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Abstract. K-mer frequencies are commonly used in extracting features from 

metagenome fragments. In spite of this, researchers have found that their use is 

still inefficient. In this research, a genetic algorithm was employed to find 

optimally spaced k-mers. These were obtained by generating the possible 

combinations of match positions and don’t care positions (written as *). This 
approach was adopted from the concept of spaced seeds in PatternHunter. The 

use of spaced k-mers could reduce the size of the k-mer frequency feature’s 

dimension. To measure the accuracy of the proposed method we used the naïve 

Bayesian classifier (NBC). The result showed that the chromosome 

111111110001, representing spaced k-mer model [111 1111 10001], was the best 

chromosome, with a higher fitness (85.42) than that of the k-mer frequency 

feature. Moreover, the proposed approach also reduced the feature extraction 

time.  

Keywords: genetic algorithm; k-mers; metagenome; naïve Bayesian classifier; spaced 

k-mers. 

1 Introduction 

A common approach to producing DNA sequences for studying the genetic 

material of organisms is to perform de novo sequence assembly from reads 
produced by Next Generation Sequencer (NGS) using DNA sequence assembly 

tools such as Velvet [1], Edena [2], and SOAP denovo [3]. These reads are 

obtained from a sample of the organism cultivated in the lab. Unfortunately, 

only about 1% of the many microorganisms in the world can be cultured [4]. 
The rest must be collected by taking samples directly from the environment.  

Metagenomics is the study of the entire genetic information of organism 

samples that are directly taken from the environment, such as soil, water, 
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buildings, or waste where microbes breed [5]. Metagenomics aims to study 

species variations, contributes to the discovery of new genes and describes the 

interaction between microbes and their host [6]. 

Metagenomics analysis starts with deoxyribonucleic acid (DNA) sequencing on 
the metagenome sample. The resulting fragments contain various 

microorganisms because they are taken directly from the environment [5]. Such 

conditions may cause errors in the assembly of the metagenome fragments, 
called misassembly contigs. Misassembly yields interspecies chimeras [7]. To 

minimize the number of interspecies chimeras, binning and assembly can be 

performed simultaneously.  

Binning is a process in which various fragments of an organism are grouped 
together based on their taxonomic level. There are two binning approaches, i.e. 

homology-based and composition-based approaches. In an homology-based 

approach, sequence alignment is performed between the metagenome fragments 
and the sequence reference that exist in the database of the National Center for 

Biotechnology Information (NCBI). In a composition-based approach, binning 

is conducted by classification or clustering using machine learning methods.  

BLAST (Basic Local Alignment Search Tool) [8] and MEGAN [9] are 

applications that use an homology-based approach for identifying species. 

Meanwhile, a composition-based approach was adopted by some applications 

for performing metagenome fragment binning, such as PhyloPythia, which uses 
SVM for performing metagenome fragment classification [10], classification 

based on the naïve Bayesian classifier [11], and metagenome fragment 

clustering based on a growing self organizing map (GSOM) [12].  

PhyloPythia uses k-mer frequency feature extraction and support vector 

machine (SVM). The present research used large k values; the minimum k value 

was 5 in view of obtaining a high accuracy percentage. Another research has 

been conducted using the naïve Bayesian classifier (NBC) [11]. NBC can assign 
next-generation sequencing reads to their taxonomic classification [13]. Feature 

extraction was done using k-mer frequencies; the k values ranged from 3 to 15 

mers. The research concluded that the highest accuracy percentage was obtained 
with the use of 12 mers for 250 base pairs (bp) and 100 bp. Meanwhile, 

application of unsupervised learning using GSOM and k-mer frequency feature 

extraction [12] can be used to cluster short fragments of large communities.  

The main problem of using the k-mer frequency feature is dealing with a large-

dimension feature space when aiming to obtain high accuracy [14]. To solve 

this problem, Kusuma [15] introduced spaced k-mers, inspired by PatternHunter 

[16], to reduce the feature space dimension and improving accuracy. Based on 
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an exhaustive search, the optimal spaced k-mer feature space consisted of 192 

features. Classification was conducted using SVM. Ref. [15] reports that good 

accuracy could be obtained, even for a small fragment length (400 bp), with an 

accuracy of 65.3% for genus taxon, 72% for order taxon, 78.2% for class taxon, 
and 82.1% for phylum taxon. For long fragments (10 Kbp), the accuracy 

reached more than 95% for all taxon levels.  

Spaced k-mer feature extraction results in many model variations of match 
positions (1) and don’t care positions (0) by using exhaustive search. Therefore, 

position model variations that can result in high accuracy need to be found. A 

genetic algorithm (GA) can be used to find the optimally spaced k-mers, which 

can result in higher accuracy. Hence, in this research, a GA was used to 
optimize the match and don’t care positions in spaced k-mer feature extraction. 

GAs are widely used in solving gene selection problems [17], such as finding 

the most informative genes that contribute to cancer classification using 
computational intelligence algorithms [18]. 

This research aimed to find the match and don’t care positions resulting in the 

best accuracy by using GA optimization. The second aim of this research was to 
know the influence of the use of don’t care positions on spaced k-mer feature 

extraction. 

2 Research Method 

 
The research method consisted of 4 parts (see Figure 1): 

2.1  Data Collection and Pre-processing 

This research used data obtained from the NCBI database, which can be 

accessed via (http://www.ncbi.nlm.nih.gov/). The data format used was FASTA 
(*.fna). There were 19 species, which included 3 genii [19] (as shown in Tables 

1 and 2). The dataset was divided into 2 parts, i.e. a training dataset, containing 

10 species, and a testing dataset, containing 9 species. 

Pre-processing on the training data and the testing data was performed using 
MetaSim [20]. MetaSim is a software application that can simulate a DNA 

sequencer. The sequencing simulation using MetaSim resulted in 10,000 

fragments for training and 4,500 fragments for testing [15]. The length of each 
fragment was 500 bp. Fragments of this length have high enough accuracy to be 

able to classify fragments with length < 1 kbp [15]. 
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Figure 1 Research method. 

Table 1 Training data. 

Species Genus 
Number of 

Fragment 

Length of 

Fragment 

Agrobacterium radiobacter K84 ch. 2 Agrobacterium 1000 500 

Agrobacterium tumafaciens str. C58 ch. Circular Agrobacterium 1000 500 

Agrobacterium vitis S4 ch. 1 Agrobacterium 1000 500 

Bacillus amyloliquefaciens FZB42 Bacillus 1000 500 

Bacillus anthracis str. Ames Ancestor Bacillus 1000 500 

Bacillus cereus 03BB102 Bacillus 1000 500 

Bacillus pseudofarmus OF4 ch. Bacillus 1000 500 

Staphylococcus aureus subsp. Aureus JH Staphylococcus 1000 500 

Staphylococcus epidermis ATCC 12228 Staphylococcus 1000 500 

Staphylococcus haemolyticus JCSC 1435 Staphylococcus 1000 500 
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Table 2 Test data. 

Species Genus 
Number of 

Fragment 

Length 

Fragment 

Agrobacterium radiobacter K84 ch. 1 Agrobacterium 500 500 
Agrobacterium tumafaciens str. C58 ch. Linear Agrobacterium 500 500 

Agrobacterium vitis S4 ch. 2 Agrobacterium 500 500 
Bacillus thuringiensis str Al Hakam Bacillus 500 500 

Bacillus subtilis subsp. Subtilis str 168 Bacillus 500 500 
Bacillus pumilus SAFR-032 Bacillus 500 500 

Staphylococcus carnosus Staphylococcus 500 500 
Staphylococcus saprophyticus subsp. 

Saprophyticus ATCC 1530S 
Staphylococcus 500 500 

Staphylococcus lugdunensis HKU09-01 Staphylococcus 500 500 

2.2 Optimization of Spaced K-Mer Feature Extraction Using GA 

First, the GA population is initialized. The second step is feature extraction. 
This process results in features that are classified with the naïve Bayesian 

classifier (NBC). NBC is used to determine the fitness of each chromosome. 

After that, the chromosomes are processed to obtain the best chromosomes. 
Next, crossover is conducted on the selected chromosomes. Lastly, they are 

mutated. This process is repeated from the second to the last step, while the 

number of generations is smaller than or equal to the maximum number of 

generations. 

The encoding stage produces the initial population (generation 0) of individuals 

on which evolution is based. Since problems differ from one another, the 

encoding stage is usually problem-specific [21]. Chromosome initialization 
using GA can be explained as follows. For instance, using k = 12, chromosomes 

are formed consisting of 12 genes (Figure 2). Using k = 12 this yields 4
12

 

features. Therefore, the concept of spaced seeds from PatternHunter [16] was 
adopted to modify the k-mer frequency feature, getting so-called spaced k-mer 

frequencies, which consist of match positions (1) and don’t care positions (0). 

The concept of spaced seeds has also been employed in BLASTZ [22]. Thus, 

using k = 12, the GA has a search space of 4,096 possibilities. 

1 1 1 1 1 1 1 1 1 1 1 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

Figure 2 K-mer frequencies formed if k = 12.  

2.3 Feature Extraction of Metagenome Fragments 

In this study, feature extraction was conducted by calculating the spaced k-mer 

frequencies of metagenome fragments. This study found the optimum k-mer 

pattern that includes don’t care positions. Match position (1) and don’t care 
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position (0) models were formed from the GA initialization result. The model 

position is a chromosome. Don’t care position (0) means allowing any base pair 

to fill the bit [16].  

 
1 * 1 1 * * 1 1 * * * 1 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

 

 

 

Figure 3 Ilustration of chromosome initialization using GA. 
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1 * * * 1 

x8    x12 

 

 

Figure 4  (a) Example of possibility formed from E1, (b) example of possibility 
formed from E2, (c) example of possibility formed from E3. 

Figure 3 shows chromosome feature extraction, which was initialized consisting 

of 3 parts. The first part, E1 (Figure 4a), consists of 3 genes with a variation 

possibility of 2
1
. Figure 4b shows the second part, E2, consisting of 4 genes with 

a variation possibility of 2
2
. The third part, E3 (Figure 4c), consists of 5 genes 

that have a variation possibility of 2
3
. The features from the feature extraction 

process were formed by combining nucleotide adenine (A), cytosine (C), 

guanine (G) and thymine (T). 
 

1 0 1 1 0 1 1 1 0 1 0 1 
 

 

Figure 5 Ilustration of selected chromosomes. 

The total number of DNA sequence combinations is calculated by using 4
k
. 4 is 

the number of tuples (A, T, G, C), while k is the number of biner 1. For 

example, in (a), k = 2, so there are 4
2
 = 16 possible combinations. Using the 
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chromosome in Figure 4, the feature space dimension would be as shown in 

Table 3 show. 

Table 3 Feature space dimension formed with chromosome 101 1011 10101. 

Feature 
Fragment 

A*A 
(1) 

… T*T 
(16) 

A*AA 
(17) 

… T*TT 
(80) 

A*A*A 
(81) 

… T*T*T 
(144) 

F1          
F2          
…          

Fn          

2.4 Classification of Metagenome Fragments using NBC 

Feature extraction and classification using NBC is important for the fitness 

evaluation. Chromosomes that have been formed at initialization are used to 

model the feature extraction process using spaced k-mer frequencies. Then, the 
resulting features are classified using NBC. The accuracy value generated by 

NBC is the fitness value of the chromosome used. 

Feature Extraction

Training 

Feature

Testing 

Feature

Calculate the mean value and the 

standard deviation

Calculate the Prior 

Probability for 
each class

The mean value and the standard 

deviation were used to calculate the 
likelihood probability

The value of the probability P(x|C) 
was multiplied by probability P(x|C) 

from other features

Calculate posterior 
probability for each 

data testing

Naïve Bayes Classifier

Calculate accuracy

Fitness Evaluation

 

Figure 6 Fitness evaluation. 

The classification method used in this research was the naïve Bayesian classifier 

(NBC). Bayes’ theorem is the cornerstone of this method. If x = [x1,x2, x3, …, 
xn]T is a feature vector consisting of a set of words with the length of the 

fragment; label x is one of the genomes m; C1, C2, C3 are the posterior 
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probabilities of a particular class (Ci) associated with feature vector x, i.e. 

P(Ci|x) [23]. 

 C = argmax P(Ci|x)  (1) 

According to Figure 6, the first step is to calculate the mean value and standard 
deviation of the data training features for each class [24]. The mean value and 

standard deviation were used to calculate probability  |k iP x C
. 

    

( )2

221
| , ,   

2  
i i

i

k i k C C

C

x
k C

i

C
iP x C g x e





 
 





   (2) 

where  , ,
i ik C Cg x  

 
is the Gaussian density for attribute Ak, 

iC and 
iC are 

the mean and standard deviation. After that, probability value   |k iP x C  was 

multiplied by probability   |k iP x C
 
of the other features. 

 P(X|Ci) = ∏ �(��|��)�
���   (3) 

Thus, probability P(X|Ci) for each class is obtained. Probability P(X|Ci) is 

multiplied by the prior probability for each class, resulting in posterior 

probability P(Ci|X). 

  
 ( | ) ( )

|
( )

i

i iP X C P C
P C

P
X

x
  (4) 

In order to classify an unknown sample X, P(X|Ci) P(Ci) is evaluated for each 

class Ci [24]. Sample X is then assigned to class Ci if and only if  

 P(X|Ci) P(Ci) > P(X|Cj) P(Cj) for 1 ≤ j ≤ m, j ≠ i  (5) 

The accuracy of the classification result can be found by using following 

formula:  

 
_ _

Accuracy  x 100%
_

data tes

data testin

ting

g

true




 (6) 

The obtained accuracy value is the fitness value of the chromosome of the GA 

initialization result. 

2.5 Genetic Algorithm 

Genetic algorithms are widely used to solve hard optimization problems [25]. 
GAs have high solving speed. GA operators are for example genes, 

chromosomes and populations [25]. In GAs, the population of a candidate 
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solution to an optimization evolves toward better solutions [26]. A genetic 

algorithm was used in this research to optimize chromosomes containing match 

(1) and don’t care (0) positions. The population size was set to 20 

chromosomes. The genetic operators applied in a simple GA to test the 

performance of our approach are described in Table 4 [27,28]. 

 
Table 4 Genetic parameters for simple GA . 

Selection operator Roulette Wheel 

Crossover operator One cut point 

Mutation operator One mutation at a random position 

Crossover probability 0.65; 0.70; 0.75 

Mutation probability 0.050; 0.075; 0.100 

Maximum generation 50 

Elitism 1 

3 Results and Analysis 

The GA optimized the chromosome that was used as a pattern in feature 

extraction. The form of the chromosome used in this research was matched with 

the one in Figure 3. There were 64 chromosome combinations that were formed 

and a fitness check was conducted on each of them. The search technique must 

find a good trade-off between exploration and exploitation within the selection 

mechanism in order to find the global optimum [29]. Exploration means that 

poor solutions must have a chance to go to the next generation, while 

exploitation means that good solutions go to the next generation more 

frequently than poor solutions. We conducted the experiment 9 times. Figure 7 

shows that Experiment 3, which used Pc = 0.65 and Pm = 0.1, performed the 

best because it managed to find the global optimum point at 62.5% of the search 

space. 

 

Figure 7 GA experiment. 
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Figure 8 shows the highest fitness graph for each generation. It can be seen that 

the GA with crossover probability 0.65 and mutation probability 0.1 managed to 

find the global optimum point in the second generation. Chromosome 

111111110001, which formed the pattern [111 1111 10001], was selected as the 

best chromosome, with fitness 85.42. 

 

Figure 8 Highest fitness for each generation. 

3.1 Confusion Matrix 

Table 5 shows that the amount of test data used was 5000 fragments. This is 

known by summing the numbers listed in the matrix. The first line shows that 

from the 1500 fragments of the Agrobacterium genus, 1462 fragments were 

correctly classified as Agrobacterium genus and 38 fragments were incorrectly 

classified as Bacillus genus. The second line shows that 1116 fragments were 

correctly classified as Bacillus genus, 40 fragments were incorrectly classified 

as Agrobacterium genus and 344 fragments were incorrectly classified as 

Staphylococcus genus.  

 
Table 5 Confusion matrix of chromosome 111111110001. 

Prediction 

Actual 
Agrobacterium Bacillus Staphylococcus 

Agrobacterium 1462 38 0 

Bacillus 40 1116 344 

Staphylococcus 0 234 1266 

The third line shows that 1266 fragments were correctly classified as 

Staphylococcus genus and 234 fragments were incorrectly classified as Bacillus 

genus. The bacillus genus fragments incorrectly classified as staphylococcus 

genus and the staphylococcus genus fragments incorrectly classified as bacillus 

genus were incorrectly classified because the bacillus and staphylococcus genii 

are both derived from the same Bacillales order. 
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3.2 Comparison of K-mer Frequency with Spaced K-Mers 

Chromosome 111111110001, forming the pattern [111 1111 10001] and 

producing 336 features [AAA … TTT AAAA … TTTT A***A … T***T], was 

compared to chromosome 111111111111, forming pattern [111 1111 11111] 

and producing 1344 features [AAA … TTT AAAA … TTTT AAAAA … 

TTTTT]. Chromosome 111111110001 represents the spaced k-mer pattern and 

chromosome 111111111111 represents the k-mer pattern.  

Chromosome 111111110001 had the best fitness (85.42), which was higher 

than that of chromosome 111111111111 (85.15). Thus, the spaced k-mer pattern 

yielded by GA improved the classification accuracy (shown by the fitness 

values). 

 
 

Figure 9 Comparison of fitness values. 

Moreover, chromosome 101111110001, yielding the pattern [101 1111 10001] 

and producing 228 features [A*A … T*T AAAA … TTTT A***A … T***T], 

was compared to chromosome 111111111111 producing 1344 features. Figure 

10 shows that the execution time of processing chromosome 101111110001 

was around 56 minutes. This was faster than for chromosome 111111111111, 

which took an execution time of 68 minutes for finishing the task. The spaced k-

mers also reduced the number of feature dimensions, hence accelerating the 

execution time.  

The drawback of the proposed method is that the experiment for performing 50 

generations took 10 days. Hence, the application needs to be developed further 

to work in parallel so the execution time can be shortened. The overall process 

of the application, from initialization to fitness evaluation, took a large amount 

of time, as shown in Figure 10. 
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Figure 10 Comparison of execution time. 

 

This method uses a chromosome selector, with the aim to avoid repetition of 

feature extraction that has already been done in the previous generation. 

However, the existing selector procedure can only compare the n-th generation 

with the n1-th generation. Therefore, a chromosome procedure is required that 

can compare the chromosome’s n-th generation with other previous generations. 

Thus, feature extraction and classification do not need to be done repeatedly. 

The genetic algorithm has a high solving speed in the early solving period [30]. 

4 Conclusion and Future Work 

Based on this study it can be concluded that the genetic algorithm managed to 

find the global optimum point with a fitness of 85.42. The best chromosome 

was 111111110001, producing 336 features. Using spaced k-mers improved the 

accuracy of the classification and also reduced the execution time.  

Future work can be conducted by performing parallel programming for 

screening to generate chromosomes by comparing chromosome n of generation 

m with whole chromosomes that have been raised in previous generations. This 

is expected to reduce the execution time during the training phase using GA.  

To further validate the efficiency of the proposed method in the classification of 

short metagenomic fragments, we plan to use a real dataset, such as the 

Sargasso Sea dataset or metagenomic data from an acid mine. 
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