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Abstract. In this paper we propose a new approach of the compressive sensing
(CS) reconstruction problem based on a geometrical interpretation of /;-norm
minimization. By taking a large /;-norm value at the initial step, the intersection of
/;-norm and the constraint curves forms a convex polytope and by exploiting the
fact that any convex combination of the polytope’s vertexes gives a new point that
has a smaller /;-norm, we are able to derive a new algorithm to solve the CS
reconstruction problem. Compared to the greedy algorithm, this algorithm has
better performance, especially in highly coherent environments. Compared to the
convex optimization, the proposed algorithm has simpler computation
requirements. We tested the capability of this algorithm in reconstructing a
randomly down-sampled version of the Dow Jones Industrial Average (DJIA)
index. The proposed algorithm achieved a good result but only works on real-
valued signals.

Keywords: compressive sampling;, convex combination; convex polytope; sparse
reconstruction, I;-norm, weight point.

1 Introduction

Compressive sampling (CS) is a new technique in signal processing that
efficiently combines acquisition and compression in a single step. Among the
pioneers in this subject is Donoho with his seminal paper from 2006 [1]. Other
researchers jointly or independently contributed to the development of CS,
among others Candes and Wakin [2], Candes and Tao [3], and Baraniuk [4].
Even though this technique was introduced in the early 2000s, its foundation was
laid in the early 1980s in the form of several mathematical techniques such as the
uncertainty principle and signal recovery [5], basis pursuit [6], and the time-
frequency representation of signals [7].

CS consists of two main parts, i.e. a compression step and a reconstruction step.
In practice, the compression step in CS can be viewed mathematically as a

Received December 2™, 2016, 1% Revision August 15", 2017, 2™ Revision January 4™, 2018, Accepted for
publication January 16", 2018.
Copyright © 2018 Published by ITB Journal Publisher, ISSN: 2337-5787, DOI: 10.5614/itbj.ict.res.appl.2018.12.1.3



36 Koredianto Usman et al.

multiplication of sampling or sensing matrix 4 with signal x to produce a
compressed signal y, i.e. y = Ax. If the length of x is N, then by selecting 4 to be
an M X N matrix with M << N, we can produce a much smaller dimension of y.
After compression it is often required to reconstruct the original signal x back
from the compressed signal y. This step is called CS reconstruction.

Since sparse or compressible signals have a wide range of applications, CS has
been applied in many fields, such as radar and sonar [8-10], antenna beam
forming [11,12], imaging [13,14], and video [15], to name a few. Nevertheless,
there are still challenges, because CS reconstruction generally involves a heavy
computational load and is time-consuming.

At the moment there are two main groups of CS reconstruction algorithms, i.e.
convex optimization and the greedy algorithm. Convex optimization solves CS
reconstruction by minimizing the /;-norm of the available solutions. Convex
optimization can be applied since /;-norm is a convex function. Greedy
algorithm, on the other hand, solves the CS reconstruction heuristically by
choosing a local optimum at each intermediate step in the hope of finding the
global optimum at the end. The greedy algorithm does not guarantee a correct
solution, but it has fast computation. In terms of accuracy, the greedy algorithm
suffers from reconstruction errors when the sensing matrix has high coherence.
Convex optimization, on the other hand, provides a robust estimate but is much
slower than the greedy algorithm.

In this paper, we propose a new CS reconstruction algorithm based on a
geometric interpretation of /;-norm minimization in the CS reconstruction
problem. Using a bisection method, /;-norm is reduced iteratively until the
minimum value is obtained. In terms of accuracy and complexity, our proposed
method stands between convex optimization and the greedy algorithm. It is faster
than convex optimization and more robust than the greedy algorithm. This
method offers an alternative way of solving CS reconstruction when a balance
between computation time and accuracy is required.

This paper is arranged as follows. Section 2 explores related works, especially on
convex optimization and the greedy algorithm. Section 3 describes the details of
the proposed method. Section 4 reports our numerical experiments, consisting of
a performance comparison of the proposed method with convex optimization and
the greedy algorithm. A test case of how the proposed method performs on a
randomly down-sampled version of the Dow Jones Industrial Average (DJIA)
index is also presented in this section. Finally, Section 5 concludes the paper by
summarizing the overall findings and giving an outlook on a future CS
reconstruction strategy.
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2 CS Reconstruction Problem and Related Works

The reconstruction of sparse signals can be traced back to the uncertainty
principle and signal recovery. One of the early papers on this subject is [5] by
Donoho and Stark. For a continuous signal, the uncertainty principle states that
any continuous signal cannot be dense in both the time and the frequency domain
simultaneously. If a signal x(z) is concentrated in time interval 4, and at
frequency interval A, then shown in following Eq. (1)

A A 21 (D

In the case of a discrete signal x(n), if the signal has length N and it has nonzero
values in time interval N, and if X(f), a discrete Fourier transform of x(n), has N,
nonzero values, then

N, N, >N (2)
Donoho and Stark derived another form of Eq. (2) in following Eq. (3):
N, +N, > Nv/2 3)

The uncertainty principle in the time-frequency domain was generalized by Elad
and Bruckstein [16] for presenting x on any basis. This generalization is called
the generalized uncertainty principle (GUP). This principle states that if x € RV
can be represented in two orthonormal bases @ € R and ¥ € R, then the
following inequality holds:

IT| +\Q\2% 4)

In Eq. (4), |T| and | 2] represent the number of nonzero elements of x in bases
|@| and |¥| respectively. The value of p corresponds to the highest inner
product of vectors in @ and ¥, that is:

pw=max; {¢;, ;) with i=1,2, ..., N and j=12 ...,N (5)

The u value is also called the coherency between @ and ¥. The lower and

upper bounds of x4 are 1/ JN and I respectively, where the lower bound is
reached when either @ or ¥ has vectors whose components are random
numbers and the upper bound is reached when any two vectors in @ and ¥ are
identical. Another important finding of Elad and Bruckstein is related to the
uniqueness of the representation of sparse vector x using an over-complete
dictionary composed of @ U ¥ . After stating this uniqueness, let us briefly
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overview the CS principle and after that, we continue with related works on two
reconstruction algorithms, i.e. convex optimization and the greedy algorithm.

Let x be a vector that represents the discrete time sparse signal of length N with
k nonzero elements and £ << N. A direct method to compress x is by pre-
multiplying x with an M x N dimension of matrix A, i.e. a sensing matrix with M
< N, to produce a compressed signal y of length M:

y=Ax (6)

The compression as represented by Eq. (6) can also be viewed as a system of a
linear equation with an independent variable x and an dependent variable y. The
reconstruction problem is therefore how to obtain sparse signal x from sensing
matrix 4 and compressed signal y. Since 4 has dimension M X N and M < N, Eq.
(6) represents an underdetermined system of linear equations. Therefore, solving
Eq. (6) for x produces an infinite number of possible answers. However, by
knowing that the signal x is sparse, we can pick the solution from this infinite
number of answers that has the least nonzero elements and take it as the solution
of the reconstruction problem. This solution is called the sparsest solution, or Py.
Mathematically, we can write:

Py = min ||x||, subjectto Ax =y (7

In Eq. (7), llxll, denotes the zero-th order norm of x (or /y-norm), which is
equivalent to the support of vector x, i.e. the number of nonzero elements of x
(also equal to signal sparsity k) in following Eq. (8).

lixllo = supp(x) = k ®)

Finding P, from Eq. (7) is, however, an NP-hard problem. That is, the solution
can be found only by exhaustive search. Therefore, the requirement of
minimizing /,-norm is relaxed to minimizing the first order norm, that is:

P, = min ||x||, subjectto Ax =y 9)

where ||x|| , is the first order norm of x. The formulation in Eq. (9) is also called

basis pursuit (BP). However, relaxing P, to P, requires higher sparsity as
indicated by Donoho and Huo [17]. Regarding the uniqueness of P; and Py,
Donoho & Huo and Elad & Bruckstein formulated the following proposition:

Proposition 1: Let ®, and @, be two orthonormal bases with coherency |\ and
let ® = ®; U O, be a superset of ©, and ©,. If a discrete time signal s can be
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represented as s = ®o, where the ly-norm of o fulfills |allo < (1/2){1+(u(D;,
®,))"Y, then o is a unique solution of Py and also a unique solution of Py.

Proposition 1 is very important since it guarantees that Eq. (9) has a unique
solution. Furthermore, since /;-norm is a convex function, a standard method
such as convex optimization can be used to solve Eq. (9) iteratively. Using
convex optimization, BP is cast into a linear programming form, which can be
written as [18]:

minZui s.t. x;—u; <0,

—x; —u; <0, (10)
Ax=y

This LP problem can be solved using the interior point method (IPM). Several
software packages have been developed for this purpose, for example, Matlab
with its optimization toolbox, CVX discipline programming by Boyd and
Vandenberghe [19], and /;-magic by Candes and Romberg [18].

Another class of CS reconstruction solvers uses the greedy algorithm. Using this
approach, CS sampling as in Eq. (6) is viewed as a linear combination of each
column in 4 determined by x to produce y. The greedy algorithm works reversely
by finding a best fit vector in 4 one at a time, and repeats iteratively until best
estimate of x is achieved. Among the most famous greedy algorithms are
matching pursuit (MP) and orthogonal matching pursuit (OMP). MP was
popularized by Mallat and Zhang [7] in connection with reconstruction using a
time-frequency dictionary. OMP was developed rather independently from MP
by Chen, et al. [20]. Basically, MP and OMP have the same main procedure, to
which a least square step is added in OMP. Among the earliest applications of
OMP in signal processing was wavelet decomposition [21]. The success of MP
and OMP was followed by the introduction of several variants of them. These
variants are, for example, the Regularized OMP (ROMP, [22]), Stagewise OMP
(StOMP, [23]), and Compressive Sampling MP (CoSaMP, [24]). The initial
suggestion to use OMP for CS reconstruction was made by Tropp and Gilbert
[25]. In this section we review only MP and OMP to represent the use of the
greedy algorithm.

As stated previously, the basic principle of MP in solving CS is by viewing the
M X N sensing matrix 4 as a collection of N vectors a,, a,, -, ay of dimension
M. That is:

A=[a1 a - ay] (11)
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If we let the unknown x tobe x = [¥; X2 - Xy], then Ax = y can be seen as a
linear combination of each basis «; with a corresponding weight of x; to form y.
This can be written as:

Ax = x100 + X305 + -+ xyay (12)

Solving for x, MP works reversely by decomposing y into each component of ¢;
iteratively, where in each iteration the estimated weight X; is chosen to be the
largest contribution to y. The largest contribution is taken as the maximum dot
product of o (j = 1, 2, ---, N) to y. After the first £; has been chosen, the residue
of 4 is calculated and the next estimate is calculated in a similar manner.

As already mentioned before, OMP has the same basic procedure as MP but it
adds a least square step. OMP has better accuracy than MP, since the least square
step ensures that the residue of the previous selected base is not recounted in the
next step.

As compared to convex optimization, OMP has the advantage of having faster
computation. However, OMP does not always produce a correct estimate,
especially when the sensing matrix is composed of high-coherence bases. This
happens because high-coherence bases create confusion as they are mixed up by
the high coherency. A deeper analysis of the greedy algorithm can be found, for
example, in DeVore and Temlyakov’s paper [26] and also in Cohen’s paper [27].

3 Proposed Method

Let us now consider Eq. (9) from a geometrical point of view. The objective
function, i.e. |[x|[;, is a rectangular shape and the objective function Ax =y
forms a straight line in a two-dimensional coordinate system. The solution of Eq.
(9) is the intersection of the curve Ax = y with the curve [|x||; = &, which in
Fig. 1(A) is denoted by x;. If we take k > k,,, then Ax =y and ||x||,= & intersect
at two points and if k < k,,, then Ax = y and [|x||;= k do not intersect (Fig. 1(A)).
From this illustration, we conclude that the solution of Eq. (9) is obtained when
|lx|[; = k touches 4Ax = y. Capitalizing on this fact, we start deriving the proposed
algorithm by analyzing a simple case of two and three dimensions of x and then
generalize it for any N dimensions.

Two dimension case. Let x = [x; X»]' € R? and 4 = [a, a,] € R?. Therefore, y =
Ax produces y =y, = a; x; + a; x,. The reconstruction problem is finding x, given
y and A4. Using BP, one needs to minimize ||x||; fulfilling Ax = y. By
substituting x and 4, Ax = y produces a; x; + a; x, = y;, which is a straight line in
the x;-x, coordinate system.
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In order to find k,y, we start with initial step k = k,, which is large enough so that
curve ||x|l; = ky and Ax = y intersect each other at points P; and P, (Fig. 2(a)).
Let M, be a convex combination of P; and P,, that is:

M;=pB-P+(1-p)-P, ; 0<B<I (13)

lIx[ly = Kopt N

(A) (B)

Figure 1 Tllustration of CS reconstruction with two variables using /;-norm
minimization. (A) Solution x;, fulfilling BP. (B) The case of ||x||, = & > kopt
produces intersections, while ||x||,= k < k,,, does not produce intersections.

As M, is a convex combination of P; and P, it lies between P; and P, (Figure
2(A)). In addition, since M; is inside ||x|l; = k), a new norm |[|x||; = k; that
passes through M; will be smaller. That is, k; < k, for any value of § in [0, 1].
The equality holds only if § = 0 or § = 1. We delay the proof of this statement
until the general N-variables case has been discussed. After the new norm, &;, has
been calculated, we can repeat the previous steps to find M, (Figure 2(B)). These
steps produce k,, which is smaller than k;. We repeat these steps until the j-th
iteration, where the value of %; is close enough to k.

Three-dimensional case. Let x be [x; x, x;]" and 4 is a 1x3 matrix, i.e. [a;; a;
a;3]. Equation Ax = y produces a;; x; + a;; x> + a;3 x; = y;, which is a plane in the
x;-x,-x3; coordinate system. Norm ||x|l; = ky is an octahedron in this three-
dimensional coordinate system. At the initial step, we take k, sufficiently large so
that Ax = y intersects ||x||; = k as shown in Figure 3(A). Now, depending on the
value of &y, the intersection of 4x = y and ||x|[; = &, may produce a polygon with
four or more sides, which is called a polytope. Figure 3(B) illustrates the
intersection of these curves to give a five-sided polytope. We denote P;, P,, Ps,
P,, and Ps as the vertexes of the polytope as shown in Figure 3(B). Point M, is
calculated as the convex combination of these vertexes as:

M= B, P+ P+t B Py, (14)

with
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Bi+Pr+-+pr=1 (15)

and 0<p,<I, i =1,2, ..., R where R is the number of vertexes in the
polytope. Using similar reasoning as in the two-dimensional case, a new norm

curve ||x||; = k;, which passes through M;, has a smaller norm value than the
previous ky. The iteration can be restarted using a new value for norm £;.

Il = Ko T Ielly = *o

S
B /
D N
. S
.
P R
R .
.
.

M,

ell = A1

Figure 2 (A) Illustration at initial iteration, with k, is sufficiently large, the curve
Ax = y and ||x|l; = ko intersect at P, and P,. The point M, is the convex
combination of P; and P,. (B) The norm at M, is chosen as the next value of & for
the next iteration.

Generalization to N dimensions. As we can observe from the two- and three-
dimensional cases, the intersection of Ax = y and ||x||; = &, with large enough %,
forms a convex polytope. Selecting a point M as the convex combination of the
vertexes of the polytope will then produce a smaller /;-norm. This observation is
stated in the following propositions.

Proposition 2: Let Ax =y be a system of linear equations with A € R™"  x
RN, and y € RM. If Ax =y intersects ||x||; = ko, then the edges of the
intersection form a convex polytope.

Proof: Since ||x||; = k, forms a closed convex set where each side is represented

N
by Zfixi = ko with f; is either +1 or -1, the intersection of each side of ||x||; =
i=1
ko with Ax = y is a straight line. As Ax = y spans unbounded in each x; direction,
plane Ax = y cuts the sides of ||x||; = &y from one side to other sides. Therefore,
the intersection forms a closed set with straight lines as the boundary, which is a
convex polytope.
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solution of Ax =y

3 o)

P

Figure 3  (A) In the case of three variables, ||x||1: ko forms an octahedron. The
solution Ax = y with a 1 X 3 matrix 4 is a plane. If k, is sufficiently large, | )4‘1: ko

intersects Ax = y. (B) The intersection plane is a convex polytope. A point M, is the
convex combination of points P; as a new point with a smaller norm.

Proposition 3: Let Py, Py, -+, Pr be the vertexes of the polytope as described in
Proposition 2. Any point M as a convex combination of Py, P,, -+, Pr has an 1;-
norm that is smaller than the 1,-norm of each vertex P;.

Proof: Since each P; is on the polytope, the /;-norm on P; is ky, i.c. ||Pl || ;= ko. Let

M be a convex combination of P, therefore M satisfies Eq. (14) with the
summation of g; satisfying Eq. (15). Using Eq. (15), the value of /;-norm at M
is:

(IMI[y = ||g1 Py + B2Pz + -+ + ByPyll
< [B1PoIl + lIB2P2 Ml + -+ + || By Pl (16)

Since B; = 0 for all i=1,2,..,N and ||Pl-||1= ky, Eq. (16) can be simplified to Eq.
17):

Ml < B1llPIl + B2l + -+ + Byl Pyl
< Biko + Boko + -+ Bnko =ko(By + B2 + -+ By) = ko (17)

For practical purposes, we can choose the value of g, for all i=1, 2, ..., N to be
equal to I/N. Therefore, point M; is the weight point of the polytope. This
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selection of S, may not be the best point for fast convergence, but it works well
for most CS reconstructions.

After giving these two propositions and their proofs, we now can state the weight
point algorithm for N dimensions of x.

Weight Point Algorithm.

Input: 4 € RM*N y e RM
Output: x € RN

1. Initiate k « k, with &, sufficiently large; Q « { }; loop index i « 1, and

+1 +1 - +1

+1 +1 - =1 .. .
Fe| . o | an 2N><Nd1ct10nary matrix,

] —1 - ]

2. assign xu = F(i,:),

construct [A4; x,;] = [y ; k],

solve [4; x,;] = [y ; k] to obtain the solution 4; i.e. the vertexes of a
polytope,

update the set of solutions Q « {Q N A;},

update the counter i « i+ 1,

repeat step 2 to 6 until i = N,

remove repeated columns in Q,

halihe

PN

R

9. calculate the weight point of the polytope: M; = ZQ(:, J)/R
=

10. calculate the /;-norm of M; : ki, = ||M||1 and 0= |k —ky

11. if 6<g, with ¢ is a small positive number, then assign x = M; and stop,
else reset i by assigning i < 1 and repeat step 2 to 10.

, update k < &y,

Step 9 is the calculation of the convex combination of each vertex in the
polytope using each value of S; =1/R which is the weight point of the polytope.

Therefore, we call this proposed method the Weight Point Algorithm. Step 4 is
crucial because it finds the vertexes of the polytope. It is performed by finding
the intersection point between each side of /;-norm and the constraint. An
efficient method to solve this problem is Householder QR-factorization (Golub
and Van Loan [28]). Householder QR-factorization is a procedure to factorize
any matrix 4 that is:

A4=0R (18)
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where Q is an orthonormal matrix and R is an upper triangular matrix. This
factorization is particularly useful for solving linear equations. The details of this
method can be found in [28], for example.

4 Numerical Experiments

In order to measure the effectiveness of the proposed method we performed a
computer simulation on the reconstruction of a CS problem. In this simulation,
we measured the performance of the algorithm for amplitude reconstruction
accuracy, reconstruction accuracy as a function of the coherency of 4. We used
CVX programming, which is a Matlab package for convex optimization and
OMP as a representation of the greedy algorithm as the comparator. In the final
experiment, we tested our proposed algorithm in a real-world application of data
interpolation using the Dow Jones Industrial Average (DJIA) index.

In our experiments, we used mean absolute error (MAE) to measure the
closeness between the reconstructed signal X and the original signal x. MAE is
calculated as follows:

1 PN
MAE = S 3¥|x; — &l (19)

4.1  Amplitude Reconstruction Accuracy

This simulation was carried out to compare reconstruction accuracy in terms of
amplitude similarity between the actual signal and the reconstructed signal. This
comparison is important to see the capability of the algorithm of achieving a
perfect reconstruction. In this simulation, we selected a sparse signal of 12
elements, i.e. x=[02200000 000 0]". The non-zero elements of x are at the
second and third positions. The sensing matrix 4 is composed of a column-wise
Gaussian normalized random number with zero mean and unit variance, in other
words, 4 = [a; a> ... ay] ; @i € N(0,1). In this particular experiment, we
compressed x to become y using a 10 X 12 sized matrix 4. The simulation was
repeated 100 times and the average of the result was collected. Figure 4 shows
the reconstruction results of each method.

The proposed method together with OMP produced a perfect reconstruction both
of nonzero and zero elements. CVX programming, on the other hand, even
though it produced a result with a similar pattern to the original signal, it did not
produce a perfect reconstruction. To quantify the amplitude reconstruction
accuracy, we performed a simulation using a matrix 4 with a size of M X 12. We
took the values of M to be integers from 3 to 10. The value of M that corresponds
to the number of rows in A indicates the compression ratio. A higher M
corresponds to a lower compression ratio and therefore we expect better
construction accuracy. Figure 5 shows the performance of the three algorithms.
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The horizontal axis is the number of samples in the compressed signal y, which is
equivalent to M. As expected, the accuracy (i.e. a lower MAE) increased as the
number of samples in y increased. In this simulation, we observed that our
proposed method performed best at low compression ratios (with the number of
samples more than 5). As the compression ratio increased, the performance of
proposed method decreased and its MAE was higher compared to that of OMP
and CVX programming, which indicates that the proposed method performed
less well than OMP and CVX programming. This decrease in performance can
be seen as the failure of the proposed method to converge to the correct solution
as the number of constraints becomes smaller and is no longer sufficient to
converge to the correct solution.

T
—-© actual

{| =% proposed

: oMmP i

—% CVX programming

m====s================@
SESSSTESESSEEESSSEESE

3
)

£
p.

05

Figure 4 Reconstruction accuracy illustration of the three algorithms. The
proposed method and OMP had the best accuracy, while CVX programming had
some offset in nonzero and zero elements.

4.2 Performance as Function of Coherency of Sensing Matrix

OMP has been known to perform badly at high coherency of A. The proposed
method, on the other hand, is expected to perform better since it does not process
the iteration column-wise as in OMP. Instead, it views the reconstruction
problem geometrically. This experiment was done to assess the capability of both
algorithms and CVX programming as a function of coherency.

We used a similar setup as in the previous experiment (see Section 4.1) but
adjusted the third column of A4 using the second column with the following
assignment:

as « ua; + (1 —pas (20)
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In other words, the value of the third column is modified by taking influence
from the second column. Here, u# (0<u<1I) performs as coherency control.
Increasing the value of u corresponds to a higher coherency in A4 since the third
column becomes similar to the second column. In this particular simulation we
ran the coherency tests under low and high compression ratios, represented by a
10 X 12 matrix and a 6 X 12 matrix of 4 respectively.

-%p-- Praposed
0.45 G
--¥-- C\X_programming

043
.
[
0.25
w
< j 2
- :
% 5% ¥
015 Wt
. TR
01— il s £ ..’.""f < x i g
R e —x
0.05- b ol v 3
0- " S -7

samples

Figure 5 The performance of the three reconstruction methods for amplitude
accuracy as indicated by MAE (lower MAE means better accuracy). The proposed
method has a better slope and in practice performs best at a number of samples
greater than 5.

The simulation results are depicted in Figures. 6(A) and (B). As can be observed
in both figures, the proposed method had best accuracy at low to moderately high
coherency (less than 0.6). OMP, on the other hand, already suffered at low
coherency and got worse at higher values. It is interesting to note that CVX
programming performed uniformly, relatively independent to the coherency of 4.
The simulation results show that the proposed method performs better than OMP
in the presence of coherency in sensing matrix 4 at either low or high
compression ratios. The proposed method also has better performance compared
to the CVX programming method at low to medium value of coherency.
However, the proposed method’s performance decreases as coherency increases,
while CVX programming is not sensitive to coherency, hence, at coherency
values greater than 0.8, CVX programming performs better.
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Figure 6 (A) Performance comparison between the three CS reconstruction
algorithms as a function of base coherency of matrix A, which is a 10X 12
matrix. (B) The simulation results using sensing matrix A, which is a 6 X 12
matrix.

4.3 Data Interpolation of DJIA Index

The Dow Jones Industrial Average (DJIA) index reflects the average transaction
volume on the stock market of thirty large publicly owned companies in the
USA. DIJIA is one of the most influential index indicators for the US market.
Normally, the data are reported at the beginning of every month. We tested the
proposed algorithm using the DJIA for the period of January 2006 to October
2015, which corresponds to 119 data. In Figure 7(A), the solid line shows a
graph of the DJIA index over this 119-month period.

Previous research [29] indicates that the DJIA dataset can be modeled using
fractional Brownian motion, which is characterized by the 1/ £ function, where

fis frequency and H is the Hurst parameter. In other words, the DJIA dataset has
decaying frequency components in the frequency domain. This phenomenon
suggests that the DJIA dataset is sparse in the frequency domain, thus the CS
method can be employed for reconstruction of random data missing in the DJIA
index. In Fig. 7(A), the dash line shows the trend data of DJIA using its first ten
frequency components. To simulate the missing data, we selected a compression
matrix A4 of size M X N such that there was only one element of 1 in each row of
A, while these values of 1 appeared randomly over the columns of 4. By this
arrangement, we obtained the compressed y to be a random down-sample of x
(Figure 7(B)). For the reconstruction of missing data, we used the discrete cosine
transform (DCT) instead of the discrete Fourier transform (DFT) to get real-
valued frequency coefficients. Figure 8(A) shows the DCT coefficient plot of
DJIA. The decaying trend of the coefficients of this particular dataset can be

estimated using «/ /7 with @ = 640.03 and H = 1.8576 (the dash line in Fig.
8(A)).
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Figure 8(B) shows the energy percentage of the DJIA dataset using the first ten
DCT coefficients. As can be seen in this figure, the first ten coefficients (K = 10)
already represent about 85% of the total energy of the signal. The energy
contribution of the next coefficients does not significant anymore. For example,
at K = 20, only about 5% energy is added from the previous K = 10.
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Figure 7 (A) The DJIA index from January 2006 to October 2015 (solid line)
and its trend using the first ten frequency components (dash line). (B) The original
DJIA data and its random down-sampled version using a 1:2 ratio.
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Figure 8 (A) DJIA’s DCT coefficients and the 1/f approximation function.

(B) The energy percentage of the DJIA dataset using the first ten DCT

coefficients.

Using the proposed method, we reconstructed x under the assumption that x
consists of only 10 low-frequency components (10 harmonics) and 20 low-
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frequency components on x (20 harmonics). The reconstruction results are shown
in Figure 9. It is interesting to note that both assumptions had values close to the
original x. The reconstruction using a 10-harmonics assumption, however, had
incorrect estimates on x at deep slope values (at time around 40) due to limited
frequency components, thus it was unable to reconstruct high-frequency
components in the deep slope part of signal. The reconstruction using a 20-
harmonics assumption was successful in reconstructing this deep slope.

Figure 10 shows a comparison of the reconstructed data using proposed method,
CVX programming, and OMP on the DJIA randomly down-sampled data. In this
figure, it can be seen that the proposed method can reconstruct the missing data
with a good fit, about similar to the reconstructed data from CVX programming.
OMP on the other hand has correct tracking on the data trend, but it consistently
deviates from the correct values in the form of spikes around the correct values.
The down-sampling ratio in this simulation was 2:3.

. . |
—— Actual data |

1.8 — {--¢- Proposed method with 10 harmonics|+ — —

""" Proposed method with 20 harmonics|!

T T T |
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|

|

I
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Figure 9 DIJIA data and their reconstruction result using the proposed method
under 10- and 20-harmonics assumption.

— - —
: : mmm Actual data
—v— Proposed method
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Figure 10 DIJIA data and its random down-sampled data reconstruction using
the proposed method, CVX programming and OMP.
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5 Conclusion

A CS reconstruction algorithm was presented based on a geometrical
interpretation of the minimization of /;-norm in the solution of CS equation 4x =
v. The basic principle of this method is the fact that a point M that is produced by
convex combination of the vertexes of the polytope produced by the intersections
of Ax = y and ||x||; = k) has a norm that is smaller than the previous k on the
vertexes. The selection of equal weights for each component in convex
combination leads to the physical interpretation that point M is the weight point
of the polytope. Unlike OMP, the proposed method has better robustness in high
coherency environments. Compared to convex optimization this method offers
simpler computation. This method offers more choice when selecting a CS
reconstruction algorithm, especially for applications that need a balance between
accuracy and speed. Given these advantages, the proposed method works only
for real-valued signals. It is necessary to generalize this method beyond the
geometrical interpretation so that it provides the capability to solve
reconstruction problems of complex-valued signals.
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