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Abstract. This paper introduces continuous-like linear operators on bilinear
spaces as a generalization of continuous linear operators on Hilbert spaces. It is
well known that the existence of the adjoint of a linear operator on a Hilbert
space is equivalent to the operator being continuous. In this paper, this result is
extended to the class of linear operators on bilinear spaces. It is shown that the
existence of the adjoint of a linear operator on a bilinear space is guaranteed if
and only if the operator is continuous-like.
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1 Introduction

Let F be a field and V be a vector space over the field F. A bilinear form on V is
a map that assigns any pair elements of V, (V,w) to an element of F, denoted by
[v,w], which is linear with respect to each variable, v and w. In this article, a
bilinear space is a vector space equipped with a non-degenerate bilinear form.
An example of bilinear spaces that are massively utilized in the study and
development of algebraic system theory are the spaces of truncated Laurent
series (see for example [1,2]).

A subclass of the class of bilinear spaces that is greatly developed is the
subclass of inner product spaces over the real field R. Considering the number
of results in the area of inner product spaces, it is of interest to be able to
generalize those results to bilinear spaces. In previous studies, we have been
able to generalize the Riesz representation theorem to the class of linear
functionals of bilinear spaces [3]. This triggered the question whether the result
on inner product spaces regarding adjoint operators on inner product spaces
could also be extended to the class of linear operators on bilinear spaces, which
was the goal of this study.

In the class of finite dimensional spaces, the existence of the adjoint of any
linear operator is guaranteed without any additional condition. In contrast, for
the underlying spaces being infinite dimensional, particularly on infinite
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dimensional Hilbert spaces, the existence of the adjoint of any linear operator is
guaranteed if and only if the linear operator is continuous or if and only if it is
bounded. Meanwhile, the concepts of norm and topology are not relevant to
bilinear spaces. How can this be generalized to bilinear spaces?

This article identifies a necessary and sufficient condition in terms of closed
subspaces for a linear operator on a Hilbert space being continuous. The finding
leads to the introduction of the continuous-like concept for linear operators on a
bilinear space as the generalization of the continuous notion of linear operators
on a Hilbert space. Finally, it is shown that a necessary and sufficient condition
for the existence of the adjoint of a linear operator on a bilinear space is that the
linear operator is continuous-like.

2 Continuous-like Operators

In this section we introduce the continuous-like notion of a linear operator on a
bilinear space as a generalization of the continuous notion of linear operators on
a Hilbert space. For that, we will first investigate an equivalent condition for the
continuity of any linear operator on a Hilbert space that enables us to do the
generalization. From now on, what we mean with an inner product space or a
Hilbert space is always over the real field R.

Let H be a Hilbert space. We have the norm and topology on H induced by the
inner product on H. A subset S C H is called closed if its complement H\S is an
open set. Further, a closed subspace can be identified using its double
orthogonal complement. Let S be a subspace of H. The orthogonal complement
of S, denoted by S+, is the set of all vectors in H that are orthogonal to S,

St={v eH: {v,s)=0 forall s €S}

This set forms a subspace. The double orthogonal complement of S, denoted by
St contains the original set S. It is a well-known fact that the closeness
property of the subspace S is equivalent to S*+ =S [4, p. 335]. This fact
inspired the formulation of closed subspaces in bilinear spaces (see e.g. [1,2]).

Let V be a bilinear space over a field F with the associated bilinear form
denoted by [-,-]. Two vectors v,w € V are called orthogonal, written as v L
w,if [v,w] = 0 holds. Two subsets of V, say X and Y, are called orthogonal,
denoted by X LY, if any element of X is orthogonal to any element of Y. The
orthogonal complement of a subset S € V is the set of all vectors that are
orthogonal to the set S, denoted by S*. A subspace S € V is called closed if it
is equal to its double complement, that is if S** = S holds.
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Continuity is a fundamental concepts that provides significant advantages in the
development of various areas of mathematics. In the field of inner product
spaces, the continuity property has led to the development of the class of
bounded operators on Hilbert spaces that forms a subalgebra. The results related
to bounded operators on Hilbert spaces are huge, including their applications to
various areas of mathematics. One of them is the connection among three
notions: continuity, bounded operators, and adjoint operators. Let f be a linear
operator on a Hilbert space H. A linear operator on H is called the adjoint f,
denoted by f*, if the following condition holds:

forevery v,w € H {(f(v),w) = (v, f*(w)) @)

Theorem 2.1[4] Let f be a linear operator on a Hilbert space H. The following
statements are equivalent.

The linear operator f is continuous.
The linear operator f is bounded.

There exists f * a unique linear operator on H such that the condition in Eq. (1)
holds.

Bilinear spaces can be considered as a generalization of inner product spaces.
From this perspective, we would like to obtain a result which can be considered
as an extension of Theorem 2.1 to the class of bilinear spaces. The question that
immediately rises is: What do we mean with a linear operator on a bilinear
space being continuous? Investigation to answer that question leads to the
following equivalent condition for continuity of a linear operator on a Hilbert
space associated with closed subspaces.

Theorem 2.2 Let f be a linear operator on a Hilbert space H. Then f is
continuous if and only if for every S € H, closed subspaces of H, the subspace

f71(S) = {v € H: f(v) € S}isalso closed.

Proof. It is obvious that if f is continuous then for any S closed subspace of H,
the subspace f~1(S) is also closed. Hence, we only need to prove the sufficient
condition for f being continuous. Let the following condition hold:

f71(S) is closed for any closed subspace S.

We will show f being continuous. Referring to Theorem 2.1 it is enough to
show that the adjoint operator of f is existence. That is we will show that for
every w € H there exists a unique vector z € H such that for any v € H the
following equation holds:

(f(),w) = (v,2z) @)
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Letw € H.If (f(v),w) =0 for all v € H we have the unique vector z = 0.
Suppose the functional A,,(v) = (f(v),w) for all v € H is not the zero
functional. It is linear with the kernel

Ker(4,,) = {v €H: {f(v),w) =0}

{veH: (fv),y)=0forall y € Span{w}}

{v eH: f(v) € Span{w}'}

f~ (Span{w}*)

Since Span{w}" is a closed subspace, we have Ker(4,,) is closed. As a result
Ker(4, )t = Span{u} for some u € H with u # 0. Let a= A, (u) =

(f(w),w) # 0, b=(u,u) # 0 and denote z = (%) u. Then, for every v € H

we have v = v; + au for some v; € Ker(4,,) and a € R. Then Eq. (2)
holds since

(f),w) = (f(w), w) +(f(aw),w) = a{f (u),w) = aa
(v,z) = (vy,2)+ {(au, z) = a(u, (%) u)y=a (%) (u,u) = aa.

Thus, we have obtained that there exists a z € H such that for all v € H Eq. (2)
holds. Then, applying the property that the inner product is nondegenerate, we
obtain that z that satisfies Eq. (2) for all v € H is unique.

The sufficient and necessary condition in Theorem 2.2 is weaker than the
original condition for continuity. Particularly it only concerns the collection of
all closed subspaces compared to the collection of all closed subsets.

It is understood that Theorem 2.2 is a small result and the proof is also
elementary and applies a number of well-known properties. Nonetheless, the
proposed novelty of Theorem 2.2 is that it gives a new perspective on the
continuity in inner product spaces, providing a proper means to generalize the
concept of continuity in inner product spaces to bilinear spaces, as stated in the
following definition. Further, considering the impact of continuity in the
development of mathematics, it is natural to expect that the following
continuous-like concept will influence the development of the study of linear
operators in bilinear spaces.

Definition 2.3 Let V and W be two bilinear spaces over a field F. A linear map f
from V to W is called continuous-like if for any closed subspace S © W, the
subspace f~1(S) ={v €V |f(v) €S} isalso closed.

Remarks:
1. Tt is obvious that any continuous linear mapping in Hilbert spaces is
continuous-like.
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2. Let V be a bilinear space over a field F. It is easy to show that the zero
operator and the identity operator in V are continuous-like.

3. LetV and W be two finitely dimensional bilinear spaces over a field F. Then
any linear mapping from V into W is continuous-like since any subspace on
a finitely dimensional bilinear space is closed.

4. As a result of the definition, the closeness of the kernel is a necessary
condition for a continuous-like linear mapping in a bilinear space. That
means a linear mapping in bilinear spaces is not continuous-like if its kernel
is not closed.

Example 2.4 Let F be a field, n be positive integer, and F™ be the vector space
over F consisting of n-column vectors with components in F. On F" we can
define a non-degenerate bilinear form, defined as [u,v] = vtu for all u,v €
F™. A truncated Laurent series space F™((z™1)) is the vector space over F

consists of all truncated Laurent series of the form f = Y%, f; z~/ with f; €

F™ and for some Kk integer. The space F™((z™1)) can be formed as a bilinear
space with bilinear form is defined as the following:

fgl= Y [fyug]  forall f.g € F(G™).

Jj=—00
Note that the space F((z71)) actually can be considered as a field with the
product operation as an extension of the product between two polynomials.
From this perspective we can consider the space F™*((z™1)) equal to F((z~1))"
and it is an n-dimensional vector space over the field F((z~1)). Further, we

obtain [f,g] = (g'f)_, forall f,g € F((z™H))".

1. Let A be an nxn matrix with components in F((z71)). The linear
operator on F((z'l))n, say ¢, that is defined as ¢(f) = Af for any f €
F ((z‘l))n, is a F-linear mapping. ¢ is continuous-like since it is also
F((z™1))-linear mapping.

2. Now we will construct a linear operator on F"((z'l)) that is not
continuous-like. Let f = Y7, f; z7J € F*((z™')) for some integer K.
The element f is said to have finite support if the number of non-zero
coefficient f; # 0 is finite. Let U be the set of all finite support elements of
F"((Z_l)). It is easy to show that U is a proper subspace of F"((z‘l)).
Hence there exists a nonzero subspace, say V, such that F ”((z‘l)) =U®

V. Let us define T the projection operator on the subspace V along the
subspace U, thatis T(u + v) = v forallu e Uandv € V.
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We will show that the operator projection T is not continuous-like. Consider
that the set S = {0} is a closed subspace. If we can show that T~1(S) is not
closed, then T is not continuous-like. The set T~2(S) nonetheless is Ker(T) and
according to the definition of T we have T~1(S) = U. Let T = {ey,--,e,} S
F™ be the standard basis of F™ We have that e;z~/ €U for all i=
1,--,nand j € Z,where Z is the set of integers. Consider that for any f €
T=1(S)* we have [f,e;z/]=0foralli=1,--,nand j € Z.As aresult, f
= 0. Therefore, we obtain T~1(S)* =0 which implies T 1(S)** =
F*((z™1)). Meanwhile T71(S) =U # F*((z7))since it is a proper
subspace. Thus T~1(S) is not closed. As a consequence, T is not continuous-
like.

3 Adjoint Operators

In this section we will investigate a characterization of an adjoint operator on a
bilinear space in terms of continuous-like as an extension of Theorem 2.1. For
that, first we will review the term adjoint mapping/operator in a bilinear space.

Let f:V — W be a linear mapping from bilinear space V to bilinear space W
over a field F with each bilinear form is [—, —], and [—, =]y, respectively. A
mapping from W to V is called an adjoint of f, denoted by f*:W -V, if the
following condition holds: for every v € Vandw € W

[f ), wlw = [v, f* W)y 3

By using the nondegenerate property of the corresponding bilinear forms, it can
be shown that if an adjoint mapping of a linear mapping exists, then it is linear
and unique. Therefore, a more crucial problem is: When will an adjoint
mapping of a linear mapping f be existing?

The following theorem is one of the main results of this article and it can be
thought of as a generalization of Theorem 2.1 to the class of linear maps on
bilinear spaces.

Theorem 3.1 Let V and W be two bilinear spaces, and f be a linear mapping
from V to W. Then the existence and uniqueness of the adjoint of f are
guaranteed if and only if the linear mapping f is continuous-like.

Proof. Let there exist a unique linear mapping, f*, the adjoint of f, such that
Eq. (3) holds for every v,w € W. We will show that f is continuous-like. Let
S C© W be a closed subspace, i.e. S+ =S. We obtain

frES ={vev|fes}
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={v ev] fv) s*4}

={v eV|[f(w),ylw =0 forall y € S*}

={v eVl] vf"O)Iy =0forall y €5}

= frsh*t
Since the orthogonal complement of any subspace is closed, we conclude that
f71(S) is closed. Thus f is continuous-like.

Conversely, suppose f is continuous-like. Let w € W. We will identify a unique
vector as the map of w by f*, denoted by f*(w), such that Eq. (3) holds for all
v €V.If w € f(V)! we define f*(w) = 0 then Eq. (3) holds for all v € V.
Suppose w & f(V)*. In this case the mapping

A,W) =[f(w),w]y forall v €V

is a non-zero linear functional on V with Ker(4,,) = f~(Span{w}'), hence it
is closed. According to Riesz representation theorem [3, Theorem 2.3 p. 35]
there exists a unique vector z € V such that the following equation holds:

A, W) =[fW),z]ly forall v evV.

Define f* (w) = z. Then Eq. (3) holds for all v € V. As a result we obtain a
mapping f* that satisfies Eq. (3) forallv € V and w € W. It is routine to show
that such mapping is linear and unique.

Example 3.2 We continue our discussion of two linear operators in Example
2.4. The first linear operator is ¢, which is defined as ¢ (u) = Au forallu €
F((z"1))" for some A, an n X n matrix with components in F((z™1)). We
already obtained that ¢ is continuous-like. Hence, according to Theorem 3.1 the
adjoint of ¢, denoted by ¢, is guaranteed and is unique. To obtain the
mapping of any element by ¢, let us consider the relation between ¢ and ¢".
Forany u,v € F((z™1))" we obtain

[u, ¢ ()] = [¢p(w), v] = [Au,v] = (v*(Aw))_; = (V' ADw)_,
= ((A'v)'u)_, = [u, Atv].

Since the above equation holds for all u in F((z71))", then according to the
nondegenerate property of the bilinear of F((z71))"we obtain ¢ *(v) = Atv
for all v € F((z71))™. The second operator is the projection operator T. We
already obtained that T is not continuous-like. Hence, according to Theorem 3.1
the adjoint of T does not exist.

Finally, we closed this section with the following corollary.



Continuous-like Linear Operators on Bilinear Spaces 257

Corollary 3.3 Let V be a bilinear space over a field F and

B(V) ={f:V - V|f linear and continuous — like }.

Then B (V) 1is a subalgebra of the algebra consisting of all linear operators on
V.

Proof. Let V be a bilinear space over a field F. According to Theorem 3.1 the
set B(V) defined in the corollary is equal to the set of all linear operators on V
whose adjoints exist. Since for any f,g € B(V) and a € F, by using the
nondegenerate property of the bilinear form we can show that

(@f) =af", (f+9" =f"+g, and (fg)" = g°f"

We obtain that B(V) is closed under addition, product, and scalar product.
Hence, B(V) is a subalgebra of the algebra of linear operator on V.

Note that from Corollary 3.3 we can conclude that sums, compositions, and
scalar products of continuous-like linear operators are continuous-like.

4 Concluding Remarks

In this study we were able to identify the necessary and sufficient condition for
linear operators on Hilbert spaces being continuous in terms of closed
subspaces. This fact gave us the opportunity to introduce the continuous-like
notion of linear mappings on bilinear spaces. We obtained that the class of
continuous-like linear mappings on bilinear spaces is nonetheless the class of
linear mappings that have adjoint mappings. As a consequence, the class of
continuous-like linear operators on a bilinear space forms a subalgebra. It is
interesting to see in how far the structure of the subalgebra of bounded linear
operators on a Hilbert space can be extended to the subalgebra of continuous-
like operators on a bilinear space.

As a last note, let us consider the result in [5] by Wéjcik concerning equivalent
conditions for orthogonal preserving operators on norm spaces equipped with
sesquilinear forms. One of the conditions is the operators being bounded, which
is equivalent to being continuous. That result and the current development of
continuous-like notion in bilinear spaces trigger the question if that
characterization of orthogonal preserving operators can be extended to bilinear
spaces.
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