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Abstract. In this paper we propose a new approach of the compressive sensing 

(CS) reconstruction problem based on a geometrical interpretation of l1-norm 

minimization. By taking a large l1-norm value at the initial step, the intersection of 

l1-norm and the constraint curves forms a convex polytope and by exploiting the 

fact that any convex combination of the polytope’s vertexes gives a new point that 

has a smaller l1-norm, we are able to derive a new algorithm to solve the CS 

reconstruction problem. Compared to the greedy algorithm, this algorithm has 

better performance, especially in highly coherent environments. Compared to the 

convex optimization, the proposed algorithm has simpler computation 

requirements. We tested the capability of this algorithm in reconstructing a 
randomly down-sampled version of the Dow Jones Industrial Average (DJIA) 

index. The proposed algorithm achieved a good result but only works on real-

valued signals. 

Keywords: compressive sampling; convex combination; convex polytope; sparse 

reconstruction; l1-norm, weight point. 

1 Introduction 

Compressive sampling (CS) is a new technique in signal processing that 
efficiently combines acquisition and compression in a single step. Among the 

pioneers in this subject is Donoho with his seminal paper from 2006 [1]. Other 

researchers jointly or independently contributed to the development of CS, 
among others Candes and Wakin [2], Candes and Tao [3], and Baraniuk [4]. 

Even though this technique was introduced in the early 2000s, its foundation was 

laid in the early 1980s in the form of several mathematical techniques such as the 
uncertainty principle and signal recovery [5], basis pursuit [6], and the time-

frequency representation of signals [7].   

CS consists of two main parts, i.e. a compression step and a reconstruction step. 

In practice, the compression step in CS can be viewed mathematically as a 
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multiplication of sampling or sensing matrix A with signal x to produce a 

compressed signal y, i.e. y = Ax. If the length of x is N, then by selecting A to be 

an M × N matrix with M << N, we can produce a much smaller dimension of y.  

After compression it is often required to reconstruct the original signal x back 

from the compressed signal y. This step is called CS reconstruction.  

Since sparse or compressible signals have a wide range of applications, CS has 
been applied in many fields, such as radar and sonar [8-10], antenna beam 

forming [11,12], imaging [13,14], and video [15], to name a few. Nevertheless, 

there are still challenges, because CS reconstruction generally involves a heavy 
computational load and is time-consuming.  

At the moment there are two main groups of CS reconstruction algorithms, i.e. 

convex optimization and the greedy algorithm. Convex optimization solves CS 

reconstruction by minimizing the l1-norm of the available solutions. Convex 

optimization can be applied since l1-norm is a convex function. Greedy 

algorithm, on the other hand, solves the CS reconstruction heuristically by 

choosing a local optimum at each intermediate step in the hope of finding the 

global optimum at the end. The greedy algorithm does not guarantee a correct 

solution, but it has fast computation. In terms of accuracy, the greedy algorithm 
suffers from reconstruction errors when the sensing matrix has high coherence. 

Convex optimization, on the other hand, provides a robust estimate but is much 

slower than the greedy algorithm. 

In this paper, we propose a new CS reconstruction algorithm based on a 

geometric interpretation of l1-norm minimization in the CS reconstruction 

problem. Using a bisection method, l1-norm is reduced iteratively until the 
minimum value is obtained. In terms of accuracy and complexity, our proposed 

method stands between convex optimization and the greedy algorithm. It is faster 

than convex optimization and more robust than the greedy algorithm. This 

method offers an alternative way of solving CS reconstruction when a balance 
between computation time and accuracy is required.  

This paper is arranged as follows. Section 2 explores related works, especially on 

convex optimization and the greedy algorithm. Section 3 describes the details of 
the proposed method. Section 4 reports our numerical experiments, consisting of 

a performance comparison of the proposed method with convex optimization and 

the greedy algorithm. A test case of how the proposed method performs on a 

randomly down-sampled version of the Dow Jones Industrial Average (DJIA) 
index is also presented in this section. Finally, Section 5 concludes the paper by 

summarizing the overall findings and giving an outlook on a future CS 

reconstruction strategy. 
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2 CS Reconstruction Problem and Related Works 

The reconstruction of sparse signals can be traced back to the uncertainty 

principle and signal recovery. One of the early papers on this subject is [5] by 

Donoho and Stark. For a continuous signal, the uncertainty principle states that 

any continuous signal cannot be dense in both the time and the frequency domain 

simultaneously. If a signal x(t) is concentrated in time interval �t and at 

frequency interval �f, then shown in following Eq. (1) 

 1f t    (1) 

In the case of a discrete signal x(n), if the signal has length N and it has nonzero 

values in time interval Nt and if X(f), a discrete Fourier transform of x(n), has Nf  

nonzero values, then 

 NNN ft    (2) 

Donoho and Stark derived another form of Eq. (2) in following Eq. (3): 

 2NN+N ft    (3) 

The uncertainty principle in the time-frequency domain was generalized by Elad 
and Bruckstein [16] for presenting x on any basis. This generalization is called 

the generalized uncertainty principle (GUP). This principle states that if x   ℝN 

can be represented in two orthonormal bases � ∈ ℝ NN  and Ψ  ℝ
NN , then the 

following inequality holds: 

            


2T   
(4) 

In Eq. (4), |�| and | | represent the number of nonzero elements of x in bases 

|� | and |
 |  respectively. The value of  corresponds to the highest inner 

product of vectors in �  and  
, that is:  

              = 	
��,�〈�� , ��〉  with  i = 1, 2, … , N   and   j = 1, 2, … , N  (5) 

The   value is also called the coherency between  �  and  
 . The lower and 

upper bounds of  are N/1  and 1 respectively, where the lower bound is 

reached when either �  or 
  has vectors whose components are random 

numbers and the upper bound is reached when any two vectors in �  and  
  are 

identical. Another important finding of Elad and Bruckstein is related to the 

uniqueness of the representation of sparse vector x using an over-complete 

dictionary composed of � 
 . After stating this uniqueness, let us briefly 
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overview the CS principle and after that, we continue with related works on two 

reconstruction algorithms, i.e. convex optimization and the greedy algorithm. 

Let x be a vector that represents the discrete time sparse signal of length N with 

k nonzero elements and k   N. A direct method to compress x is by pre-

multiplying x with an M  N dimension of matrix A, i.e. a sensing matrix with M 
< N, to produce a compressed signal y of length M:  

 y = Ax (6) 

The compression as represented by Eq. (6) can also be viewed as a system of a 

linear equation with an independent variable x and an dependent variable y. The 
reconstruction problem is therefore how to obtain sparse signal x from sensing 

matrix A and compressed signal y. Since A has dimension M × N and M < N, Eq. 

(6) represents an underdetermined system of linear equations. Therefore, solving 
Eq. (6) for x produces an infinite number of possible answers. However, by 

knowing that the signal x is sparse, we can pick the solution from this infinite 

number of answers that has the least nonzero elements and take it as the solution 

of the reconstruction problem. This solution is called the sparsest solution, or P0. 
Mathematically, we can write: 

 �� = 	�� ‖�‖�  ������� �   !� = " (7) 
 

In Eq. (7),  ‖�‖� denotes the zero-th order norm of x (or l0-norm), which is 

equivalent to the support of vector x, i.e. the number of nonzero elements of x 

(also equal to signal sparsity k) in following Eq. (8). 
 

  ‖�‖�  = ��##$�% = &  (8) 
 

Finding P0 from Eq. (7) is, however, an NP-hard problem. That is, the solution 

can be found only by exhaustive search. Therefore, the requirement of 
minimizing l0-norm is relaxed to minimizing the first order norm, that is: 
 

 �' = 	�� ‖�‖'  ������� �   !� = " (9) 
 

where 
1

x  is the first order norm of x. The formulation in Eq. (9) is also called 

basis pursuit (BP). However, relaxing P0 to P1 requires higher sparsity as 

indicated by Donoho and Huo [17]. Regarding the uniqueness of P1 and P0, 

Donoho & Huo and Elad & Bruckstein formulated the following proposition: 

Proposition 1: Let Φ1 and Φ2 be two orthonormal bases with coherency μ and 

let Φ = Φ1 ∪ Φ2 be a superset of Φ1 and Φ2. If a discrete time signal s can be 
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represented as s = Φα, where the l0-norm of α fulfills ||α||0 < (1/2){1+(μ(Φ1, 

Φ2))
-1

}, then α is a unique solution of P1 and also a unique solution of P0. 

Proposition 1 is very important since it guarantees that Eq. (9) has a unique 

solution. Furthermore, since l1-norm is a convex function, a standard method 

such as convex optimization can be used to solve Eq. (9) iteratively. Using 
convex optimization, BP is cast into a linear programming form, which can be 

written as [18]: 

 

,0ux.t.su ii

i

i min

  

 
,0ux ii 
 (10) 

 
yAx 

  

This LP problem can be solved using the interior point method (IPM). Several 

software packages have been developed for this purpose, for example, Matlab 

with its optimization toolbox, CVX discipline programming by Boyd and 
Vandenberghe [19], and l1-magic by Candes and Romberg [18].  

Another class of CS reconstruction solvers uses the greedy algorithm. Using this 

approach, CS sampling as in Eq. (6) is viewed as a linear combination of each 

column in A determined by x to produce y. The greedy algorithm works reversely 
by finding a best fit vector in A one at a time, and repeats iteratively until best 

estimate of x is achieved. Among the most famous greedy algorithms are 

matching pursuit (MP) and orthogonal matching pursuit (OMP). MP was 
popularized by Mallat and Zhang [7] in connection with reconstruction using a 

time-frequency dictionary. OMP was developed rather independently from MP 

by Chen, et al. [20]. Basically, MP and OMP have the same main procedure, to 
which a least square step is added in OMP. Among the earliest applications of 

OMP in signal processing was wavelet decomposition [21]. The success of MP 

and OMP was followed by the introduction of several variants of them. These 

variants are, for example, the Regularized OMP (ROMP, [22]), Stagewise OMP 
(StOMP, [23]), and Compressive Sampling MP (CoSaMP, [24]). The initial 

suggestion to use OMP for CS reconstruction was made by Tropp and Gilbert 

[25]. In this section we review only MP and OMP to represent the use of the 
greedy algorithm. 

As stated previously, the basic principle of MP in solving CS is by viewing the 

M × N sensing matrix A as a collection of N vectors )', )*, ⋯ , ),  of dimension 

M. That is: 

 ! = -)' )* ⋯ ),. (11) 
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If we let the unknown x to be � = -�' �* ⋯ �,., then Ax = y can be seen as a 

linear combination of each basis  α0 with a corresponding weight of xi to form y. 
This can be written as:  

 !� = �')' + �*)* + ⋯ + �,),                               (12) 

Solving for x, MP works reversely by decomposing y into each component of )� 
iteratively, where in each iteration the estimated weight �2� is chosen to be the 

largest contribution to y. The largest contribution is taken as the maximum dot 

product of α3 (j = 1, 2, ⋯, N) to y. After the first �2� has been chosen, the residue 

of A is calculated and the next estimate is calculated in a similar manner.  

As already mentioned before, OMP has the same basic procedure as MP but it 
adds a least square step. OMP has better accuracy than MP, since the least square 

step ensures that the residue of the previous selected base is not recounted in the 

next step.   

As compared to convex optimization, OMP has the advantage of having faster 
computation. However, OMP does not always produce a correct estimate, 

especially when the sensing matrix is composed of high-coherence bases. This 

happens because high-coherence bases create confusion as they are mixed up by 
the high coherency. A deeper analysis of the greedy algorithm can be found, for 

example, in DeVore and Temlyakov’s paper [26] and also in Cohen’s paper [27].  

3 Proposed Method 

Let us now consider Eq. (9) from a geometrical point of view. The objective 

function, i.e. ‖�‖', is a rectangular shape and the objective function Ax = y 

forms a straight line in a �4 -dimensional coordinate system. The solution of Eq. 

(9) is the intersection of the curve Ax = y with the curve ‖�‖' = kopt, which in 

Fig. 1(A) is denoted by xs. If we take k > kopt, then Ax = y and ‖�‖'= k  intersect 

at two points and if k < kopt then Ax = y and ‖�‖'= k do not intersect (Fig. 1(A)). 

From this illustration, we conclude that the solution of Eq. (9) is obtained when 
‖�‖' = k touches Ax = y. Capitalizing on this fact, we start deriving the proposed 

algorithm by analyzing a simple case of two and three dimensions of x and then 

generalize it for any N dimensions.  

Two dimension case. Let x = [x1  x2]
T
 ∈ R* and A = [a1 a2] ∈ R*. Therefore, y = 

Ax produces y = y1 = a1 x1 + a2 x2. The reconstruction problem is finding x, given 

y and A. Using BP, one needs to minimize ‖�‖' fulfilling Ax = y. By 

substituting x and A, Ax = y produces a1 x1 + a2 x2 = y1, which is a straight line in 
the x1-x2 coordinate system.  
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In order to find &opt, we start with initial step k = k0, which is large enough so that 

curve ‖�‖' = k0 and Ax = y intersect each other at points P1 and P2 (Fig. 2(a)). 
Let M1 be a convex combination of P1 and P2, that is: 

 M1 = 11 P)1(P       ;   10     (13) 

 

 

Figure 1 Illustration of CS reconstruction with two variables using l1-norm 

minimization. (A) Solution xs fulfilling BP. (B) The case of ‖6‖1
 
= k > kopt 

produces intersections, while ‖6‖1= k < kopt does not produce intersections. 

As M1 is a convex combination of P1 and P2, it lies between P1 and P2 (Figure 

2(A)). In addition, since M1 is inside ‖6‖' = k0, a new norm ‖6‖' = k1 that 

passes through M1 will be smaller. That is, k1 8 k0 for any value of 9 in [0, 1]. 

The equality holds only if 9 = 0 or 9 = 1. We delay the proof of this statement 

until the general N-variables case has been discussed. After the new norm, k1, has 

been calculated, we can repeat the previous steps to find M2 (Figure 2(B)). These 
steps produce k2, which is smaller than k1. We repeat these steps until the j-th 

iteration, where the value of kj is close enough to kopt. 

Three-dimensional case. Let x be [x1  x2  x3]
T 

and A is a 1×3 matrix, i.e. [a11  a12  
a13]. Equation Ax = y produces a11 x1 + a12 x2 + a13 x3 = y1, which is a plane in the 

x1-x2-x3 coordinate system. Norm ‖�‖' = k0 is an octahedron in this three-

dimensional coordinate system. At the initial step, we take k0 sufficiently large so 

that Ax = y intersects ‖�‖' = k0 as shown in Figure 3(A). Now, depending on the 

value of k0, the intersection of Ax = y and ‖�‖' = k0 may produce a polygon with 

four or more sides, which is called a polytope. Figure 3(B) illustrates the 

intersection of these curves to give a five-sided polytope. We denote P1, P2, P3, 
P4, and P5 as the vertexes of the polytope as shown in Figure 3(B). Point M1 is 

calculated as the convex combination of these vertexes as:  

 M1 = RR2211 PPP   ⋯ ,  (14) 

 with 
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,1R21   ⋯
   (15) 

and 10 i   ,  i  = 1, 2,  … , R, where R is the number of vertexes in the 

polytope. Using similar reasoning as in the two-dimensional case, a new norm 

curve ‖�‖' = k1, which passes through M1, has a smaller norm value than the 

previous k0. The iteration can be restarted using a new value for norm k1. 

 

Figure 2 (A) Illustration at initial iteration, with k0 is sufficiently large, the curve 

Ax = y and ‖�‖' = k0 intersect at P1 and P2. The point M1 is the convex 

combination of P1 and P2. (B) The norm at M1 is chosen as the next value of k for 

the next iteration.  

Generalization to N dimensions. As we can observe from the two- and three-

dimensional cases, the intersection of Ax = y and ‖�‖' = k0 with large enough k0 
forms a convex polytope. Selecting a point M as the convex combination of the 

vertexes of the polytope will then produce a smaller l1-norm. This observation is 

stated in the following propositions. 

Proposition 2: Let Ax = y be a system of linear equations with A   ℝ
NM , x 

ℝN, and y   ℝM.  If Ax = y intersects ‖�‖' = k0, then the edges of the 

intersection form a convex polytope. 

Proof: Since ‖�‖' = k0 forms a closed convex set where each side is represented 

by 


N

1i

ii xf = k0 with fi is either +1 or -1, the intersection of each side of ‖�‖' = 

k0 with Ax = y is a straight line. As Ax = y spans unbounded in each xi direction, 

plane Ax = y cuts the sides of ‖�‖' = k0 from one side to other sides. Therefore, 

the intersection forms a closed set with straight lines as the boundary, which is a 

convex polytope. 
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Figure 3  (A) In the case of three variables, 
1

x = k0 forms an octahedron. The 

solution Ax = y with a 1 × 3 matrix A is a plane. If k0 is sufficiently large, 
1

x = k0 

intersects Ax = y. (B) The intersection plane is a convex polytope. A point M1 is the 

convex combination of points Pi as a new point with a smaller norm. 

Proposition 3: Let P1, P2, ⋯, PR be the vertexes of the polytope as described in 

Proposition 2. Any point M as a convex combination of P1, P2, ⋯, PR has an l1-
norm that is smaller than the l1-norm of each vertex Pi. 

Proof: Since each Pi is on the polytope, the l1-norm on Pi is k0, i.e. 
1iP = k0. Let 

M be a convex combination of Pi, therefore M satisfies Eq. (14) with the 

summation of i  satisfying Eq. (15). Using Eq. (15), the value of l1-norm at M 

is: 

    ‖<‖' = ‖9'�' + 9*�* + ⋯ + 9,�,‖  

              8 ‖9'�'‖ + ‖9*�*‖ + ⋯ + ‖9,�,‖                       (16) 

Since 9� ≥ 0 for all i=1,2,..,N and 
1iP = k0, Eq. (16) can be simplified to Eq. 

(17): 

 ‖<‖'   8 9'‖�'‖ + 9*‖�*‖ + ⋯ + 9,‖�,‖   

                        8 9'&� + 9*&� + ⋯ + 9,&� = &�$9' + 9* + ⋯ + 9,% = &�  (17) 

 

For practical purposes, we can choose the value of i for all i=1, 2, …, N to be 

equal to 1/N. Therefore, point Mi is the weight point of the polytope. This 



44 Koredianto Usman et al. 

selection of i  may not be the best point for fast convergence, but it works well 

for most CS reconstructions.  

After giving these two propositions and their proofs, we now can state the weight 

point algorithm for N dimensions of x.  

Weight Point Algorithm.  

Input: A ∈ ℝ>×,, y ∈ ℝ> 

Output: x ∈ ℝ, 

1. Initiate & ← &� with k0 sufficiently large; Ω ← A B; loop index  � ← 1, and 

F ← 

























111

111

111

⋯

⋮⋱⋮⋮

⋯

⋯

 an  2
N N dictionary matrix, 

2. assign  xhi = F(i,:), 

3. construct [A; xhi] = [y ; k], 

4. solve [A; xhi] = [y ; k] to obtain the solution iλ  i.e. the vertexes of a 

polytope,  

5. update the set of solutions  C ← AC ∩ λ0B, 

6. update the counter  � ← � + 1, 
7. repeat step 2 to 6 until i = N, 

8. remove repeated columns in  Ω,  

9. calculate the weight point of the polytope: Mi = 


R

1j

R)j(:,Ω  

10. calculate the l1-norm of Mi : kM =
1

M  and Mkk  , update k ← kM,, 

11. if   ,  with   is a small positive number, then assign x = Mi and stop, 

else reset i by assigning � ← 1 and repeat step 2 to 10. 
 

Step 9 is the calculation of the convex combination of each vertex in the 

polytope using each value of i =1/R which is the weight point of the polytope. 

Therefore, we call this proposed method the Weight Point Algorithm. Step 4 is 
crucial because it finds the vertexes of the polytope. It is performed by finding 

the intersection point between each side of l1-norm and the constraint. An 

efficient method to solve this problem is Householder QR-factorization (Golub 
and Van Loan [28]). Householder QR-factorization is a procedure to factorize 

any matrix A that is: 

 A = QR  (18) 



 Sparse Signal Reconstruction using Weight Point Algorithm 45 

where Q is an orthonormal matrix and R is an upper triangular matrix. This 

factorization is particularly useful for solving linear equations. The details of this 
method can be found in [28], for example. 

4 Numerical Experiments 

In order to measure the effectiveness of the proposed method we performed a 
computer simulation on the reconstruction of a CS problem. In this simulation, 

we measured the performance of the algorithm for amplitude reconstruction 

accuracy, reconstruction accuracy as a function of the coherency of A. We used 
CVX programming, which is a Matlab package for convex optimization and 

OMP as a representation of the greedy algorithm as the comparator. In the final 

experiment, we tested our proposed algorithm in a real-world application of data 
interpolation using the Dow Jones Industrial Average (DJIA) index. 

In our experiments, we used mean absolute error (MAE) to measure the 

closeness between the reconstructed signal 6F and the original signal x. MAE is 

calculated as follows: 

 <!G =
'

,
∑ |�� − �2�|,

'  (19) 

4.1 Amplitude Reconstruction Accuracy 

This simulation was carried out to compare reconstruction accuracy in terms of 

amplitude similarity between the actual signal and the reconstructed signal. This 

comparison is important to see the capability of the algorithm of achieving a 

perfect reconstruction. In this simulation, we selected a sparse signal of 12 
elements, i.e. x = [0 2 2 0 0 0 0 0 0 0 0 0]

T
. The non-zero elements of x are at the 

second and third positions. The sensing matrix A is composed of a column-wise 

Gaussian normalized random number with zero mean and unit variance, in other 

words, A = [a1 a2 … aN] ; ai  ∈ J(0,1). In this particular experiment, we 

compressed x to become y using a 10 × 12 sized matrix A. The simulation was 

repeated 100 times and the average of the result was collected. Figure 4 shows 

the reconstruction results of each method. 

The proposed method together with OMP produced a perfect reconstruction both 

of nonzero and zero elements. CVX programming, on the other hand, even 

though it produced a result with a similar pattern to the original signal, it did not 
produce a perfect reconstruction. To quantify the amplitude reconstruction 

accuracy, we performed a simulation using a matrix A with a size of M × 12. We 

took the values of M to be integers from 3 to 10. The value of M that corresponds 
to the number of rows in A indicates the compression ratio. A higher M 

corresponds to a lower compression ratio and therefore we expect better 

construction accuracy. Figure 5 shows the performance of the three algorithms. 
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The horizontal axis is the number of samples in the compressed signal y, which is 

equivalent to M. As expected, the accuracy (i.e. a lower MAE) increased as the 
number of samples in y increased. In this simulation, we observed that our 

proposed method performed best at low compression ratios (with the number of 

samples more than 5). As the compression ratio increased, the performance of 
proposed method decreased and its MAE was higher compared to that of OMP 

and CVX programming, which indicates that the proposed method performed 

less well than OMP and CVX programming. This decrease in performance can 

be seen as the failure of the proposed method to converge to the correct solution 
as the number of constraints becomes smaller and is no longer sufficient to 

converge to the correct solution. 

 

Figure 4 Reconstruction accuracy illustration of the three algorithms. The 

proposed method and OMP had the best accuracy, while CVX programming had 

some offset in nonzero and zero elements. 

4.2 Performance as Function of Coherency of Sensing Matrix 

OMP has been known to perform badly at high coherency of A. The proposed 

method, on the other hand, is expected to perform better since it does not process 

the iteration column-wise as in OMP. Instead, it views the reconstruction 

problem geometrically. This experiment was done to assess the capability of both 
algorithms and CVX programming as a function of coherency. 

We used a similar setup as in the previous experiment (see Section 4.1) but 

adjusted the third column of A using the second column with the following 
assignment: 

 
K ← L
* + $1 − L%
K (20) 
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In other words, the value of the third column is modified by taking influence 

from the second column. Here,   ( 10   ) performs as coherency control. 

Increasing the value of   corresponds to a higher coherency in A since the third 

column becomes similar to the second column. In this particular simulation we 

ran the coherency tests under low and high compression ratios, represented by a 

10 × 12 matrix and a 6 × 12 matrix of A respectively.  

 

Figure 5 The performance of the three reconstruction methods for amplitude 
accuracy as indicated by MAE (lower MAE means better accuracy). The proposed 

method has a better slope and in practice performs best at a number of samples 

greater than 5. 

The simulation results are depicted in Figures. 6(A) and (B). As can be observed 

in both figures, the proposed method had best accuracy at low to moderately high 

coherency (less than 0.6). OMP, on the other hand, already suffered at low 
coherency and got worse at higher values. It is interesting to note that CVX 

programming performed uniformly, relatively independent to the coherency of A. 

The simulation results show that the proposed method performs better than OMP 
in the presence of coherency in sensing matrix A at either low or high 

compression ratios. The proposed method also has better performance compared 

to the CVX programming method at low to medium value of coherency. 

However, the proposed method’s performance decreases as coherency increases, 
while CVX programming is not sensitive to coherency, hence, at coherency 

values greater than 0.8, CVX programming performs better. 
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      (A) 

 
 

(B) 

Figure 6  (A) Performance comparison between the three CS reconstruction 

algorithms as a function of base coherency of matrix A, which is a 10 × 12 

matrix. (B) The simulation results using sensing matrix A, which is a 6 × 12 
matrix. 

4.3 Data Interpolation of DJIA Index 

The Dow Jones Industrial Average (DJIA) index reflects the average transaction 

volume on the stock market of thirty large publicly owned companies in the 
USA. DJIA is one of the most influential index indicators for the US market. 

Normally, the data are reported at the beginning of every month. We tested the 

proposed algorithm using the DJIA for the period of January 2006 to October 
2015, which corresponds to 119 data. In Figure 7(A), the solid line shows a 

graph of the DJIA index over this 119-month period. 

Previous research [29] indicates that the DJIA dataset can be modeled using 

fractional Brownian motion, which is characterized by the H
f/1 function, where 

f is frequency and H is the Hurst parameter. In other words, the DJIA dataset has 

decaying frequency components in the frequency domain. This phenomenon 

suggests that the DJIA dataset is sparse in the frequency domain, thus the CS 

method can be employed for reconstruction of random data missing in the DJIA 
index. In Fig. 7(A), the dash line shows the trend data of DJIA using its first ten 

frequency components. To simulate the missing data, we selected a compression 

matrix A of size M × N such that there was only one element of 1 in each row of 
A, while these values of 1 appeared randomly over the columns of A. By this 

arrangement, we obtained the compressed y to be a random down-sample of x 

(Figure 7(B)). For the reconstruction of missing data, we used the discrete cosine 
transform (DCT) instead of the discrete Fourier transform (DFT) to get real-

valued frequency coefficients. Figure 8(A) shows the DCT coefficient plot of 

DJIA. The decaying trend of the coefficients of this particular dataset can be 

estimated using H
f/  with ) = 640.03 and H = 1.8576 (the dash line in Fig. 

8(A)).   
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Figure 8(B) shows the energy percentage of the DJIA dataset using the first ten 

DCT coefficients. As can be seen in this figure, the first ten coefficients (K = 10) 
already represent about 85% of the total energy of the signal. The energy 

contribution of the next coefficients does not significant anymore. For example, 

at K = 20, only about 5% energy is added from the previous K = 10. 

 

 (A)                                 (B) 

Figure 7  (A) The DJIA index from January 2006 to October 2015 (solid line) 

and its trend using the first ten frequency components (dash line). (B) The original 

DJIA data and its random down-sampled version using a 1:2 ratio. 

 

(A) 

 
 

(B) 

Figure 8  (A) DJIA’s DCT coefficients and the 1/f  approximation function. 

(B) The energy percentage of the DJIA dataset using the first ten DCT 

coefficients. 

Using the proposed method, we reconstructed x under the assumption that x 
consists of only 10 low-frequency components (10 harmonics) and 20 low-
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frequency components on x (20 harmonics). The reconstruction results are shown 

in Figure 9. It is interesting to note that both assumptions had values close to the 
original x. The reconstruction using a 10-harmonics assumption, however, had 

incorrect estimates on x at deep slope values (at time around 40) due to limited 

frequency components, thus it was unable to reconstruct high-frequency 
components in the deep slope part of signal. The reconstruction using a 20-

harmonics assumption was successful in reconstructing this deep slope. 

Figure 10 shows a comparison of the reconstructed data using proposed method, 

CVX programming, and OMP on the DJIA randomly down-sampled data. In this 
figure, it can be seen that the proposed method can reconstruct the missing data 

with a good fit, about similar to the reconstructed data from CVX programming. 

OMP on the other hand has correct tracking on the data trend, but it consistently 
deviates from the correct values in the form of spikes around the correct values. 

The down-sampling ratio in this simulation was 2:3. 

 

Figure 9 DJIA data and their reconstruction result using the proposed method 

under 10- and 20-harmonics assumption. 

 

Figure 10 DJIA data and its random down-sampled data reconstruction using 

the proposed method, CVX programming and OMP. 
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5 Conclusion  

A CS reconstruction algorithm was presented based on a geometrical 

interpretation of the minimization of l1-norm in the solution of CS equation Ax = 

y. The basic principle of this method is the fact that a point M that is produced by 

convex combination of the vertexes of the polytope produced by the intersections 

of Ax = y and ‖�‖' = k0 has a norm that is smaller than the previous k on the 

vertexes. The selection of equal weights for each component in convex 

combination leads to the physical interpretation that point M is the weight point 
of the polytope. Unlike OMP, the proposed method has better robustness in high 

coherency environments. Compared to convex optimization this method offers 

simpler computation. This method offers more choice when selecting a CS 

reconstruction algorithm, especially for applications that need a balance between 
accuracy and speed. Given these advantages, the proposed method works only 

for real-valued signals. It is necessary to generalize this method beyond the 

geometrical interpretation so that it provides the capability to solve 
reconstruction problems of complex-valued signals. 
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