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Abstract. A C- algebra is the algebraic form of the 3-valued conditional logic,
which was introduced by F. Guzman and C.C. Squier in 1990. In this paper,
some equivalent conditions for a C- algebra to become a boolean algebra in
terms of congruences are given. It is proved that the set of all central elements

B(A) is isomorphic to the Boolean algebra %S(A) of all C-algebras S,, where a

€ B(A). It is also proved that B(A) is isomorphic to the Boolean algebra ‘BR(A)
of all C-algebras A,, where a € B(A).
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1 Introduction

The concept of C-algebra was introduced by Guzman and Squier as the variety
generated by the 3-element algebra C={T,F,U}. They proved that the only
subdirectly irreducible C-algebras are either C or the 2-element Boolean algebra
B ={T,F}[1,2].

For any universal algebra A, the set of all congruences on A (denoted by Con A)
is a lattice with respect to set inclusion. We say that the congruences &,¢ are

permutable if Bop = @o. We say that Con A is permutable if o =@o8
for all 8,¢<Con A. It is known that Con A need not be permutable for any C-
algebra A.

In this paper, we give sufficient conditions for congruences on a C-algebra A to
be permutable. Also we derive necessary and sufficient conditions for a C-
algebra A to become a Boolean algebra in terms of the congruences on A. We

also prove that the three Boolean algebras B(A), the set of C-algebras B, and

the set of C-algebras By, are isomorphic to each other.
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2 Preliminaries

In this section we recall the definition of a C-algebra and some results from
[1,3,5] which will be required later.

Definition 2.1. By a C -algebra we mean an algebra < A A,v, "> of type
(2,2,1) satisfying the following identities [1].

(@ xX'=x;

(b) (xAy) =x'vy,

©) XA(YAD)=(XAY)AZ

(d) xA(yvzZ)=(XAY)Vv(XAZ);

) (Xvy)Az=(XAZ)v(X AYAZ);
) xvxAy)=x;

@ XAYVYAR)=(YAX)V(XAY).

Example 2.2. [1]:

The 3- element algebra C={T, F, U} is a C-algebra with the operations A,v
and ' defined as in the following tables.

X | ¥ AT F U v |T FuU
T F T|T F U T [T T T
FlT FIF F F F |T F U
ulu Uujuu u Uu |U U U

Every Boolean algebra is a C-algebra.

Lemma 2.3. Every C-algebra satisfies the following laws [1,3,5].
@) xAx=Xx;

(b) xAy=xAX'vy)=(X'vVvYy)AX;

©) xv(X'AX)=X;

d) XvX)AYy=(XAY)V(X AY);

(&) (XvX)AX=X;

H xvxX=xXvx

(@) Xvyvx=xvy;

(h) xAX'Ay=XAX;

) xA(yv)=(xXAy)vx

The duals of all above statements are also true.
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Definition 2.4. If A has identity T for A (thatis, XAT =T Ax=x for all
X € A), then it is unique and in this case, we say that A is a C -algebra with T.
We denote T "by F and this F is the identity for v/ [1].

Lemma 2.5 [1]: Let Abea C -algebra with Tand x,y e A. Then

(i) xvy=F ifandonlyif x=y=F
(i) if xvy=T then xvx =T.

(i) xvT =xvX

(iv) XAF=xAX.

Theorem 2.6. Let < AA,v,’> be a C-algebra. Then the following are
equivalent [6]:

(i) AlisaBoolean algebra.

(i) xv(yax)=x, forall x,yeA.

(i) xAy=yax forall x,yeA.

(iv) (xvy)ay=y, forall x,yeA.

(v)  xv X isthe identity for A, forevery xe A.

(viy xvx =yvy, forall x,yeA.

(vii) A has aright zero for A.

(viii) forany x,y e A, there exists a € A suchthat xva=yva=a.
(ix) forany x,yeA,if xvy=y,then yAx=x.

Definition 2.7. Let A be a C-algebra with T. An element X< A is called a

central element of A if X X' =T . The set of all central elements of A is called
the Centre of A and is denoted by B(A) [5].

Theorem 2.8. Let A be a C-algebra with T .Then <B(A),A,v, "> is a Boolean
Algebra [5].

3 Some Properties of a C -algebra and Its Congruences

In this section we prove some important properties of a C-algebra and we give
sufficient conditions for two congruences on a C-algebra A to be permutable.
Also we derive necessary and sufficient conditions for a C-algebra A to become
a Boolean algebra in terms of the congruences on A.

Lemma 3.1. Every C-algebra satisfies the following identities:
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(i) xvy=xv(yax);
(i) xAy=xa(yvX).

Proof. Let A be a C-algebraand x,y € A Now,
XVYZXV(X'AY)ZXV(XAYAX)Z[XAXVX)]VIX AYAX A(XVX))] =
XAXVX)VIXAYAX AXVX)] = [XA XV X)) VX AYA XV X)]=(XVY)
AXVX) =XV (yAX). Similarly x Ay =XA(yvX).

Lemma 3.2. Let Abea C-algebraand x,ye A Then xvyvXx =xvyvy"
Proof. Let A be a C-algebra and x,y € A By Lemma 2.3[b],[f] and Lemma
3.1, we have xvyvX =xv({(YAX)vy)=[xv(y Ax)]vy=(XxXvy)v
y=XVvYvy=xvyvy.

Lemma 3.3. Let A be a C-algebra with T,x,ye Aand xAy=F. Then
XVY=YyVvX

Proof. Suppose that xAy=F. Then F=xAy=XA(XVvYy)=(XAX)v
(XAY)=(XAX)VE =xAX. now xvy=Fv(Xvy)=XAY)Vv(XVvYy)
=(XvXVY)AX'vyvxvy) (By Def 21) =(xvy)a(X'vyvx) (By
Lemma 2.3[g]) =(XAX)Vv(YyvX)=Fv(yvXx)=yvXx

In [6], it is proved that if A is a C-algebra with T then B(A)={acA|
ava' =T} is a Boolean algebra under the same operations A,v,’ in the C-
algebra A. Now we prove the following.

Theorem 3.4. Let A be a C-algebra with T and a,be A such that
avbeB(A). Then acB(A).

Proof. Let A be a C-algebra with T and a,b € A suchthat avbeB(A). Then
T=(avb)v(avb) =(avb)v(a' Ab)

=(avbva)a(avbvb’) =(avbva)a(avbva’) (By Theorem 3.2)
=avbva'.

Therefore,

T=avbva’ (1)
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Now, ava' = (ava)aT
= (ava)a(avbva') (by()
= (an(avbva))v(@a@a(avbva))
= av(a'a(avbva’))
= av(avbva') (ByLemma 2.3[b])
= avbva'=T.

Hence a e B(A).

The converse of the above theorem need not be true. For example, in the C-
algebra C,FeB(C) but FvU =U ¢B(C). We have the following

consequence of the above theorem.

Corollary 3.5. Let A be a C-algebra with T,a,be A and aAb e B(A). Then
aeB(A).

Proof. Let aAnbeB(A). Then we have, (anb) eB(A)=a'vb' eB(A)
—a’ e B(A) =ac B(A).

In [1], it is proved that if A is a C-algebra, then 8, ={(p,q) | XA p=XAQq} is
a congruence on Aand 6, N6, =0, . In[6], if A is C-algebra with T then 6,

is a factor congruence if and only if x  B(A). They also proved that QX,Hy are

permutable congruences whenever both x,y e B(A). Now we prove some
important properties of these congruences.

Theorem 3.6. Let A be a C-algebra with T and a,b < A. Then we have the
following (i) ,,, =6, .., (i) 6,26, <6, .

Proof. (i) (x,y) €6,
= anbAax=asbay
—=bArarbax=baanbax
—=bArasax=baanax
:>(X1 y) € Hb/\a

Therefore 8, =6,., . Similarly, 4

) <0, ., - Hence =0

arb — “bra-
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(i) Let (X,y) €0, 06,. Then there exists Z< A such that (x,z) €6, and
(z,y)€6,. Thus bAx=bAz and anz=any. Now, arbax=asbna

z=anbranz=arbrary=ansbnay. Therefore, (X,y)e€6, . Thus
Ha © eb - HaAb'

In the following we give an example of a C-algebra G without T in which the
Con A is not permute.

Example 3.7. Consider the C-algebra G={a,,a,,a,,,,a,} Where a =(T,U),
a, =(F,U), aa=U,T), a,=(,F), a =(U,U) under pointwise operations
inC.

X X' A a a, a a, a;
a a, a aq a, ds ds ds
a, & &, & &, &, &, &,
a3 a, a3 as as a a, as
a, | & a, | a, | a, | a | a | a
as as as as as as as as

v 4 &, a3 a, as

4 4 4 4 4 4

&, 4 &, as as as

a3 a3 a3 a3 a3 a3

a, a; a5 ay a, a5

as as as as as as

This algebra (G,v,A,") is a C-algebra with out T.
Let A = diagonal of A. Then we have the following:
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0, ={(x.y)la,Ax=a Ay}
=A{(ay,a,).(a,, ), (a5, ;). (3, 8;)(a;, ), (85, &) }
0, = Au{(a,2,).(a,,8). (35, 8,). (8, 2,)(as, ;). (3, 85)}

Now, 0, *0, =AU0, L0, @8 (@.8,)(@8). (3. 3,)}

0a3 © Hal = A o eal o Haa, U{(aZ’ a4)’ (a2 ' a@)(al’ a3)’ (al’ a4)}
Therefore 6'31 0933 #* 033 0061 .
Theorem 3.8. Let A a C-algebra with T and a<B(A). Then for any
beAd,, 6 permuteand 6,04 =6, , .

Proof. Let A be a C-algebra with T and a<B(A). By Theorem 3.6,
0,°6,c0,, Now let (pgea, Then arbap=arbarg=branb
Ap=brarbarg=brasnp=baang. Consider, r=(arp)v(@nq).
Now anr=anf(anp)v@ Aq)l=(@anp)v(ara' Arq)=(arp)v(F Q)
=(arp)vF=anap. Therefore (r,p)ed, = (p,r)€b,. Now, bar=
ba[(anrp)v(@ Agq)]l=[braanp]vibra’ aAql=(branq)v(bra AQ)
=ba((@arg)v@rq)=ba((ava)arq)=ba(T Aq) (since aecB(A)
=baq. Therefore (9,r)e6, = (r,q)<6,. Thus (p,q)€b,06,. Hence
6°6,=6,,. Thus 6 00, is a congruence on A and hence 6,,6, are

permutable congruences and hence 6,06, = 6,060, =6, .

Corollary 3.9. Let A be a C-algebra with T and a,be A. Then i)
avbeB(A)=6,6 =0, i) arbeB(A)=6,°6,=0,,.

Proof. i) We know that if a\/ b e B(A) then a e B(A) and hence by the above
theorem @, 06 =4 o6, =, , . Similarly, we can prove ii).

Let A be a C-algebra. If Con(A) is permutable, then A need not be a Boolean
algebra. For example, in the C-algebra C, the only congruences are A,V and
they are permutable. But C is not a Boolean algebra. Now we give equivalent

conditions for a C-algebra to become a Boolean algebra in terms of congruence
relations.
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Theorem 3.10. Let (A v, A,") be a C-algebra with T. Then the following are
equivalent. (i) Let (A v, A,’) be a Boolean algebra. (i) & N8, =A for all
xeA (i) 8, =A forall xeA.

vX'

Proof. (1) = (2): Let A be a Boolean algebra and X e A. Let (p,q) €8, M6,.
Then xAp=xAaq and X Ap=xAg. Now, p=(XvX)Ap=(XAp)v
X AQ)=(XAQ) V(X AQ)=(XvX)Aq=0. Thus 8 NG, A Therefore
6 .MG, =A. Since 6,0, =0,,., we get (ii)=(iii). (iii)=>(i): Suppose
6., =A forall xe A We prove that 8,06, = AxA Let (p,g) e AxA.
Write t=(xA p)v (X' AQ). Now, XAt=XA(XAP)V (X AQ)=(XAP)
VIXAX AQ) = (XAP)V(XAX)=XA(PVX)=XAP. Also, X At=X' A
((XAPIVX'AQ)) =(X'AXAPIVX' AX' AQ) =X AX)V (X' AQ)) = (X" A(X
vQ)) =X AQ. Therefore (p,t)ed, and (t,q)ed,. Thus (p,q)e€b, 0,.
Hence we get 6,06, = AxA Also ,N0, =0, =A Thatis 6, and 6,
are permutable factor congruences. Therefore, by Theorem 2.6, we have
x e B(A). Thus A=B(A) and hence A is a Boolean algebra.

4 The C-algebra S,

We prove that, for each xe A, S, ={xvt|te A} is itself a C-algebra under

induced operations A, and the unary operation is defines by (Xvt)" =xAat".

We observe that Sy need not be a subalgebra of A because the unary operation in
S, is not the restriction of the unary operation on A. Also for each X € A, the

set A ={XAt|te A} is a C-algebra in which the unary operation is given by

(x /\t)* = X At". We prove that the B(A) is isomorphic to the Boolean algebra
By of all C-algebras S, where aeB(A). Also, we prove that B(A) is

isomorphic to the Boolean algebra By, of all C-algebras A,,a e B(A) .

Theorem 4.1. Let< A/A,v,'> be a C-algebra, xe Aand S, ={xvt|te A}k
Then<S,,A,v,*> is a C-algebra with X as the identity for \/, where Aand

v are the operations in A restricted to S, and for any XvteS, , here (Xvt)’
is Xxvt'.



212 G.C. Roo & P. Sundarayya

Proof. Let t,r,se A. Then (Xvt)v(xvr)=xv(tvr)eS, and (xvt)A
(xvr)=xna(tvr)eS,. Thus v,~ are closed in S,. Also " is closed in S,.
Consider (xvt)” =xv(xvt) =xv(X' At)=xvt. Now [(xvt)A(xv)]
=[XvEAAD] =xv (' vr)=xvt' vxvr =(xvt) v(xvr)". Now, consi-
der [(th)v(X\/r)]/\(XvS)=X/\[(t/\r)/\s]=Xv[(t/\s)v(t'/\r/\s)]
:Xv(t/\s)va(t'/\r/\S):[(th)/\(Xvs)]v[(th')/\(er)/\(XvS)]:

[0xvt) AV )]V ]xv)” A(xvr) A(xvs)] The remaining identities of a
C-algebra also hold in Sy because they hold in A. Hence, S is itself a C-algebra.
Also X is the identity for \/because xvXxwvt=xvt=xvtvx. Here xv x' is
the identity for A.

Theorem 4.2. Let A be a C-algebra. Then the following holds.
(i) S,=S, ifandonlyif x=y;

(i) S,NS, =3,

(iii) S, NS, =S, ;

(V) (S)uy = Suy -

Proof. (i) Suppose S, =S,. Since X=XvXeS3, =S, and y=yvye
S,=S,. Therefore x=yvt and y=xvr for some t,reA. Now,
X=yvt=(yvtvy)a(yvyvt)=(xvy)alyvx)=(yvx)a(xvy)=
(XvrvxX)A(XvXxvr)=xwvr=y. The converse is trivial. (ii) Suppose
teSXmSy. Then t=Xvs=yvr for some s,re A Now, t=XvXvVvSs
=xvt=xvyvreS . (i) S,NS, =S, . by (ii). Since xvx' =x"vXx

we have S, ,, =S, MS,. Hence S, NS, =S, . (iv) (S,),,, ={Xvyvt|
teS}={xvyvxvrire Ab={xvyvr|re A}=S,,

Theorem 4.3. Let A be a C-algebra with T and x € A, then the mapping «, :
A— S, defined by ¢, (t) =XVt forall t e A is a homomorphism of Ato S,
with kernel 6, and hence A/6, =S,.
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Proof. Let t,re A Then ¢, (tvr)=xvtvr=xvtvxvr=¢,/(t)ve,(r)
and a, (t') =xvt' =(xvt) =(a (t))". Clearly, o, (tAr)=a,(t)Aa(r).
Also a,(T)=xvT =xvX, which is the identity for A in S, Therefore o,
is a homomorphism. Hence by the fundamental theorem of homomorphism
AlKera, =S, and Kera, ={(t,r) e AxA| e, (t) =, (N}={(t,r) € A< A|
Xvt=xvr}={(t,r) e AxA|X At =X'Ar}d, (by Lemma 2.3 [b]) = and
hence A/G, =S,

Theorem 4.4. Let A be a C-algebra with T and a e B(A), then A=S, xS,.

Proof. Define a:A—S,xS, by a(x)=(a,(X),a, (X)) for all xeA
Then, by Theorem 4.3, « is well-defined and ¢ is a homomorphism. Now, we
prove that ¢ is one-one. Let x,y € A. Then a(X) = a(y) = (e, (X), (X))
=(a,(y). o, (y)=(avx,a'vx)=(avyavy)=avx=avy and
avx=avy. Now x=Fvx=(ara)vx=(avx)a(@vx)=(avy)a
(a’vy)=y. Finally, we prove that ¢ is onto. Let (x,y)eS,xS,. Then
x=avt, and y=a'vr for some t,reA. Therefore, avXx=x,
avy=avavy=Tvy=T and a'vx=T,a'vy=y. Now,
a(xny) = (a.(XAY),ay(XAY))

(av(xay),a v(xay))
((avx)a(avy),(@vx)a(@wvy)

(XAT, T AY)

(X, y).

Therefore, ¢ is onto and hence ¢ is an isomorphism. Therefore A=S, xS,

Lemma 4.5. Let A be a C-algebra. Then for a,b e A:

(i) avb=bwvaifandonlyif S,, =S, NS,

(i) S, =Sup(S,,S,} in the poset ( {S,|xe A} C), then anb=bra
The converse is not true.
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Proof. (i) Suppose that avb=bwva Then clearly S,,<=S,NS,. By
Theorem 4.2(ii) S,NS, S, . Hence S, , =S, NS, . Conversely assume
that S,,, =S, NS,. Clearly avbeS, , =S, NS,. Therefore avbeS =

avb=bvt for some te A Now bva=bvavb=bvbvt=bvt=
avhb. (ii) Assume that a,be A and S, =Sugs,,S,} Then S, =S,,,

and hence anbeS, , =S, . Therefore arb=(bnra)vt for some te A
Now (bAra)v(anb)=(bra)v((bra)vt)=(baa)vt=anb. Similarly
we can prove that (aab)v(bara)=baa. Hence anb=baa The
converse need not be true, for example for the C-algebra C,
S, ={U} S, ={T} and UAT =T AU . But S,,;(=S,) is not an upper

bound of {S, S;}.

Now we prove B, ={S,|a€B(A)} is a Boolean algebra under set
inclusion.

Theorem 4.6. Let <AA,v,> be a C-algebra with T. Then
B n ={S,|a€B(A)} is a Boolean algebra under set inclusion.

Proof. Clearly (‘BS(A),Q) is a partially ordered set under inclusion. First we
show for a,beB(A), S, is the infimum of {S,,S,} and S, is the
supremum of {S,,S,} for all a,beB(A). Let a,beB(A). Then
arb=baa and avb=Dbwva. Hence by the above Lemma 4.5, S, , is the
infimum of {S,,S,}. Let teS,. Then t=awvx for some xeA. Now
t=avx=(an(avh)vx=(an (bva)vx=(arb)vavxes,,. Similarly
S, =S, =S, Therefore S, is an upper bound of S,,S,. Suppose S, is
an upper bound of S,,S;.teS, . Then t = (aAb)v x for some xe A. Now
t=(arb)vx=(avx) A(@vbvx)=(@vx)a(bvavx)eS, (since
avxeS, cS;, bvavxeS, S, and S, is closed under A). Therefore
S, is the supremum of {S,,S,}. Denote the supremum of {S,,S,} by
S, Vv S, and the infimum of {S,,S,} by S, AS;. Now S; AS, =S, , =S,
and SpvS, =S

Fra = Og . Therefore S; is the least element and S; is the
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greatest element of (Bg,),<) . Now for any a,b,ce B(A), (S,VvS,)AS, =
S = Stavanine = Stave) ¥V Spvey = (S AS) V(S AS). Also S, AS, =
S.w =S; and S,vS, =S,  =S.. Therefore (B ,,<) is a complimented
distributive lattice and hence it is a Boolean algebra.

(anb)ve (ave)

Theorem 4.7. Let A be a C-algebra with T Define ¢:B(A) —>DB5, by
#(a) =s, forall acB(A). Then ¢ is an isomorphism.

Proof. Let a,beB(A). Then @(anb)=S,,, =S, AS, =@(@)Ap(b).
p(avb) =S,y =S, vS, =p@veb) ¢@)=S,=C,)=k@)).
Clearly ¢ is both one-one and onto. Hence B(A) = B .

In [3] we defined a partial ordering on a C-algebra by x <y if and only if
yAXx=x and we studied the properties of this partial ordering. We gave a
number of equivalent conditions in terms of this partial ordering for a C-algebra
to become a Boolean algebra. In [4] we proved that, for each xe A,
A ={seA|s<x} is itself a C-algebra under induced operations A,v and

the unary operation is defined by s™ = x A s we also observed that A, need not
be an algebra of A because the unary operation in A, is not the restriction of
the unary operation. For each x € A, we proved that A is isomorphic to the
quotient algebra A/6, where 6, ={(p,q) € AXA|XA P=XAQ}. We can

easily see that the C-algebras S,, A, are different in general where x € A

Now, we prove that the set of all A,'s where a<B(A) is a Boolean algebra

under set inclusion. The following theorem can be proved analogous to
Theorem 4.6.

Theorem 4.8. Let A be a C-algebra with T. Then B, :={A, [acB(A)} isa
Boolean Algebra under set inclusion in which the supremum of

{A..A}= A, and the infimum of {A,, A}=A ..

The proof of the following theorem is analogous to that of Theorem 4.7.
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Theorem 4.9. Let A be a C-algebra with T Define f:B(A)—>B,, by
f(a)=A, forall acB(A). Then f isan isomorphism.

The following corollary can be proved directly from Theorems 4.7 and 4.9.

Corollary 4.10. Let A be a C-algebra with T. Then B, B(A) and B,
are isomorphic to each other.
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