaches only 2.29 times. This shows that larger datasets
benefit more significantly from additional worker nodes, as there is more
computational workload to distribute. Furthermore, while all configurations show
linear or near-linear scalability initially, diminishing returns become visible
beyond 4 - 5 nodes, especially for smaller datasets like 10%, where the overhead
of parallelization starts to outweigh the benefits. Overall, the graph demonstrates
that Spark performs most efficiently when handling larger datasets with enough
worker nodes, making it a robust solution for high-volume educational data
processing where performance gains scale with resources.

33 Computation Performance of the Hierarchical KNN in
Predicting Student Behavior Characteristics

Figure 6 illustrates the execution time comparison of the Hierarchical KNN
prediction model between standalone mode and Spark cluster across various
student population sizes (100 to 10,000). The findings show that Spark cluster
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significantly outperforms standalone mode, especially as dataset size increases.
For small datasets (e.g., 100 students), both modes show comparable execution
times (Spark: 3.15s, Standalone: 3.12s). However, as the dataset grows, the gap
widens drastically, at 10,000 students, the standalone mode takes 313 seconds,
while the Spark cluster completes in just 39.27 seconds, reflecting an efficiency
gain of nearly 8 times. This consistent performance in Spark cluster is attributed
to its parallel processing architecture, which effectively distributes the workload
and minimizes bottlenecks, even as data volume increases. In contrast, the
standalone mode experiences a linear-to-exponential increase in computation
time, revealing its limitations for large-scale datasets. Overall, these results
highlight that Spark cluster not only accelerates processing for the Hierarchical
KNN model but also ensures scalability, efficiency, and practical viability for
real-world educational analytics involving large student populations.

Execution Time of Hierarchical KNN Prediction Model with
Different Size of Students' Population

m Standalone ™ Spark cluster

350

313
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Algorithm execution time (S)

Figure 6 Comparison of Execution Time of the Hierarchical KNN Prediction
Model using different sizes of student’s population.

The graph, shown in Figure 7, presents the speedup ratios of Spark clusters when

executing the Hierarchical KNN algorithm using different numbers of worker
nodes (1 to 6) and varying data volumes (100%, 50%, and 10% of students). The
results clearly show that speedups improve as more worker nodes are added, with
the greatest performance gains observed in the 100% student dataset, which
reaches a speedup of 4.97% at 6 nodes. The 50% dataset also scales effectively,
achieving 3.88% speedup, while the 10% dataset shows more limited gains,
peaking at 2.42x,
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Speedup ratio of Spark clusters when running
Hierarchical KNN algorithm with different number of
worker nodes
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Figure 7 A comparison chart of the speedup ratio of Spark clusters when running
Hierarchical KNN algorithm with different number of worker nodes

This indicates that larger datasets benefit more significantly from parallelization,
as there is more computation to distribute across nodes. Meanwhile, the smaller
dataset experiences diminishing returns beyond 3—4 worker nodes, where parallel
overhead may offset performance gains. Overall, the findings confirm that the
Spark cluster environment scales efficiently with increasing data volume and
worker nodes, making it a highly effective approach for accelerating Hierarchical
KNN execution in large-scale educational analytics.

The Density-Based Optimized K-Means algorithm demonstrates effective
segmentation of student behavior, and its parallel performance is significantly
improved when executed on a Spark cluster compared to a single machine. For
large datasets (over 10,000 students), the Spark cluster achieves better scalability,
with only slight increases in execution time, whereas the single-machine
approach becomes inefficient and overloaded. The speedup ratio improves as the
number of worker nodes increases on the Spark cluster, though it doesn't achieve
a perfect 1:1 ratio due to data dependencies and communication overhead
between nodes. For small datasets, parallelization is less efficient on the Spark
cluster due to the overhead of task submission and resource scheduling.

The Hierarchical KNN prediction model shows significant improvements in
execution time when implemented in parallel on a Spark cluster, especially when
predicting large datasets. The model's performance deteriorates when executed
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serially on a single machine, particularly for large datasets, where memory and
CPU overload become problematic. The speedup ratio of the Hierarchical KNN
model improves as more worker nodes are added to the Spark cluster,
demonstrating successful parallelization. However, like K-Means, perfect
parallelism is not achieved due to data dependencies and inter-node
communication. For small datasets, the overhead of task submission and
communication between nodes makes it harder to observe the advantages of
parallelization, suggesting that Spark is better suited for handling large-scale
datasets.

These findings highlight the scalability and efficiency benefits of implementing
both the Density-Based Optimized K-Means and Hierarchical KNN algorithms
in parallel on Spark clusters, especially when dealing with large volumes of
student data. However, for smaller datasets, the overhead is involved in parallel
processing reduces the efficiency gains, indicating that the benefit of
parallelization becomes more apparent as dataset size increases. While the
parallelization of these models on Spark significantly improves computational
efficiency, especially for large datasets. These findings highlight the potential of
leveraging big data analytics and machine learning techniques to improve student
management and tailor educational interventions. However, parallelization is less
effective for smaller datasets, indicating that its benefits scale with larger data
volumes. Overall, the study offers a robust framework for analyzing student
behaviors, with the potential for widespread application in academic institutions.

The parallelization of the algorithms led to faster execution times, allowing the
model to handle large datasets in real-time or near-real-time scenarios. The hybrid
model is expected to yield more accurate predictions than any individual method,
contributing to better decision-making for interventions based on student
behavior predictions.

4 Limitations of the Proprosed Solution

Despite its strong performance, the model has potential limitations. Its reliance
on AHP for feature weighting introduces subjectivity, as the assignment of
feature importance depends on expert judgment and may lead to bias if not
rigorously validated. Furthermore, while the use of Apache Spark enables high
scalability, deploying such a system in real-world educational environments may
be challenging due to limited computational resources, infrastructure constraints,
and technical expertise. In resource-constrained institutions, the cost and
complexity of maintaining distributed computing environments may limit the
model’s applicability and necessitate simplified or lightweight alternatives.
Nevertheless, the findings highlight the model’s value as a robust, high-
performance framework for real-time behaviour analysis, academic risk
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detection, and data-driven educational intervention, particularly in data-intensive
and well-resourced environments.

To enhance the robustness, accessibility, and applicability of the proposed hybrid
model across diverse educational environments, several improvements are
recommended. To reduce the subjectivity in AHP-based feature weighting, future
studies should incorporate recent data-driven techniques such as SHAP [26],
permutation feature importance, and ensemble-based ranking systems to validate
and complement expert decisions. These methods enhance objectivity and
support explainability in machine learning applications. In low-resource
educational institutions, lightweight model deployment using multiprocessing
within scikit-learn, Dask, or on-demand environments like Google Colab and
AWS SageMaker Studio Lab [30] offers an affordable and scalable alternative.
For flexible deployment, recent advancements in container orchestration using
Docker and Kubernetes have made modular, reproducible deployment of Al
systems more feasible [27]. Furthermore, adaptive model scaling, where
computational complexity adjusts to available resources, can be implemented
with AutoML-based configurations optimized for edge computing environments
[29], allowing decentralized processing with minimal latency and infrastructure
dependence. Crucially, data summarization techniques should be integrated into
the data preprocessing pipeline to reduce redundancy, enhance model efficiency,
and enable real-time analytics, particularly when handling high-dimensional
student behavior data [31-33]. Cross-validation across international and resource-
diverse academic settings is vital to establish the model’s generalizability; studies
such as those by Ortega et al. (2024) stress the need for inclusive validation
strategies in Al for education [28]. Lastly, developing intuitive user interfaces
and automation pipelines can lower the barrier for non-technical users. Modern
visual analytics tools like Streamlit and no-code platforms [25] enable educators
to explore model outputs, run predictions, and adjust parameters without coding,
making Al-powered educational analytics more accessible. These directions
ensure that the proposed hybrid model becomes not only technically sound but
also widely usable, scalable, and interpretable across varied educational
ecosystems.

It should also be noted that the dataset analyzed in this study spans from 2015 to
2017, a period prior to the global shift toward large-scale online and blended
learning environments. While the model’s methodological contributions in
scalability, feature weighting, and parallelized prediction remain valid, the
generalizability of the findings should be further tested on more contemporary
datasets. Post-2020, particularly during and after the COVID-19 pandemic,
student learning behaviors have undergone significant transformations due to
increased reliance on digital platforms, remote learning, and online assessments.
These changes may introduce new behavioral features (e.g., login frequency,
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virtual classroom participation, online discussion forum activity) that were less
prevalent in earlier datasets. Future work should therefore evaluate the proposed
model using post-2020 student data to confirm its robustness and adaptability in
modern digital learning ecosystems.

5 Conclusion

This study addresses the growing need for sophisticated data mining techniques
to predict student behaviour by designing and evaluating a parallelized hybrid
model that integrates Density-Based Optimized K-Means clustering, Analytic
Hierarchy Process (AHP) for feature weighting, and K-Nearest Neighbours
(KNN) for student behaviour prediction. The research successfully achieves its
objectives, offering a scalable and efficient framework to predict student
behaviour based on real-time data analytics. Based on the findings, parallelization
on the Spark cluster enhances computational efficiency for both Density-Based
K-Means and Hierarchical KNN, especially when handling large datasets (over
10,000 students). The execution times of the algorithms on Spark increase
minimally with dataset size compared to single-machine implementations, which
become overwhelmed by larger data volumes. The parallelized hybrid approach
of combining clustering, feature weighting, and KNN demonstrates superior
execution efficiency, making it a valuable tool for educational institutions to
monitor and intervene in student progress in real-time. However, parallelization
proves less beneficial for smaller datasets due to the overhead involved,
indicating the model's true value emerges in large-scale applications.

While the current study is based on historical student data, the proposed
Hierarchical KNN prediction model has strong potential for real-time deployment
within Learning Management Systems (LMS) such as Moodle, Canvas, or
Blackboard. By integrating the model into the LMS backend, real-time student
activity data, such as login frequency, assignment submissions, forum
participation, and quiz performance, can be continuously collected and analyzed.
This enables the model to dynamically monitor student behavior, identify at-risk
learners early, and trigger timely interventions such as automated alerts,
personalized feedback, or academic support recommendations. Using platforms
like Apache Spark for distributed processing, the system can handle large-scale,
real-time data streams efficiently, even in institutions with thousands of active
users. Additionally, containerization tools (e.g., Docker) and API-based
deployment can facilitate seamless integration with existing LMS infrastructure,
ensuring that the solution is both scalable and maintainable in a production
environment. Ultimately, embedding this model into real-time educational
ecosystems enhances its practical impact, promoting proactive learning support
and data-driven decision-making in digital education.



162

Li Guozhang, et al.

Acknowledgement

The authors would like to express their sincere gratitude to Shandong Light
Industry Vocational College and Universiti Malaysia Sabah for their financial
support, which made this research possible.

References

(1]

(2]

[3]

[6]

[7]

[8]

Luo, Y., Han, X. & Zhang, C., Prediction of Learning Outcomes with a
Machine Learning Algorithm based on Online Learning Behavior Data in
Blended Courses, Asia Pacific Education Review, 25(2), 267-285, 2024.
DOI: 10.1007/s12564-022-09749-6

Alhammadi, A., Shayea, 1., El-Saleh, A.A., Azmi, M.H., Ismail, Z.H.,
Kouhalvandi, L. & Saad, S. A., Artificial Intelligence in 6G Wireless
Networks: Opportunities, Applications, and Challenges, International
Journal of Intelligent Systems, 2024, 8845070, 2024. DOIL:
10.1155/2024/8845070

Ng, T.K., New Interpretation of Extracurricular Activities Via Social
Networking Sites: A Case Study of Artificial Intelligence Learning at a
Secondary School in Hong Kong, Journal of Education and Training
Studies, 9(1), pp.49-60, 2021. DOI: 10.11114/jets.v9i1.5105

Camerer, C.F., Artificial Intelligence and Behavioral Economics, in
Agrawal, A., Gans, J. & Goldfarb, A. (eds), The Economics of Artificial
Intelligence: An Agenda, 587-608, University of Chicago Press, 2019.
DOI: 10.7208/chicago/9780226613475.001.0001

Hu, J., Huang, Z., Li, J., Xu, L. & Zou, Y., Real-time Classroom Behavior
Analysis for Enhanced Engineering Education: An Al-assisted Approach,
International Journal of Computational Intelligence Systems, 17(1), 167,
2024. DOI: 10.1007/s44196-024-00572-y

Yagci, M., Educational Data Mining: Prediction of Students' Academic
Performance using Machine Learning Algorithms, Smart Learn. Environ,
9,11, 2022. DOI: 10.1186/s40561-022-00192-z

Song, X., Student Performance Prediction Employing K-nearest Neighbor
Classification ~ Model and  Meta-heuristic Algorithms.
Multiscaleand Multidisciplinary Modeling, Experiments  and
Design, 1-16, 2024. https://doi.org/10.1007/s41939-024-00481-9
Algatow, L., Rattrout, A. & Jayousi, R., Prediction of Student Performance
with Machine Learning Algorithms based on Ensemble Learning Methods.
In: Zhang, F., Wang, H., Barhamgi, M., Chen, L., Zhou, R. (eds) Web
Information Systems Engineering — WISE 2023. WISE 2023. Lecture
Notes in Computer Science, 14306, Springer, Singapore, 2023. DOI:
10.1007/978-981-99-7254-8 40



[9]

[10]

[13]

[14]

[17]

[18]

[19]

Scalable and Efficient Student Behavior Prediction 163

Chen, Y. & Zhai, L., 4 Comparative Study on Student Performance
Prediction using Machine Learning, Educ. Inf. Technol., 28,
pp- 12039-12057,2023. DOI: 10.1007/s10639-023-11672-1

Yang, S., Choi, J., Bae, S. & Chung, M., A Hybrid Prediction Model
Integrating FCM Clustering Algorithm with Supervised Learning. In: Park,
DS., Chao, HC., Jeong, YS., Park, J. (eds) Advances in Computer Science
and Ubiquitous Computing. Lecture Notes in Electrical Engineering, 373.
Springer, Singapore, 2015. https://doi.org/10.1007/978-981-10-0281-6_88
Hajirahimi, Z. & Khashei, M., A Novel Parallel Hybrid Model based on
Series Hybrid Models of ARIMA and ANN Models, Neural Process Lett,
54, pp. 2319-2337,2022. DOI: 10.1007/s11063-021-10732-2

Khotimah, B.K., Anamisa, D.R., Kustiyahningsih, Y., Fauziah, AN. &
Setiawan, E., Enhancing Small and Medium Enterprises: A Hybrid
Clustering and AHP-TOPSIS Decision Support Framework. Ingénierie des
Systémes  d’Information, 29(1), pp. 313-321, 2024. DOL:
10.18280/is1.290131

Al-Sayed, Amna, Mashael, M., Khayyat, & Nuha Zamzami, Predicting
Heart Disease using Collaborative Clustering and Ensemble Learning
Techniques. Applied Sciences 13(24), 13278, 2023. DOLI:
10.3390/app132413278

Maddukuri, C.D. & Senapati, R., Hybrid Clustering-based Fast Support
Vector Machine Model for Heart Disease Prediction, In: Udgata, S.K.,
Sethi, S., Gao, XZ. (eds) Intelligent System, ICMIB 2023. Lecture Notes
in Networks and Systems, 728, Springer, Singapore, 2024. DOI:
10.1007/978-981-99-3932-9 24

Zhang, L., Zhu, Y., Su, J., Lu, W., Li, J. & Yao, Y., A Hybrid Prediction
Model based on KNN-LSTM for Vessel Trajectory, Mathematics, 10(23),
4493, 2022. DOI: 10.3390/math10234493

Dziewior, J., Carr, L.J., Pierce, G.L. & Whitaker, K., College Students
Report Less Physical Activity and More Sedentary Behavior during the
COVID-19 Pandemic, Journal of American College Health, 72(7), pp.
2022-2030, 2024. DOI: 10.1080/07448481.2022.2100708

Shen, X. & Yuan, C., A4 College Student Behavior Analysis and
Management Method Based on Machine Learning Technology, Wireless
Communications and Mobile Computing, 2021, pp. 1-10, 2021. DOI:
10.1007/978-3-030- 89508-2 19

Li, X., Zhang, Y., Cheng, H., Zhou, F. & Yin, B., An Unsupervised
Ensemble Clustering Approach for the Analysis of Student Behavioral
Patterns, 1EEE  Access, 9, pp. 7076-7091, 2021. DOI:
10.1109/ACCESS.2021.3049157

Ding, D., Li, J., Wang, H. & Liang, Z., December. Student Behavior
Clustering Method based on Campus Big Data, in 2017 13" International



164

[20]

[21]

(23]

[24]

[25]

[27]

[28]

[29]

Li Guozhang, et al.

Conference on Computational Intelligence and Security (CIS), pp. 500-
503, IEEE, 2017. DOI: 10.1109/CIS.2017.00116

Ali El-Sayed Ali, H., Alham, M.H. & Ibrahim, D.K., Big Data Resolving
using Apache Spark for Load Forecasting And Demand Response in Smart
Grid: A Case Study of Low Carbon London Project. Journal of Big Data,
11(1), 59, 2024. DOI: 10.1186/s40537-024-00909-6

Pourahmad, S., Basirat, A., Rahimi, A. & Doostfatemeh, M., Does the
Determination of Initial Cluster Centroids Improve the Performance of the
Clustering Algorithm? Comparison of Three Hybrid Methods by Genetic
Algorithm, Minimum Spanning Tree, and Hierarchical Clustering in An
Applied Study, Computational and Mathematical Methods in Medicine,
2020. DOI: 10.1155/2020/7636857

Ahmed, M.A., Baharin, H. & Nohuddin, P.N., Analysis of K-means,
DBSCAN, and OPTICS Cluster Algorithms on Al-quran Verses,
International Journal of Advanced Computer Science and Applications,
11(8), 248-254, 2020. DOI: 10.14569/1JACSA.2020.0110832

Yang, K., Mohammadi Amiri, M. & Kulkarni, S.R., Greedy Centroid
Initialization for Federated K-means. Knowledge and Information
Systems, 1-33, 2024. DOI: 10.1109/CISS56502.2023.10089666

Frénti, P. & Sieranoja, S., How Much Can K-means be Improved by using
Better Initialization and Repeats?, Pattern Recognition, 93, 95-112, 2019.
DOI: 10.1016/j.patcog.2019.04.014

Truss, M. & Schmitt, M., Human-centered Al Product Prototyping with
No-code Automl: Conceptual Framework, Potentials and Limitations,
International Journal of Human—Computer Interaction, 1-16, 2024. DOL:
10.1080/10447318.2024.2425454

Hasan, A.S., Jalayer, M., Das, S. & Kabir, M.A.B., Application of Machine
Learning Models and SHAP to Examine Crashes Involving Young Drivers
in New Jersey, International Journal of Transportation Science and
Technology, 14, pp. 156-170, 2024. DOI:.1016/}.1jtst.2023.04.005
Pamadi, E.V.N., Khan, S. & Goel, E,O., A Comparative Study on
Enhancing Container Management with Kubernetes, International Journal
of Advanced Research and Interdisciplinary Scientific Endeavours, 1(3),
pp- 116-133,2024. DOI: 10.61359/11.2206-2411

Edeni, C.A., Adeleye, O.0. & Adeniyi, 1.S., The Role of Al-enhanced
Tools in Overcoming Socioeconomic Barriers in Education: A Conceptual
Analysis, World Journal of Advanced Research and Reviews, 21(3), pp.
944-951, 2024. DOI: 10.30574/wjarr.2024.21.3.0780

Wang, Y., Yang, C., Lan, S., Zhu, L., & Zhang, Y., End-edge-cloud
Collaborative Computing for Deep Learning: A Comprehensive
Survey. IEEE Communications Surveys & Tutorials, 26(4), pp. 2647-
2683, 2024. DOI: 10.1109/COMST.2024.3393230



[30]

[31]

[32]

Scalable and Efficient Student Behavior Prediction 165

Cherukuri, B.R., Serverless Computing: How to Build and Deploy
Applications without Managing Infrastructure, World Journal of
Advanced Engineering Technology and Sciences, 11(2), pp. 650-663,
2024. DOI: 10.30574/wjaets.2024.11.2.0074

Alfred, R., Summarizing Relational Data using Semi-supervised Genetic
Algorithm-based  Clustering  Techniques, Journal of  Computer
Science, 6(7), 775, 2010.

Alfred, R. & Kazakov, D., Data Summarization Approach to Relational
Domain Learning based on Frequent Pattern to Support the Development
of Decision Making, In International Conference on Advanced Data
Mining and Applications, (pp. 889-898), Berlin, Heidelberg: Springer
Berlin Heidelberg, August, 2006. DOI: 10.1007/11811305_97

Alfred, R., DARA: Data Summarisation with Feature Construction.
in 2008 Second Asia International Conference on Modelling & Simulation
(AMS) (pp. 830-835), IEEE, May, 2008. DOI: 10.1109/AMS.2008.131
Sainin, M.S., Alfred, R. & Ahmad, F., Ensemble Meta Classifier with
Sampling and Feature Selection for Data with Imbalance Multiclass
Problem, Journal of Information and Communication Technology, 20(2),
pp- 103-133. 2021. DOI: 10.32890/jict2021.20.2.1.



