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Abstract. The Janus tyrosine kinases (JAKs) have shown great promise as
therapeutic protein targets in the treatment of cancer and inflammation diseases.
This study used pharmacophore modeling to identify potential inhibitors of Janus
kinase 3 (JAK3). A pharmacophore model was developed based on a known
JAK3 inhibitor (1NX) and was employed to search for potential JAK3 inhibitors
against Indonesian herbal compounds. Among 28 hit molecules that were
identified and subjected to a molecular docking protocol against JAK3, the three
compounds that had the highest affinities toward JAK3 were camelliaside B, 3-
O-galloylepicatechin-(4beta-6)-epicatechin-3-O-gallate, and mesuaferrone B.
These were then each subjected to a 50-ns molecular dynamics (MD) simulation.
Analysis of RMSD and RMSF values indicated that the three compounds
reached stability during the MD simulation. Interestingly, all three compounds
had lower binding energies than 1NX against JAK3, as predicted by the MM-
PBSA binding energy calculation.

Keywords: Janus kinase; MM-PBSA; molecular dynamics simulation; pharmacophore
modeling; virtual screening.

1 Introduction

Janus kinases (JAKs) are members of the family of intracellular tyrosine
kinases. They are phosphotransferases that bind to cytokine receptors, including
interleukins, interferons, and many other cytokines [1]. Janus kinases, along
with their signal transducer and activators of transcription proteins (STAT),
mediate transduction of signaling cascades through the JAK-STAT-PI3K-
MAPK pathway, which is crucial for the differentiation, proliferation and
survival of a variety of cell types [2-5].
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The JAK family consists of 4 isoforms, namely JAK1, JAK2, JAK3 and Tyk2.
They have similar biochemical properties due to high sequence homologies.
While JAK1, JAK2, and Tyk2 are predominantly found in a variety of cell
types, JAK3 is chiefly expressed in hematopoietic, myeloid and lymphoid cells
[6]. More specifically, JAK3 is limited to the gamma chain (yc) subfamily of
cytokines in both humans and mice [3,4,7,8]. Thus, inhibition of JAK3 is a
promising approach for the elimination of autoimmune and inflammatory
diseases [9]. Various JAK3 inhibitors have been researched, including
tofacitinib and ruxolitinib [8,9]. However, several adverse effects, including
increased risk of infection, lymphoma, cancer and tuberculosis, were noted in
the clinical use of these inhibitors, which are attributable to the inhibition of
multiple JAKs due to the high extent of structural conservation of the ATP
binding site of JAK [1,3,4,10,11]. Thus, the search for more selective and
potent JAK3 inhibitors is being actively pursued, both in academic institutions
and pharmaceutical companies. Here we report a pharmacophore model of
JAK3, which was used to screen the Indonesian Medicinal Plants Database
(HerbalDB) [12]. Pharmacophore-based in silico screening was combined with
a molecular docking simulation to identify novel potential JAK3 inhibitors from
the Indonesian herbal database. Further, a molecular dynamics simulation was
performed to confirm the stable interaction between the ligands and JAK3.
Finally, the Molecular-Mechanics Poisson Boltzmann Surface Area (MM-
PBSA) method was utilized to assess the affinity of the hit molecules.

2 Method

2.1 Structure-based Pharmacophore Modeling

A pharmacophore model was built by employing the structure of a carboxamide
(INX) complexed with JAK3, which was retrieved from Research
Collaboratory for Structural Bioinformatics PDB ID 3ZEP [13]. Validation of
the pharmacophore model was conducted by performing screening against 100
actives taken from BindingDB [14] and 7500 decoys retrieved from the DUD-E
database [15]. This task was completed by using the LigandScout Advanced 4.3
software [16]. The validated model was employed to identify potential
inhibitors of JAK3 against the Indonesian Medicinal Plants Database
(HerbalDB) [12], which contains 1379 molecules.

2.2 Molecular Docking, Molecular Dynamics and MM-PBSA
Energy Calculation

The obtained hit molecules from pharmacophore screening were then subjected
to molecular docking simulation to the JAK3 protein. A set of polar hydrogens
was added and Kollman charges were assigned to the JAK3 in the receptor
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preparation step. This task was performed using AutoDockTools 1.5.6. Each
ligand was then docked into an active site of JAK3, which was established
based on the grid box, which was the center of the native ligand (INX)
coordinates. The molecular docking was carried out by using the iDock
software [17]. Each docked ligand conformation was analyzed and visualized
using Discovery Studio Visualizer 2016 and the three molecules with the best
binding affinities and with good interaction were subjected to a molecular
dynamics simulation.

The molecular dynamics simulation was performed for each four ligands
complexed with JAK3 employing the AMBER16 package [18-21]. The leap
module was used to prepare each complex using the ff14SB force field [22] for
the protein and the GAFF force field [23], and AM1-BCC [24] for the ligands.
The protein was protonated according to the default Amber procedure. The
minimization, heating and equilibration steps, the MM-PBSA calculation and
the parameters employed are described in our previous publication [21]. The
production MD simulation was conducted for 50 ns in NPT ensemble [21].

3 Results and Discussion

The structure of a carboxamide (INX) complexed with JAK3 was adopted for
building the pharmacophore model, which resulted in several pharmacophore
models. From these models, one hypothesis was found, consisting of one
hydrogen bond (H-bond) acceptor, two H-bond donors, and two hydrophobic
features. Figure 1 shows the generated pharmacophore model.

Figure 1 3D pharmacophore model, consisting of one H-bond acceptor (red
dotted lines), two H-bond donors (green dotted lines), and two hydrophobic
(yellow sphere) features.

The pharmacophore model was then validated against 100 actives and 7500
decoys. It was found that the area under curve (AUC) of the receiver operating
characteristic (ROC) curve was 0.52. Meanwhile the calculation of the goodness
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of hit score (GH score) gave a result of 0.76. Both parameters indicated the
validity of the pharmacophore model developed. Figure 2 displays the AUC of
the ROC curve.
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Figure 2 The AUC plot of the ROC curve.

Screening for hit molecules against the Indonesian Herbal Database (HerbalDB)
yielded 28 hit molecules. Molecular docking of each hit molecule into JAK3
gave binding energies between —7.52 and —9.97 kcal/mol. These energy values
are comparable to the binding energy of a docked native ligand (INX) of —8.82
kcal/mol. Further, we selected the three best docked hit molecules for an MD
simulation, 1ie. camelliaside B/Lig2 (E=-9.97 kcal/mol), 3-O-
galloylepicatechin-(4beta-6)-epicatechin-3-O-gallate/lig 10 (E = -9.91
kcal/mol), and mesuaferrone B/Ligl7 (E = —9.74 kcal/mol). Figure 3 shows the
hit structures of the three best docked hit molecules.

A

Lig2/Camelliaside B Ligl0/3-0-Galloylepicatechin-(4beta-6)- Ligl 7/Mesuafarrone B
epicatechin-3-0-gallate

Figure 3 The hit structures of the three best docked hit molecules.

Binding conformations of the hit molecules occurred in the binding site of
JAK3. Lig2 formed five H-bond interactions with Lys830, Cys909, Arg9l11,
Asp967, and Arg953, while Ligl0 formed H-bond interactions with Lys855,
Leu905, Glu903, Lys830, Asp912, Met902, and GIn827. The binding of Ligl7
was also corroborated with H-bonds Cys909, Asp967, and Leu905. Amino acid
residue Cys909 is known as a key active site residue of JAK3. Figure 4 depicts
the binding interactions of each ligand within the binding pocket of JAK3.
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lig2 lig10 ligl7

Figure 4 The binding interactions of Lig2, Lig10 and Ligl7 within the binding
pocket of JAK3.

3.1 Molecular Dynamics Simulations

As the molecular docking method does not consider the physiological condition
for stable interaction of the hit molecules, each three best docked hit molecules
complexed with JAK3 were subjected to an MD simulation. The MD simulation
was carried out for 50 ns to see whether the ligands would retain interaction
with JAK3. The values of root mean square deviation (RMSD) during the MD
simulation run were used to monitor the stability of the complex. Figure 5
shows the RMSD values of the heavy atoms (Ca, C, N, O) of JAK3.
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Figure 5 The RMSD values of the main protein atoms of each JAK3 ligand

system during 50 ns MD accounted for Lig2, Ligl0, Ligl7, and INX, colored
red, green, blue, and purple, respectively.

It is noted that each ligand maintained stable interaction with JAK3. Ligl0
(green) and Ligl7 (blue) had lower RMSD values than INX, which indicates
more stable interactions. All fluctuations of the RMSD values for all ligands
were under 3 A, which can be considered stable conformational changes, during
50 ns.
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The fluctuation of the individual amino acid residues during the MD simulation
was recorded as a root mean square fluctuation (RMSF) plot. Figure 6 displays
the RMSF values for the individual amino acids during 50 ns.
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Figure 6 Plot of RMSF for Lig2, Ligl0, Ligl7 and INX, colored red, green,
blue, and purple, respectively.

The same pattern of amino acid fluctuation was noted in the whole region of
JAK3, which indicates the same binding interaction of the ligands. Overall, the
amino acid residues fluctuated under 3 A, except for those composing the
carboxy and amino ends of the protein, which indicates stable dynamics during
50 ns. Dominant peaks were recorded in the residues of around Asp33
(Asp846), HisS46 (His859), AlalOl1 (Ala919), Aspl59 (Asp977), which
corresponds to loop regions. The higher peak at Ser224 (Ser1048) is associated
with the end of a helix. On the other hand, the amino acid residues involved in
the H-bond interactions over all ligands, including Cys91 (Cys909), showed
more rigid fluctuation, which indicates protein stability induced by ligand
interactions.

Meanwhile, several H-bond interactions of docked conformations were also
retained in the MD simulation. For example, H-bonds between Lig2 and JAK3
occurred with occupancies of 45.73%, 26.81%, 16.04%, and 15.72%, with the
residues of Arg953 (Argl35), Arg911 (Arg93), Lys830 (Lys17), and Asp967
(Aspl49), respectively. Newly formed H-bond interactions with very high
occupancies (97.31 and 90.8%) were recorded, namely with Glu871 (Glu58)
and Glu85 (Glu903), respectively. On the other hand, Ligl0 retained H-bond
interactions with Asp912 (Asp94), Lys830 (Lys17), Glu903 (Glu85), Leu905
(Leu87), GIn827 (GInl14) and Lys855 (Lys42), with occupancies of 44.89%,
39.04%, 37.86%, 28.39, 21.54% and 17.36%, respectively. Newly formed H-
bond interactions with very high occupancy (71.04 %) were recorded with
Glu871 (Glu58) and with moderate occupancy (51.9%) with Arg953 (Argl35).
The binding of Ligl7 maintained H-bond interaction with Asp967 (Asp149)
with 75.72% occupancy, and novel H-bonds were maintained with Arg953
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(Argl35) and Asp912 (Asp94) with 88.25% and 54.88% occupancy,
respectively. Table S1 shows the H-bond occupancies recorded during the 50-ns
simulation.

3.2 Free Binding Energy Calculations

The stable conformation of ligands during the MDs simulation run was then
subjected to the MM-PBSA protocol for free binding energy prediction.
Prediction of binding energy using the MM-PBSA method is widely considered
as more accurate compared to using the docking method. Table 1 shows the
calculated binding affinities from the MM-PBSA method. Interestingly, the free
binding energies of Lig2 (AEpsror = —19.35 £ 7.16), Ligl0 (AEpsToT = —26.55 £
8.13), and Ligl7 (AEpsror = —25.34 + 3.94) were more negative than that of
INX (—16.90 £ 3.04). The binding energy of Ligl7 appeared to be most
negative among them. Negative binding free energy originating from favorable
electrostatic, van der Waals as well as non-polar energies contributes to the
solvation energy.

Tabel 1 MM-PBSA free binding energy for each ligand.

. AEvpw AEpBCAL AEpBsur AEpBTOT
Ligand  AEgre (keal/mol) (keal/mol) (keal/mol) (keal/mol) (keal/mol)
INX —67.65+11.09  —30.53+2.68 85.07+ 10.94 381+£020  —16.90 +3.04
Lig2 -590.40+ 13.19  —49.07£5.09 94.70 + 8.69 5584023  —19.35+7.16
Ligl0 —91.14+11.90  —57.84+5.10 128.89 = 15.77 6464022  —26.55+8.13
Ligl7 ~55.88 4 7.25 —44.37 +3.48 79.91 +7.20 ~5.00+0.13  —2534+3.94

4 Conclusion

Structure-based pharmacophore modelling was performed based on JAK3-1NX
interaction. A pharmacophore hypothesis was built and validated. It was then
used to identify hit molecules in the Indonesian Herbal Database. Twenty-eight
hit molecules were retrieved and then docked into the active site of JAK3 to
reveal their binding interactions. The hit molecules maintained their interactions
with the JAK3 through H-bond and hydrophobic interactions. The three best
hits, i.e. camelliaside B, 3-O-galloylepicatechin-(4beta-6)-epicatechin-3-O-
gallate, and mesuaferrone B, were subjected to an MD simulation, which
showed good stability during 50 ns. Prediction of binding affinities using the
MM-PBSA method showed that the three top hit molecules displayed stronger
affinities than 1NX. The contribution of the van der Waals, electrostatic and
nonpolar energies to the solvation energy interactions were favorable for most
of the three molecules. The present work suggests that these three molecules
may serve as potential inhibitors of JAK3.
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