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Abstract. This study proposes a scalable and efficient approach for predicting 

student behaviour in large-scale educational environments. It introduces a 

parallelized hybrid model that combines Density-Based Optimized K-Means 

clustering, Analytic Hierarchy Process (AHP) feature weighting, and Hierarchical 

K-Nearest Neighbours (KNN), implemented using Apache Spark. The main 

research question is how to improve scalability, accuracy, and computational 

efficiency of student behaviour prediction when dealing with large, complex 

datasets. The model addresses key limitations of traditional methods, such as 

handling heterogeneous data, treating all features equally, and high computational 

cost. Two main innovations are presented. First, AHP is used to assign structured 

importance to features, allowing critical factors like attendance and study time to 

have greater influence on prediction accuracy. Second, clustering and prediction 

are parallelized using Spark, enabling efficient real-time processing of large 

datasets. The approach was evaluated using 18,586 student records and more than 

20 million behavioural entries. Results show that Hierarchical KNN consistently 

outperforms standard KNN as dataset size increases. While traditional KNN 

shows unstable error rates, peaking at 9.4%, Hierarchical KNN maintains lower 

and more stable errors between 5.16% and 6.08%. Execution time was also 

significantly reduced through parallel processing, though gains were limited by 

communication overhead. Overall, the proposed model offers a robust framework 

for real-time behaviour analysis, academic risk detection, and targeted educational 

intervention.   

Keywords: analytic hierarchy process (ahp); density-based optimized k-means; 

educational data mining; feature weighting; hybrid model; parallelized feature 

selection; parallelized model training; student behavior prediction. 

1 Introduction 

The increased enrolment in higher education institutions highlights the need for 

more sophisticated data mining approaches that can handle big data, including 
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student behaviour analytics [1]. Traditional data management systems offer basic 

statistical insights, but they lack the depth required for comprehensive student 

profiling and performance prediction [2]. Consequently, modern approaches that 

utilize clustering algorithms integrated with machine learning and big data 

analytics are necessary to provide accurate and efficient results. These 

technologies offer real-time, data-driven insights into student behaviour, which 

can be used to improve teaching methods, identify students at risk of failure, and 

foster a more supportive learning environment [3][4]. 

In predictive modelling, particularly in educational data mining, feature 

importance plays a crucial role in improving the accuracy of predictions. When 

certain features (such as study time, participation, and exam performance) are 

more predictive of student behaviour, placing appropriate weight on these 

features can significantly enhance the model’s effectiveness. For instance, K- 

Nearest Neighbours (KNN), a commonly used algorithm for student behaviour 

prediction, is sensitive to the scale and importance of input features. If all features 

are treated equally, the model may be influenced by irrelevant or less important 

features, leading to suboptimal results. Therefore, feature weighting is a critical 

step to ensure that the most relevant factors receive more influence in the distance 

calculations that KNN relies on for prediction [5]-[7]. 

In current literature, Analytic Hierarchy Process (AHP) has been applied in multi-

criteria decision-making scenarios and has shown promise in improving model 

performance by providing more accurate feature weighting. However, limited 

studies have specifically examined the impact of AHP feature weighting on 

student behaviour prediction models such as KNN, making this research question 

timely and relevant [8]. AHP offers the advantage of considering human expertise 

and domain knowledge in assigning feature importance. Given its multi-criteria 

decision-making nature, AHP could provide a more robust way to rank student 

behaviour features in educational datasets, resulting in improved predictive 

accuracy when integrated into KNN models [9]. 

There are several hybrid models involving clustering, feature selection, and KNN 

in various applications. For instance, KNN was integrated with Fuzzy C-Means 

(FCM) clustering to improve prediction accuracy, particularly in classification 

tasks [10]. While similar in using feature weighting and KNN, the distinction lies 

in the AHP-based feature weighting in your model, which offers a systematic 

decision-making approach for prioritizing features, and no parallelization 

approach applied in these works. Another related work is the development of a 

novel parallel hybrid model based on series hybrid models of ARIMA and ANN 

Models [11]. The ARIMA-ANN hybrid models are primarily time-series 

prediction models, where ARIMA handles linear patterns and ANN captures non-

linear trends. These models benefit from parallelization mainly in the ANN 
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component, which can use parallel computing during backpropagation and model 

training. However, ARIMA itself is a sequential model, limiting the overall 

parallel efficiency. Parallelism is mainly achieved by running both models 

(ARIMA and ANN) in parallel, but it is less flexible compared to the multi-stage 

parallelism in the model proposed in this paper. 

A hybrid model was also introduced for traffic flow prediction integrates KNN 

with multiple clustering algorithms to handle varying feature distributions across 

regions [12]. The focus is on optimizing KNN performance through better 

clustering, though the feature weighting mechanism differs, as this model does 

not use AHP and parallelization. Another hybrid model was also proposed for 

heart disease prediction using a combination of unsupervised clustering and 

supervised learning [13]. This model employs collaborative clustering, where 

multiple clustering algorithms share information to enhance accuracy, combined 

with ensemble learning for final predictions. Although this model focuses on a 

different domain (heart disease prediction), its hybrid nature and the use of 

multiple clustering techniques for behaviour classification align with the 

proposed approach in this paper, albeit without the application of AHP-based 

feature weighting for feature selection [34] and the application of parallelization 

to improve the execution efficiency of the hybrid model [14]. 

Some models combine KNN with LSTM for trajectory prediction, leveraging 

KNN for high-density data and LSTM for time series data with low-density points 

[15]. While trajectory prediction is different in scope, the idea of hybridizing 

different methods (KNN and clustering) resonates with the proposed model's 

design in this work. However, in this work, the proposed model emphasis on 

parallelization for execution efficiency of the proposed hybrid model and the 

application of AHP for feature weighting in behaviour prediction offers a more 

tailored approach for feature relevance in behavioural data.  

In summary, while similar hybrid models exist, the proposed model in this work 

stands out by integrating the AHP method for feature weighting, adding a 

structured decision-making process to feature importance and the application of 

parallelization for efficient execution, which are not explored thoroughly in other 

hybrid KNN models. The use of hybrid models (e.g., combining clustering, 

feature weighting, and classification techniques) has been shown to outperform 

single method approaches in predicting student success. However, current 

research lacks sufficient exploration of AHP’s role in feature weighting, 

particularly in the context of KNN models for educational applications [16]. 

Current student behaviour prediction methods face significant challenges, 

particularly with traditional clustering techniques like K-Means, which struggle 

to accurately segment students due to their inability to manage varying densities 

in engagement and learning patterns, resulting in less meaningful and 
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representative clusters. Additionally, many prediction models fail to optimize 

accuracy by treating all features equally, neglecting structured approaches like 

the Analytic Hierarchy Process (AHP), which can prioritize the most relevant 

features for models such as K-Nearest Neighbours (KNN). However, as the 

volume of educational data grows, the computational demands of algorithms like 

K-Means and KNN become a major bottleneck, hindering real-time analysis and 

decision-making. This underscores the critical need for parallelization to improve 

both the efficiency and scalability of these algorithms, enabling them to process 

large educational datasets rapidly and support real-time student behaviour 

predictions in dynamic learning environments. By leveraging parallel computing 

frameworks, such as Apache Spark, the performance of these algorithms can be 

significantly enhanced, making them more suitable for large-scale educational 

data mining applications. 

The purpose of this paper is to develop and evaluate a parallelized hybrid model 

that integrates Density-Based Optimized K-Means clustering, Analytic Hierarchy 

Process (AHP)-based feature weighting, and K-Nearest Neighbours (KNN) for 

predicting student behaviour based on the running or execution time. In other 

words, the study aims to evaluate the overall performance of the proposed 

parallelized hybrid model, which combines clustering, AHP-based feature 

weighting, and KNN, for efficient and accurate student behaviour prediction, 

particularly when applied to large-scale educational datasets. By implementing 

parallelization techniques, the paper seeks to address scalability challenges and 

improve the real-time processing capability of the model in dynamic educational 

environments. 

2 Methods 

This study uses a quantitative experimental design to develop and evaluate 

clustering and predictive models for student behavior analysis. It combines 

descriptive analytics, using clustering to segment students by engagement 

patterns, with predictive modeling to forecast academic success or risk. By 

integrating both approaches, the study offers deeper insights into student 

behaviors. To ensure scalability, the models are implemented using Apache Spark 

for parallel processing, enabling efficient handling of large educational datasets. 

This approach enhances processing speed and supports real-time data analysis, 

making it suitable for large-scale learning environments and practical deployment 

in educational systems. The methodology involves a multi-stage machine 

learning pipeline that integrates three key components: 

Density-Based Optimized K-Means Clustering: This algorithm is used to 

segment students into meaningful clusters based on their engagement levels and 

learning patterns. It improves upon traditional K-Means by handling varying 
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densities in student behavior, resulting in more representative and compact 

clusters. 

Analytic Hierarchy Process (AHP) for Feature Weighting: AHP is applied to 

prioritize the most relevant features in the data, ensuring that features critical to 

predicting student behavior receive appropriate weighting. This structured feature 

weighting is integrated into the predictive modelling stage to enhance the 

accuracy of predictions. 

K-Nearest Neighbours (KNN) for Prediction: KNN is employed to predict 

student behaviour by identifying similar students based on the weighted features. 

The inclusion of AHP helps improve the accuracy of KNN by ensuring that more 

relevant features have a greater influence on the prediction process. 

The integration of these techniques forms the foundation of the proposed hybrid 

model. A key innovation of this study is the parallelization of clustering and KNN 

algorithms, allowing for efficient processing of large datasets in real-time or near-

real-time environments. This is achieved using the Spark platform, which 

distributes computational tasks across multiple nodes, significantly improving 

scalability and reducing execution time. The research methodology also places a 

strong emphasis on data preprocessing, model evaluation, and performance 

optimization. Each stage of the pipeline is rigorously tested to ensure that the 

models achieve optimal performance in terms of both clustering accuracy and 

predictive power. This includes evaluating the compactness and separation of the 

clusters formed by the Density-Based Optimized K-Means algorithm and 

assessing the accuracy and efficiency of the AHP-weighted KNN predictions. 

Figure 1 illustrates the flowchart that describes the key phases of the proposed 

research that will be executed in this thesis. All three research objectives are also 

mapped into the research methodology to ensure all of them are covered and 

achieved successfully. 
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Figure 1 Flowchart illustrating the key phases of the proposed research. 

2.1 Data Sources 

The dataset for this study was collected from Chinese universities and colleges, 

covering student behavior indicators such as library visits, physical activity, and 

consumption patterns. The data, extracted from the university’s digital campus 

infrastructure, spans the period from March 2015 to March 2017, and includes 

18,586 student records. These records include consumption data (8,332,810 

entries), library book borrowing (1,568,347 entries), attendance records 

(8,595,864 entries), and library access logs (2,370,988 entries). The dataset also 

contains academic performance, physical exercise records, and wireless network 

access logs, making it suitable for a comprehensive analysis of student behavior 

[16][17]. Two main datasets are used call the consumption patterns and the 

learning efforts. 

2.2 Data Collection and Preprocessing 

The original dataset was subjected to preprocessing steps, including h andling 

missing values through techniques like mean/mode imputation and normalization 

of numerical data such as study hours and spending using the min-max 

normalization method (Eq. (1)). Categorical data, like student demographics, were 

one-hot encoded to convert them into a machine-readable format. These 

preprocessing steps ensured that the data were suitable for clustering and 

predictive models [16]. 

𝑥′ =
|𝑥−𝑚𝑖𝑛|

max − 𝑚𝑖𝑛
             (1) 
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2.3 Machine Learning Algorithm – Hierarchical KNN  

In this study, the term Hierarchical KNN refers to a two-level or multi-stage 

enhancement of the traditional KNN algorithm, designed to improve scalability 

and prediction accuracy in large datasets. Unlike standard KNN, which calculates 

distances across the entire dataset uniformly, the Hierarchical KNN 

implementation first performs a pre-clustering step (Modified Optimized 

Density-based clustering) to group similar data points. Then, Analytic Hierarchy 

Process (AHP)-based feature weighting is used to prioritize the most relevant 

features in the data, ensuring that features critical to predicting student behavior 

receive appropriate weighting and finally, KNN is applied within or across 

selected clusters, thereby narrowing the search space and reducing computational 

complexity. This hierarchical structure introduces a layered decision process: 

1. Macro-level grouping (clustering) to localize similar behaviour patterns. 

2. AHP-based feature weights integration that will significantly improve the 

prediction accuracy for identifying student behaviours. 

 
In the context of Spark, this structure also aligns with the parallel computing 

architecture, where clustering and neighbour search can be independently 

distributed across nodes. As a result, this hierarchical approach improves both the 

efficiency and accuracy of the prediction model, particularly when working with 

high-dimensional or large-scale student behaviour datasets. 

2.3.1 Macro-level Grouping (Clustering)  

Two clustering approaches were implemented, Traditional K-Means and 

Density-Based Optimized K-Means. The clustering results were validated by 

assessing intra-cluster compactness and inter-cluster separation using evaluation 

metrics like cluster validity index (V(k)) for k clusters, where intra-class similarity 

is represented by the average distance between each sample point within each 

cluster and its corresponding cluster centroid, as shown in Eq. (2). 

𝑽(𝒌) =
𝑫𝒐𝒖𝒕−𝑫𝒊𝒏

𝑫𝒐𝒖𝒕+𝑫𝒊𝒏
  (2) 

𝐷𝑖𝑛 =  
1

𝑁
∑ ∑ 𝐷(𝑥𝑗, 𝑝𝑖)𝑚

𝑗=1
𝑘
𝑖=1             (3) 

 

In Eq. (3), D(xj, pi) represents the distance between sample point xj, and the 

centroid pi of its corresponding cluster. The dissimilarity between clusters 

measures the degree of separation between different clusters and is expressed as 

the average distance between cluster centers, as shown in Eq. (4), where D(pi, pj) 

represents the distance between centroid pi and centroid pj of two different 

clusters. 
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𝐷𝑜𝑢𝑡 =  
1

𝑘
∑ 𝐷(𝑝𝑖 , 𝑝𝑗)𝑘

𝑖,𝑗=1                (4) 

 
A Hierarchical KNN model is then developed and implemented to predict student 

behavior based on the clusters and weighted features. Predictions were evaluated 

using Relative Error (RE) (See Eq. (5)) and Standard Error (SE) (See Eq. (6)) [3]. 

𝑅𝐸 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐼𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛
 ×  100   (5) 

                     𝑆𝐸 =  
𝑠𝑑

√𝑛
            (6) 

 
The Analytic Hierarchy Process (AHP) is applied to prioritize the most relevant 

features for the predictive model. Using a pairwise comparison matrix, features 

like attendance, academic performance, and study time were weighted according 

to their importance in predicting student behavior.  

In this study, the AHP pairwise comparison matrix was constructed using five 

primary behavioural features: attendance, study time, academic performance, 

library access, and consumption pattern. Expert input from faculty members was 

used to establish the relative importance of each feature in predicting student 

behaviour. The comparison was based on Saaty’s 1–9 scale, where 1 indicates 

equal importance and 9 indicates extreme importance of one feature over another. 

The resulting normalized weights were as follows: Attendance: 0.32, Study Time: 

0.27, Academic Performance: 0.2, Library Access: 0.12, Consumption Pattern: 

0.08. 

These weights indicate that attendance and study time are the most influential 

features, aligning with domain knowledge that consistent class participation and 

dedicated study hours strongly impact academic outcomes. The Consistency 

Ratio (CR) was calculated at 0.07 (< 0.1), confirming acceptable consistency in 

expert judgments. These AHP-derived weights were then applied to the feature 

set before KNN distance calculations, ensuring that more predictive features had 

proportionally greater influence in the similarity assessment. 

This weighting improved the accuracy of the subsequent KNN model by 

emphasizing the most relevant features [9]. The hierarchical KNN model 

integrated the AHP-based feature weights, significantly improving the 

prediction accuracy for identifying student behaviors. 

2.3.2 AHP-based Feature Weights Integration with KNN 

The produced cluster results are then used as the class label for predicting the 

student's behavior. Before performing the predictions, the Analytic Hierarchy 
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Process (AHP) model is applied to the Learning Efforts and Consumption 

Patterns features compute produce the weighted features. These weighted 

features and class labels are combined to create an Updated Dataset. Finally, the 

updated dataset, containing both class labels and feature weights, is used to 

predict student behavior using a Hierarchical K-NN (K-Nearest Neighbors) 

algorithm. 

It is important to clarify that the term Hierarchical KNN in this study does not 

refer to a tree-based nearest neighbor search structure, as sometimes used in 

literature. Instead, the ‘hierarchical’ aspect arises from the multi-stage pipeline 

designed in this work, which integrates (1) clustering through the Density-Based 

Optimized K-Means algorithm, (2) Analytic Hierarchy Process (AHP)-based 

feature weighting, and (3) K-Nearest Neighbours (KNN) prediction. This layered 

sequence of clustering, weighting, and classification is what constitutes the 

hierarchical design in our approach, ensuring improved scalability and accuracy 

for large-scale educational datasets. 

In summary, the process starts with student data, applies clustering and AHP to 

generate class labels and weighted features, and ultimately predicts student 

behavior using a hierarchical K-NN model. Based on the cluster label produced 

using the modified density-based optimize k-means clustering, the similarity 

between the target student and the existing students is calculated based on the 

updated student features. To improve the accuracy of the prediction, the data is 

standardized before calculating the similarity between two students' behaviors. 

Subsequently, k students having the most similar characteristics with the target 

student x are identified based on their similarity and the predicted class for the 

target student x is determined by the majority of labels in the K students. The 

similarity between the target student and the K students in the training sample is 

reflected by the weighted Euclidean distance. 

2.3.3 Parallelization 

In this stage, the task of implementing the Density-Based Optimized K-Means 

and Hierarchical KNN models in parallel on the Spark cluster is performed. The 

performance of the parallelization approach is measured based on the execution 

time and speedup ratio as the number of worker nodes and the dataset size 

increase. 

2.3.3.1 Parallelization Implementation of Density-based 

Optimized K-Means Algorithm 

Given the substantial volume of data involved in student clustering for this study, 

and to ensure the system's scalability for processing larger datasets in the future, 

the algorithm was designed and implemented in a parallelized manner on Spark 
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[19]. The parallel implementation of the Density-Based Optimized K-means 

algorithm, based on student behavior characteristics, is illustrated in Figure 2. 

Notably, the parallel implementation of density-based optimized K-means 

clustering is divided into two stages. In the first stage, students who meet the 

density requirements are clustered based on the density of all students that have 

been scanned. In the second stage, all students are scanned to assign students to 

a cluster and update the cluster center points. The task of Submission & Data 

Loading Process is the entry point for the entire parallel program. 

Task submission & Data Loading: Apache Spark is a unified computing engine 

for parallel data processing, widely used in big data analytics and supporting 

languages like Python, SQL, and machine learning tasks. In this study, Spark was 

used for data submission, clustering, and analysis on a local computer [14]. 

Execution began with the spark-submit command, specifying the Python 

application file and configurations such as driver memory, executor memory, 

deploy mode, and core usage. This enabled efficient processing of large datasets 

using pre-written Spark applications. 

 

Figure 2 Parallelization of Optimized K-means Algorithm Based on Spark. 
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Initial Cluster Centroids Selection: The initial k centroids are randomly 

selected since true cluster centers are unknown. Each data point is then assigned 

to the nearest centroid based on Euclidean distance. Centroids are updated by 

averaging the data points in each cluster, and the process repeats until the 

centroids stabilize, typically after several iterations. However, random 

initialization can lead to high errors and poor clustering accuracy. To address this, 

the initial centroid selection is optimized using a density-based approach, which 

improves starting positions and reduces the need for excessive iterations, 

ultimately enhancing clustering performance and reducing error rates in the 

results. 

Density-Based Optimized K-Means: Density-Based Optimized K-Means was 

used in this study. In this case, the clusters were assigned to where there is a 

high density of the data points within a dataset. The clusters are thus assigned 

wherever there is a high density of data points, separated by low-density 

areas [23][24]. Most importantly, the user is not required to specify the 

number of clusters, since there exists a distance-based parameter, which serves 

as a tunable threshold. The threshold in this respect determines the closeness 

of the cluster members. The centroids, which represent the center of the clusters, 

are critical components in the clustering process using Python, in expectation 

maximization; expectation assigns each data point the nearest centroid. 

Secondly, the maximization step computes the mean of all the points for every 

cluster, thereby establishing the new centroids. 

The Density-Based Optimized K-Means used in this study differs significantly 

from the traditional DBSCAN (Density-Based Spatial Clustering of Applications 

with Noise) algorithm in several key aspects. While both approaches are designed 

to identify clusters based on data density and do not require the user to predefine 

the number of clusters, the modified version introduces enhancements that 

improve scalability and integration with iterative centroid-based refinement. 

Unlike DBSCAN, which forms clusters through the concept of density 

reachability and connectivity without relying on centroids, the modified approach 

incorporates centroid computation and iterative expectation-maximization steps 

like those used in K-Means. In this process, each data point is assigned to the 

nearest centroid, and cluster centres are recalculated based on the mean of the 

assigned points, refining cluster structure with each iteration. Moreover, 

DBSCAN labels low-density points as noise and does not attempt to reassign 

them, whereas the modified algorithm performs a secondary scan to reassign 

previously un-clustered data points and update cluster centres, ensuring more 

comprehensive coverage. Another critical distinction lies in computational 

design: the Density-Based Optimized K-Means was specifically structured to 

support parallelization, making it suitable for large-scale data processing using 

platforms like Apache Spark. In contrast, DBSCAN’s recursive neighbourhood 
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expansion and dependency on sequential region-growing make it less efficient 

and harder to scale in parallel computing environments. Thus, while DBSCAN is 

effective for discovering arbitrary-shaped clusters in smaller datasets, the 

modified method offers a more structured, centroid-driven, and parallelizable 

approach that is better suited for big data scenarios and high-performance 

educational analytics. 

 
The Combiner Process: The Combiner process, also known as the semi-reducer, 

is an optional step in Spark that summarizes Map output before passing it to the 

Reducer. In the context of K-Means, it combines results from multiple parallel 

executions to improve clustering efficiency. The process involves four main 

steps: (a) the dataset is split into subsets, and K-Means is run on each in parallel; 

(b) centroids from each subset are collected; (c) these centroids are averaged to 

form unified cluster centers; and (d) K-Means is re-run on the full dataset using 

the combined centroids to enhance accuracy. This process is implemented using 

Spark MLlib. 

Cluster Merging: Cluster merging is an unsupervised learning technique that 

combines smaller clusters with larger ones based on similarity measures. This 

process simplifies data structure and improves clustering accuracy by refining 

group boundaries and enhancing overall data representation. 

2.3.3.2 Parallelization Implementation of Hierarchical

 KNN Algorithm 

The core of the student behavior prediction model involves using the K-nearest 

neighbor (KNN) algorithm to predict a student’s behavior by analyzing the 

behavior of their K most similar peers [22]. This process is parallelized in Apache 

Spark using Resilient Distributed Datasets (RDDs) and involves six main steps. 

First, training and test data are loaded as RDDs or DataFrames and distributed 

across worker nodes, with training data optionally broadcasted. Second, the 

Euclidean distance between test and training points is computed in parallel using 

Spark's map function. Third, each test point's K nearest neighbors is selected 

using takeOrdered(), also in parallel. Fourth, predictions are made via majority 

voting from the K neighbors. Fifth, the predicted results are evaluated by 

comparing with actual labels, and accuracy is computed in parallel. Finally, 

performance is optimized by tuning Spark configurations and testing with various 

dataset sizes to ensure scalability and efficiency. 
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3 Results and Discussion 

3.1 Accuracy Performance of the Hierarchical KNN in Predicting 

Student Behavior Characteristics 

Figure 3 demonstrates that Hierarchical KNN consistently outperforms standard 

KNN (Without AHP-weighted features filtering) in predicting student behavior 

across all population sizes, with notably lower average relative error percentages. 

As the number of students increases from 100 to 10,000, the relative error for 

KNN fluctuates more significantly, peaking at 9.4% for 5,000 students, while 

Hierarchical KNN maintains greater stability and lower error rates, ranging from 

5.16% to 6.08%. This indicates that Hierarchical KNN scales are more effective 

and are more robust in handling larger datasets, likely due to its structured 

clustering approach that reduces computational overhead and improves local 

neighbor accuracy. The most optimal performance for Hierarchical KNN appears 

at a population size of 2,000, where it achieves the lowest error of 5.16%, 

suggesting a potential balance between accuracy and complexity. These findings 

underscore the practical advantage of Hierarchical KNN for educational 

institutions, particularly those managing large student populations, as it ensures 

higher predictive accuracy and greater reliability in real-world deployment 

scenarios. 

 

Figure 3 Comparison of Accuracy Performance of the Hierarchical KNN 

Prediction Vs KNN prediction models using different sizes of student’s 

population. 
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3.2 Parallelization Approach Performance of the Density-based 

Optimized K-means 

Figure 4 compares the efficiency (running time in seconds) between Spark cluster 

and standalone mode when clustering different numbers of student data points 

(ranging from 100 to 10,000). The findings clearly show that the Spark cluster 

mode offers significantly better scalability and consistent performance across all 

data sizes. While the running time for Spark cluster remains nearly constant, 

ranging only slightly from 13.12 seconds (100 students) to 14.36 seconds (10,000 

students), the standalone mode becomes increasingly inefficient as the data size 

grows. Specifically, the standalone running time escalates from 13.12 seconds at 

100 students to 300 seconds at 5,000 students, indicating a steep rise in processing 

cost. This demonstrates that Spark cluster is highly efficient and scalable, 

handling larger datasets without a significant increase in computation time. In 

contrast, the standalone setup struggles with larger data volumes, resulting in an 

over 20x increase in processing time from 100 to 5,000 students. Therefore, for 

large-scale clustering tasks, Spark cluster is the clearly superior choice, offering 

both speed and stability. 

 

Figure 4 Comparison of efficiency (Running Time in Seconds) between Spark 

cluster and standalone mode when running Density-based Optimized K-Means 

clustering process. 
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Figure 5 Comparison of Speedup Ratios for Spark Clusters when running 

Density-based Optimized K-Means clustering process with different number of 

worker nodes. 
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significantly outperforms standalone mode, especially as dataset size increases. 

For small datasets (e.g., 100 students), both modes show comparable execution 

times (Spark: 3.15s, Standalone: 3.12s). However, as the dataset grows, the gap 

widens drastically, at 10,000 students, the standalone mode takes 313 seconds, 

while the Spark cluster completes in just 39.27 seconds, reflecting an efficiency 

gain of nearly 8 times. This consistent performance in Spark cluster is attributed 

to its parallel processing architecture, which effectively distributes the workload 

and minimizes bottlenecks, even as data volume increases. In contrast, the 

standalone mode experiences a linear-to-exponential increase in computation 

time, revealing its limitations for large-scale datasets. Overall, these results 

highlight that Spark cluster not only accelerates processing for the Hierarchical 

KNN model but also ensures scalability, efficiency, and practical viability for 

real-world educational analytics involving large student populations. 

 

Figure 6 Comparison of Execution Time of the Hierarchical KNN Prediction 

Model using different sizes of student’s population. 
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Figure 7 A comparison chart of the speedup ratio of Spark clusters when running 

Hierarchical KNN algorithm with different number of worker nodes 
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serially on a single machine, particularly for large datasets, where memory and 

CPU overload become problematic. The speedup ratio of the Hierarchical KNN 

model improves as more worker nodes are added to the Spark cluster, 

demonstrating successful parallelization. However, like K-Means, perfect 

parallelism is not achieved due to data dependencies and inter-node 

communication. For small datasets, the overhead of task submission and 

communication between nodes makes it harder to observe the advantages of 

parallelization, suggesting that Spark is better suited for handling large-scale 

datasets. 

These findings highlight the scalability and efficiency benefits of implementing 

both the Density-Based Optimized K-Means and Hierarchical KNN algorithms 

in parallel on Spark clusters, especially when dealing with large volumes of 

student data. However, for smaller datasets, the overhead is involved in parallel 

processing reduces the efficiency gains, indicating that the benefit of 

parallelization becomes more apparent as dataset size increases. While the 

parallelization of these models on Spark significantly improves computational 

efficiency, especially for large datasets. These findings highlight the potential of 

leveraging big data analytics and machine learning techniques to improve student 

management and tailor educational interventions. However, parallelization is less 

effective for smaller datasets, indicating that its benefits scale with larger data 

volumes. Overall, the study offers a robust framework for analyzing student 

behaviors, with the potential for widespread application in academic institutions.  

The parallelization of the algorithms led to faster execution times, allowing the 

model to handle large datasets in real-time or near-real-time scenarios. The hybrid 

model is expected to yield more accurate predictions than any individual method, 

contributing to better decision-making for interventions based on student 

behavior predictions. 

4 Limitations of the Proprosed Solution 

Despite its strong performance, the model has potential limitations. Its reliance 

on AHP for feature weighting introduces subjectivity, as the assignment of 

feature importance depends on expert judgment and may lead to bias if not 

rigorously validated. Furthermore, while the use of Apache Spark enables high 

scalability, deploying such a system in real-world educational environments may 

be challenging due to limited computational resources, infrastructure constraints, 

and technical expertise. In resource-constrained institutions, the cost and 

complexity of maintaining distributed computing environments may limit the 

model’s applicability and necessitate simplified or lightweight alternatives. 

Nevertheless, the findings highlight the model’s value as a robust, high-

performance framework for real-time behaviour analysis, academic risk 
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detection, and data-driven educational intervention, particularly in data-intensive 

and well-resourced environments.  

To enhance the robustness, accessibility, and applicability of the proposed hybrid 

model across diverse educational environments, several improvements are 

recommended. To reduce the subjectivity in AHP-based feature weighting, future 

studies should incorporate recent data-driven techniques such as SHAP [26], 

permutation feature importance, and ensemble-based ranking systems to validate 

and complement expert decisions. These methods enhance objectivity and 

support explainability in machine learning applications. In low-resource 

educational institutions, lightweight model deployment using multiprocessing 

within scikit-learn, Dask, or on-demand environments like Google Colab and 

AWS SageMaker Studio Lab [30] offers an affordable and scalable alternative. 

For flexible deployment, recent advancements in container orchestration using 

Docker and Kubernetes have made modular, reproducible deployment of AI 

systems more feasible [27]. Furthermore, adaptive model scaling, where 

computational complexity adjusts to available resources, can be implemented 

with AutoML-based configurations optimized for edge computing environments 

[29], allowing decentralized processing with minimal latency and infrastructure 

dependence. Crucially, data summarization techniques should be integrated into 

the data preprocessing pipeline to reduce redundancy, enhance model efficiency, 

and enable real-time analytics, particularly when handling high-dimensional 

student behavior data [31-33]. Cross-validation across international and resource-

diverse academic settings is vital to establish the model’s generalizability; studies 

such as those by Ortega et al. (2024) stress the need for inclusive validation 

strategies in AI for education [28]. Lastly, developing intuitive user interfaces 

and automation pipelines can lower the barrier for non-technical users. Modern 

visual analytics tools like Streamlit and no-code platforms [25] enable educators 

to explore model outputs, run predictions, and adjust parameters without coding, 

making AI-powered educational analytics more accessible. These directions 

ensure that the proposed hybrid model becomes not only technically sound but 

also widely usable, scalable, and interpretable across varied educational 

ecosystems. 

It should also be noted that the dataset analyzed in this study spans from 2015 to 

2017, a period prior to the global shift toward large-scale online and blended 

learning environments. While the model’s methodological contributions in 

scalability, feature weighting, and parallelized prediction remain valid, the 

generalizability of the findings should be further tested on more contemporary 

datasets. Post-2020, particularly during and after the COVID-19 pandemic, 

student learning behaviors have undergone significant transformations due to 

increased reliance on digital platforms, remote learning, and online assessments. 

These changes may introduce new behavioral features (e.g., login frequency, 
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virtual classroom participation, online discussion forum activity) that were less 

prevalent in earlier datasets. Future work should therefore evaluate the proposed 

model using post-2020 student data to confirm its robustness and adaptability in 

modern digital learning ecosystems. 

5 Conclusion 

This study addresses the growing need for sophisticated data mining techniques 

to predict student behaviour by designing and evaluating a parallelized hybrid 

model that integrates Density-Based Optimized K-Means clustering, Analytic 

Hierarchy Process (AHP) for feature weighting, and K-Nearest Neighbours 

(KNN) for student behaviour prediction. The research successfully achieves its 

objectives, offering a scalable and efficient framework to predict student 

behaviour based on real-time data analytics. Based on the findings, parallelization 

on the Spark cluster enhances computational efficiency for both Density-Based 

K-Means and Hierarchical KNN, especially when handling large datasets (over 

10,000 students). The execution times of the algorithms on Spark increase 

minimally with dataset size compared to single-machine implementations, which 

become overwhelmed by larger data volumes. The parallelized hybrid approach 

of combining clustering, feature weighting, and KNN demonstrates superior 

execution efficiency, making it a valuable tool for educational institutions to 

monitor and intervene in student progress in real-time. However, parallelization 

proves less beneficial for smaller datasets due to the overhead involved, 

indicating the model's true value emerges in large-scale applications.  

While the current study is based on historical student data, the proposed 

Hierarchical KNN prediction model has strong potential for real-time deployment 

within Learning Management Systems (LMS) such as Moodle, Canvas, or 

Blackboard. By integrating the model into the LMS backend, real-time student 

activity data, such as login frequency, assignment submissions, forum 

participation, and quiz performance, can be continuously collected and analyzed. 

This enables the model to dynamically monitor student behavior, identify at-risk 

learners early, and trigger timely interventions such as automated alerts, 

personalized feedback, or academic support recommendations. Using platforms 

like Apache Spark for distributed processing, the system can handle large-scale, 

real-time data streams efficiently, even in institutions with thousands of active 

users. Additionally, containerization tools (e.g., Docker) and API-based 

deployment can facilitate seamless integration with existing LMS infrastructure, 

ensuring that the solution is both scalable and maintainable in a production 

environment. Ultimately, embedding this model into real-time educational 

ecosystems enhances its practical impact, promoting proactive learning support 

and data-driven decision-making in digital education. 
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