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Abstract. A new procedure of space-time modeling through the Invers of 

Autocovariance Matrix (IAcM) is proposed. By evaluating the IAcM behaviors 

on behalf of the Generalized Space-Time Autoregressive (GSTAR) process 

stationarity, we may find an appropriate model to space-time data series. This 

method can complete the Space-Time ACF and PACF methods for identifying 

space-time models. For study case, we apply the GSTAR models to the monthly 

tea production of some plantations in West Java, Indonesia. 
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1 Introduction 

An observation at a certain spatial location and time may be commonly 

influenced by previous-time observations in that location and its neighboring 
locations. For example,  the oil production of a certain well during this month 

can be affected by the production during the previous months at that same 

location and at the neighboring wells; the number of today’s criminal actions in 
a city may be influenced by the number of criminal actions that happened 

during the previous days in that city and the nearest cities; or, then the number 

of vehicles at a certain intersection within a certain time range is influenced by 

the number of vehicles at that location and related intersections during the 
previous time ranges. These examples are the portrait of space-time analysis 

problems. 

Also, we would like to be able to forecast the oil production of that particular 
well during the coming months; how many criminal actions will happen in the 

city; and how many vehicles can be found at that particular intersection during 

the next range times. Knowing these forecasts, people in charge may take the 
necessary actions. We can do forecasting after obtaining the appropriate model. 

One way of doing this is space-time modeling. 

In this paper we proffer a new procedure for space-time modeling, especially 

for Generalized STAR (GSTAR) modeling. For this purpose, we modify the 
Pfeifer and Deutsch three stage-iterative procedure for space-time modeling 
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(see [1]), which consist of identification, parameter estimation and diagnostic 

checking. We improve model selection by checking the stationarity of possible 

models using the IAcM. The IACM has been studied for autoregressive models 

of time-series by Rahardjo in 2005 [2]. We will explain these processes briefly 
in Section 3. Before that, we will describe the GSTAR model and spatial weight 

matrices in Section 2. In Section 4, we employ real data of the monthly tea 

production in some plantations in West Java. Finally Section 5 contains remarks 
and conclusions.  

2 Generalized STAR Model 

The observation at site i and time t, Yi,t , which is a realization of a stochastic 
process, follows the GSTAR model if it can be declared as a linier combination 

of past observations for both time and spatial indices. A (N×1)-dimensional 

centered process vector  1 2t ,t ,t N ,tY ,Y , ,Y 'Y   follows the GSTAR(

1 2   pp; , ,..., ) model if Yt can be presented as, 

  
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with k is time autoregressive order (k = 1, 2, ..., p), ℓ is spatial autoregressive 

order (ℓ = 0, 1,..., λk), and et is (N×1)-dimensional vector of errors that assumed 

have i.i.d normal distribution. The W(ℓ) is ℓ-th order weight matrix which the 

main diagonal is zero and the sum of each row is one, and 𝚽𝑘ℓ is (NN) 
diagonal matrix which presents autoregressive parameter of k-th time order and 

ℓ-th spatial order for each location i = 1, 2, ..., N. We write 

𝚽𝑘ℓ = diag  𝜙𝑘ℓ
(1)

, 𝜙𝑘ℓ
(2)

, … , 𝜙𝑘ℓ
(𝑁) . 

 

Figure 1 Spatial order/lag in two dimensional radius system. Sites in same 

’category of distance’ are in the same spatial order. The category of distance is 

classified by a fixed radius value d0. 
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The ℓ-th spatial order shows the ordered neighbors of a number of spatial 

locations, while spatial weight  
ijw shows the influence of location j on location 

i in spatial lag ℓ-th. The locations which are closer to the reference location (s0) 

will have a smaller spatial lag, which is distinguished by fixed distance d0 

(Figure 1). Since the configuration in each spatial lag order is distinct, different 
spatial lags may give different weight matrices. 

2.1 Spatial Weights 

There are three types of spatial weight: binary, uniform, and non-uniform. 
Binary weight matrix has values 0 and 1 in off-diagonal entries; uniform weight 

is determined by the number of sites surrounding a certain site in ℓ-th spatial 

order; and non-uniform weight gives unequal weight for different sites. The 
element of the uniform weight matrix is formulated as, 

 

1
   is neighbor of  in -th order

0  others

( )( )

iij

, j i
nw

,


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
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
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( )

in  is the number of neighbor locations with site-i in  -th order. 

The non-uniform weight may become uniform weight when some conditions 

are met. One method in building non-uniform weight is based on inverse 
distance, which is used by Borovkova in 2008 [3]. The weight matrix of spatial 

lag k is based on the inverse weights 
1

1+𝑑𝑖𝑗
 for sites i and j whose Euclidean 

distance 𝑑𝑖𝑗  lies within a fixed distance range, and otherwise is weight zero.  

2.2 Stationarity 

GSTAR models are invertible since the vector of observations tY  could be 

expressed as a weighted linear combination of past observations with weights 

that converge to zero. In order for a GSTAR model to represent a stationary 

process, one in which the covariance structure of tY  does not change with time, 

certain conditions should be met. We obtain the stationary conditions of the first 

and second order of GSTAR models using its IAcM by the following 

propositions. 

Proposition 1  Suppose that (NN)-dimensional matrix 𝚨 = 𝚽𝟏𝟎 + 𝚽𝟏𝟏𝐖 and 

IAcM, 𝐌𝟏 = 𝐈𝑁 − 𝐀′𝐀, is invers of autocovariance matrix whose elements are 
the parameters of GSTAR(1;1) process. If the determinants of all the leading 

principal submatrices of IAcM are positive, then GSTAR(1;1) model is 

stationary.  
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Proof. The IAcM is built from the sum square of errors from all past 

observations until the first observation. For (N×1)-dimensional vector of 

observations, 𝒀1 =  𝑌1,1, 𝑌2,1, … , 𝑌𝑁,1 ′ , we can write 𝐘1′𝐌1𝐘1 =  𝐞𝑡 ′𝐞𝑡
𝟏
𝒕=−∞  

which has positive and finite values. The 𝐌𝟏 is symmetric and since 𝐘1′𝐌1𝐘1 >
0 then 𝐌𝟏 is positive definite matrix [4]. It implies the determinants of all 

leading principal submatrices of 𝐌𝟏 are positive. Furthermore, since 𝐌𝟏 and the 

covariance structure is do not change with the time, the GSTAR(1;1) process is 

stationary. Q.E.D. 

The IAcM is a symmetric positive definite matrix. For GSTAR(1; 1) models 

with 1  0, we may define 
 

1

1

0











A Φ W , and the IAcM is, 

 𝐌𝟏 = 𝐈𝑁 −𝐀′𝐀  (2) 

Proposition 2  GSTAR(1; 1) models are stationary if the determinants of all 
the leading principal submatrices of M1 are positive. 

Proof. Similar to Proposition 1, suppose Y1 is a (N×1)-dimensional vector of 

observations, 𝒀1 =  𝑌1,1, 𝑌2,1, … , 𝑌𝑁,1 ′. The 𝐘1'𝐌𝟏𝐘1 is the collection of 

squared errors from all past observations until the first observation. This means 

that 𝐘1'𝐌𝟏𝐘1 always has positive value and is only equal to null if 𝐘1 is a null 
vector. We write, 

 𝐘1′ 𝐈 − 𝐀′𝐀 𝐘1 > 0 

  𝐘1 
𝟐 −  𝐀𝐘1 

𝟐 > 0 

  𝐀𝐘1 
𝟐 <  𝐘1 

𝟐 

The absolute eigen value of A must be less than one, which means that the 

GSTAR(1; 1) process is stationary. Q.E.D. 

The stationarity condition in Proposition 1 and 2 meets the stationarity 

condition that was formulated by Wei [5] for Vector AR models. Furthermore 

for GSTAR(2; 1, 2) models, we define (NN)-dimensional matrix 

 

0

k

k k





A Φ W





, k = 1, 2 and the (2N2N)-dimensional  IAcM is, 

 𝐌𝟐 =  
𝐈𝑁 − 𝐀𝟐

′ 𝐀𝟐 −𝐀𝟏
′ −𝐀𝟐

′ 𝐀𝟏

−𝐀𝟏 − 𝐀𝟏
′ 𝐀𝟐 𝐈𝑁 −𝐀𝟐

′ 𝐀𝟐
   (3) 

Proposition 3  GSTAR(2; 1, 2) models are stationary if the determinants of 
all the leading principal submatrices of its IAcM are positive. 
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Proof. Using a similar procedure as with Proposition 2 and by letting 𝐘2 =

 𝑌1,1, … , 𝑌𝑁,1, 𝑌1,2, … , 𝑌𝑁,2 ′, we may consider Proposition 3 as proved. Q.E.D 

 

These stationarity conditions can provide a significance contribution to the 

process of identifying possible GSTAR models. 

3 Identification Process GSTAR Model 

A GSTAR model is a generalization of a STAR model with respect to its 

parameters. In a STAR model, the parameters are assumed to be the same for 
every location, while a GSTAR model assumes that different locations have 

different parameter values. Although both have different assumptions 

concerning the parameters, they still have the same procedures in doing the 
identification process of space-time models. 

3.1 Space Time ACF and PACF  

The STACF and STPACF had been employed by Pfeifer and Deutsch [1] in 
identifying Space-Time Autoregressive Moving Average (STARMA) models. 

Since STARMA and GSTAR models have many things in common, STACF 

and STPACF may be applied in identifying GSTAR models. The STACF is 
obtained by standardizing the autocovariance function of lag time s for 

observations with lag spatial k-th and ℓ-th,  k s . Autocovariance function in 

matrix notation is 

      
1 '

( ) ( k )

k s t ss E
N


  
  

W Y W Y



 (4) 

Since equation (4) is a scalar then we write 

        
1 1( ) ( k ) ( ) ( k )

k t t ss tr E ' tr s
N N

  W W Y Y W W Γ
 

  (5) 

The estimator for  sΓ  is  
1










T s

t t s

t

'ˆ s
T s

Y Y
Γ  and by substituting it to (5) then 

estimated covariance ,  lk
ˆ s holds. Furthermore the STACF, which is defined 

as,  
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can be estimated by using the sample covariance,  
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with 
 

L


as the spatial lag operator of spatial order  -th, so that 
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the STPACF for spatial order λ is the last coefficient of 𝜙ℎℓ  (ℓ = 0,1,…, λ and h 

= 1,2,…) in space-time Yule Walker equation as defined in [1]. 
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 (7) 

Space time model selection may be obtained by observing autocorrelation 
behavior among time lags and spatial lags which are represented by the cut off 

and tail off pattern of the STACF and STPACF. 

3.2 IAcM as a Part of GSTAR Modeling 

In this paper we propose a new procedure for GSTAR modeling by involving 

stationarity investigation through the IAcM characteristics as presented in 

Proposition 1 to 3. This stage is executed after identifying the model through 
the STACF and STPACF, and estimating the parameters. We see it as a first 

stage of model validation in addition to checking the mean square of residuals 

as the second stage. The residuals are obtained from the differences between 

real and estimated observations. The model with the minimum mean square of 
residuals will be recommended as the fitting model.The procedure of GSTAR 

modeling is shown in the following flow chart (Figure 2).  
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This procedure combines and advances the three-stage iterative procedure for 

space-time modeling of Pfeifer & Deutsch [1] and time-series modeling of Box 

& Jenkins [6]. The new aspect of this procedure is the process stationarity check 

with the IAcM 
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Figure 2 The new procedure of space time autoregressive modeling. 

4 Case Study 

For our case study we used the data of the monthly tea production of six 
plantation sites (N = 6) in West Java, Indonesia (Purbasari, Santosa, Sedep, 

Papandayan, Cisaruni, and Dayeuh Manggung), from January 1992 to 

December 2010 (T = 228). We executed space-time modeling by using Matlab 
and started by centering the processes in order to obtain the null mean of the 

processes. The coordinates of the observed plantations and the distances 

between them are displayed in a symmetric (N×N)-dimensional matrix of which 

the main diagonal is null (see Figure 3). 

From Figure 3 we can draft the numbers of spatial lag order and its members, 

and also the weight matrices for each spatial lag. We can build the range of 

spatial lag based on the fixed radius system in Figure 1 with a fixed d0 of 0.4 
km. The interval distance (0, 0.4] is categorized as spatial lag 1, (0.4, 0.8] as 

spatial lag 2, and so on until (0.4(-1), 0.4] as spatial lag ℓ. For this case we got 

four spatial lags for eachweight matrix (uniform, euclidean-uniform and 

binary). The appropriate weight matrices for the first and second spatial lag are 
shown in Table 1. 
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Site 

PUR  

/ 1 

SAN 

/ 2 

SED 

/ 3 

PAP 

/ 4 

CIS  

/ 5 

DAM 

/ 6 

PUR 0.000 0.320 0.750 1.140 1.484 1.401 

SAN 0.320 0.000 0.447 0.832 1.185 1.237 

SED 0.750 0.447 0.000 0.391 0.738 0.943 

PAP 1.140 0.832 0.391 0.000 0.364 0.901 

CIS 1.484 1.185 0.738 0.364 0.000 0.863 

DAM 1.401 1.237 0.943 0.901 0.863 0.000 
 

(a) (b) 

Figure 3 (a) The coordinate of six observed plantations, and (b) the distances 

(in kilometre, km). PUR is Purbasari, SAN is Santosa, SED is Sedep, PAP is 

Papandayan, CIA is Cisaruni, and DAM is Dayeuh Manggung. 

Table 1 The weight matrices for spatial lag ℓ-th, ℓ = 1,2,3,4. For ℓ = 0, the 

weight matrix 𝐖(0) = 𝐈𝑁 . The sum of each row must be equal to one with a null 
main diagonal. 
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 
 
 
 
  
   

0 0 0 0 0.491 0.509

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

0.482 0.518 0 0 0 0

 
 
 
 
 
 
 
  
   

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

 
 
 
 
 
 
 
  
   

The appropriate weight of the matrices in Table 1 has similar values. This is 
acceptable because they have the same criterion for determining the spatial lag 

interval. This happens because there are only six observed sites, which should 

be categorized into four levels of spatial authority (p = 4). Since there is 
subjective judgment involved in building the weight matrices, we should pay 

more attention to the rules, especially when the ratio between the number of 
locations and the number of spatial lags is close to 1:1. In these cases, it will be 

more difficult to obtain appropriate and obedient weight matrices. 
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The first stage in GSTAR modeling is to identify possible models by computing 

the STACF and STPACF values as in equation (6) and (7). These values 

arepresented in Table 2. 

Table 2 The STACF and STPACF values for several time and spatial lag. 

STACF STPACF 

spatial lag 

time lag 

0 1 2 3 4 spatial lag 

time lag 

0 1 2 3 4 

            1 0.4697 0.3102 0.3315 0.1989 0.3329 1 0.3578 -0.0086 0.1975 -0.0984 0.0634 

2 0.1554 0.006 0.0105 -0.0339 0.0401 2 0.0191 -0.0385 -0.2131 0.1136 -0.0886 

3 0.0699 -0.0779 -0.0912 -0.1194 -0.0532 3 0.1688 0.076 -0.088 -0.0345 -0.0845 

4 -0.0102 -0.1232 -0.0859 -0.0821 -0.0374 4 -0.1734 -0.0166 -0.0854 0.0221 0.1226 

5 0.0651 -0.0633 0.0083 0.0136 0.0473 5 0.0486 -0.0135 0.1478 -0.0569 -0.0015 

6 0.0408 -0.0868 -0.004 0.0331 0.0372 6 -0.0401 -0.0529 -0.0472 0.0905 -0.045 

7 0.0032 -0.1322 -0.0478 0.0236 -0.0063 7 0.0488 -0.0038 -0.0297 0.1858 -0.1577 

8 -0.0343 -0.1714 -0.1305 -0.0862 -0.0808 8 0.036 -0.0311 -0.0982 0.0292 -0.0511 

From Table 2, the STACF values for all spatial lags already have cut off after 
first time lag. This alert us to consider Moving Average (MA) factors in the 

models. But if we plot those values for larger time lags, it seems like sinusoidal 

graphs are coming out. This means that we can temporarily neglect the MA 
factors and more focus on the STPACF values that represent autoregressive 

terms. This is also because this paper discusses about the GSTAR modeling. 

The STPACF values are cut off after the first and second lag time for zero, 
second, and third spatial lag. From these lags (both spatial and time) we obtain 

some possible models, namely: GSTAR(1;0), GSTAR(1;1), GSTAR(1;3), 

GSTAR(2;1,1), GSTAR(2;1,3), etc.  

The next step is parameter estimation with the least squares method. To execute 
this step we should rearrange the GSTAR model to be a linear structure, 

Y=X+e, with 𝐘 =  𝐘1
′ , 𝐘2

′ , … , 𝐘𝑁
′  ′, 𝐗 = diag 𝐗1, 𝐗2, … , 𝐗𝑁 , 𝚽 =

 𝚽1
′ , 𝚽2

′ ,… ,𝚽𝑁
′  , and 𝐞 =  𝐞1

′ , 𝐞2
′ , … , 𝐞𝑁

′  ′. For each location we have linear 

structure 𝐘𝑖 = 𝐗𝑖𝚽𝑖 + 𝐞𝑖 , 𝑖 = 1,2, … ,𝑁, with 𝐘𝑖 =  𝑌𝑖 ,𝑝 , 𝑌𝑖,𝑝+1 , … , 𝑌𝑖,𝑇   ′, 

𝐞𝑖 =  𝑒𝑖,𝑝 , 𝑒𝑖,𝑝+1, … , 𝑒𝑖,𝑇   ′, 

𝚽𝑖 =  𝜙10
(𝑖)

, … , 𝜙1𝜆1

(𝑖)
, 𝜙20

(𝑖)
,… , 𝜙2𝜆2

(𝑖)
, … , 𝜙𝑝0

(𝑖)
, … , 𝜙𝑝𝜆𝑝

(𝑖)  ′, and 

1

1

1

( )( )(0) (1) (0) (1)

1 1 1 0 0 0

( )( )(0) (1) (0) (1)

1 1 1

( )( )(0) (1) (0) (1)

1 1 1



  
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 
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 

  
 
 
 
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  

       
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i ,p i ,p i ,p i , i , i ,

i ,p i ,p i ,p i , i , i ,

i

i ,T i ,T i ,T i ,T p i ,T p i ,T p
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X  

with 𝑉𝑖,𝑡
(𝑘)

=  𝑤𝑖𝑗
(𝑘)

𝑌𝑗 ,𝑡
𝑁
𝑗=1  for 𝑘 ≥ 1 and 𝑉𝑖,𝑡

(0)
= 𝑌𝑖,𝑡  (see [3]).  
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For  𝐗′𝐗  nonsingular, the least square (LS) estimator may be obtained by 

 𝚽 =  𝐗′𝐗 −1𝐗′𝐘  (8) 

The LS estimator is unbiased with minimum variance. 

After obtaining the LS estimators, we can construct the matrix of parameters 

(A) and the IAcM for checking the process stationarity. The IAcM determinant 

values of possible models with 1
st
, 2

nd
 time lags and 0

th
, 1

st
, 2

nd
, 3

rd
 spatial lag 

are presented in Figure 4. 

Based on Proposition 1 to 3, the model that produce at least one negative value 

of the leading principal submatrix determinant value in the IAcM, will be 

eliminated from appropriate model candidates. Looking at Figure 4, we notice 
that models of which at least one of its leading principal matrix has negative 

determinant are: GSTAR(2;0,2), GSTAR(2;0,3), GSTAR(2;1,3), 

GSTAR(2;3,1), GSTAR(2;3,2), and GSTAR(2;3,3). We may leave these 
models and move forward to the next stage, diagnostic checking (Model 

Validation 2).   

In diagnostic checking stage, the residuals of rest possible models are 

compared. Models with least mean square of residuals (MSR) is recommended 
as the appropriate models. MSR is formulated as, 

 MSR =
1

𝑁𝑇−𝑝
 𝐘𝑡 − 𝐘 𝑡 ′ 𝐘𝑡 − 𝐘 𝑡  (9) 

𝐘 𝑡  is a (NT×1)-dimensional vector of estimated observations that follows 

GSTAR(𝑝; 𝜆1, … , 𝜆𝑝 ) process. 

Table 3 MSR of possible GSTAR(𝑝; 𝜆1, … , 𝜆𝑝 ) models, p = 1, 2. There are no 

patterns in MSR values as the order becomes larger or smaller. 

GSTAR(𝑝; 𝜆1, … , 𝜆𝑝 ) Models 

Order MSR  Order MSR  Order MSR 

(1;0) 98.6716 (2;0,1) 96.6197 (2;1,2) 89.9513 

(1;1) 89.8531 (2;1,0) 87.3273 (2;2,1) 88.3205 

(1;2) 88.0149 (2;2,0) 86.7508 (2;2,2) 88.9287 

(1;3) 82.5222 (2;3,0) 81.9143 (2;2,3) 90.6263 

The model with the smallest MSR value, GSTAR(2;3,0), can be proposed as the 
most appropriate model for this case and be employed to execute the short 

forecasting. Since there are some models that have close MSR values, we will 

perform an additional step. We let the forecasting stage serve as an advanced 

checking diagnostic stage. For efficiency, we choose the five possible models 
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that produced the lowest MSR from Table 3. Those models are: GSTAR(2;3,0), 

GSTAR(1;3), GSTAR(2;2,0), GSTAR(2;1,0), and GSTAR(1;2). 

 

(a) 
(b) 

  
(c) 

Figure 4 The determinant values of all the leading principal matrices of the 

IAcM tend to be smaller as the dimensions of the leading principle matrices 

become larger, (a) possible models with 1st time lag, (b) possible models with 2nd 

time lag and one of spatial lag is 0, and  (c) others possible models with 2nd time 

lag. 
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For the forecasting stage, we prepared the ten latest data, collected from January 

to October 2011. In the advanced checking diagnostic stage, we estimate these 

data using the five selected models in order to obtain what we call forecast-

estimated observations. These forecast-estimated observations will be compared 
with real observations using (9), so that we have the MSR of the forecast-

estimated observations. The results of the MSR can be seen in Table 4. 

Table 4 MSR of forecast-estimated of five possible appropriate GSTAR 

models. The smallest MSR is given by GSTAR(2;3,0) model. 

GSTAR MSR 

(1;2) 175.3843 

(1;3) 139.4374 

(2;1,0) 155.788 

(2;2,0) 141.6173 

(2;3,0) 108.9293 

 

 

Figure 5 QQ Plot of Sample Data versus Standard Normal Data for each site i, i 

= 1,2,...,6 (from top left to bottom right). Quantile-quantile plot of the sample 

quantiles of residuals versus theoretical quantiles from a normal distribution. 
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Based on the smallest MSR value, we have GSTAR(2;3,0) as the most 

appropriate model. For convenience, we display a quantile-quantile plot of 

residuals data versus normal distribution data in Figure 5. Since the plot close to 

linear, we may say that the residuals have normal distribution. 

In order to do forecasting of (t+1)
th

 observations, the GSTAR(2;3,0) may be 

presented as the following equation.  

 𝐘 𝑡+1 =  𝚽 10 + 𝚽 11𝐖
(1) + 𝚽 12𝐖

(2) + 𝚽 13𝐖
(3) 𝐘𝑡 + 𝚽 20𝐘𝑡−1    (10) 

where 𝐘 𝑡+1 is a estimated (N×1)-dimensional vector of observations at time 

t+1, 𝐘 𝑡+1 =  𝑌 1,𝑡+1, 𝑌 2,𝑡+1, … , 𝑌 𝑁,𝑡+1 ′, 𝚽 1ℓ is a estimated (N×N)-dimensional 

matrix of autoregressive parameters for the first time lag, with spatial lag 

ℓ = 0,1,2,3. The ℓ = 0 shows the influence of a location on itself.  

 

Figure 6 Plot of forecast-estimated observations using GSTAR(2;3,0) model. 

for each site i, i = 1,2,...,6 (from top left to bottom right). 
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The GSTAR(2;3,0) model tells us that a location will be influenced by itself 

until the second time lag, while its neighbors can exert influence during the first 

time lag within three spatial lags. 

The plots of the 28 latest observations and the 10 next forecasted observations, 
the total MSR of which is 108.9293, are shown in Figure 6. The forecast-

estimated plots display similar patterns and are close enough to the real 

observations. 

5 Conclusions 

An IAcM is suggested to be used in selecting the approriate space-time models 
in completion of STACF and STPACF values. Using an IAcM decreases the 

subjectivity of the judgment about which models are appropriate. In the case 

study of the monthly tea production of six plantations in West Java, we found 
that GSTAR(2;3,0) is the most appropriate model. We also observed that three 

types of matrices (uniform, euclidean, and binary) will have the same influence 

on the modeling process, since the ratio between the number of spatial lags and 

observed locations is close to one. They are supposed to have different results if 
the number of observed locationsis much higher than the number of observed 

spatial lags. 
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