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Abstract. Ichnofossils are still not used in paleoecological studies, even though 

they are a valuable proxy for paleoecology. This study focused on a semi-

quantitative approach to a number of ichnofabric variables, i.e. ichnofossil 

association, bioturbation index (BI), ichnodiversity (ID), number of behaviors 

(NB), penetration depth (PD), and burrow diameter (DM). It was proved that the 

scores of those variables were low to medium because of the paleoecological 

fluvial-marine transition depositional processes in the Serravallian-Tortonian 

interval in Kutai Basin, Indonesia. This paper contributes an ichnofabric model 

that is visualized as histograms. One histogram shows the most common 

ichnofossil associations found in ichnofabric units, i.e., Ophiomorpha, Skolithos, 

Paleophycus, Planolites, Thalassinoides, and Chondrites. The other histograms 

describe the ichnofabric variables scores for BI, ID, NB, PD, and DM. The 

variables represent low to medium scores, a characteristic of a brackish 

paleoecology at basin-scale, a unique indicator for the fluvial-marine transition 

depositional system. 

Keywords: behavior; bioturbation; brackish; diameter; ichnodiversity; penetration 

depth. 

1 Introduction 

The Serravallian-Tortonian depositional system in Indonesia’s Kutai Basin is 

interpreted as a fluvial-marine transition zone [1]. The paleoecological conditions 

of such a zone are harsh and stressed environments [2]. Lithofacies or biofacies 

variables cannot explain the paleoecological conditions. 

The ichnofabric is a potential paleoecological proxy [3][4], revealing parameters 

such as oxygenation [5], salinity fluctuation [6] and temperature variation [7], 

community structure [8][9], food supplies [10], the way animals get food 

[11][12], sedimentology [13], population strategies, and disturbances [14]. With 
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its help, we can predict the paleoecological conditions of the fluvial-marine 

transition zone. We hypothesized that the ichnofabric variables, i.e. ichnofossil 

association, bioturbation index (BI), ichnodiversity (ID), number of behavior 

(NB), penetration depth (PD), and burrow diameter (DM) would show a low to 

medium score.  

2 Materials and Methods 

An ichnofabric unit is a substrate unit in which some ichnofossils with a certain 

ichnodiversity dominate by specific behavior formed almost simultaneously [14]. 

We observed 640 ichnofabric units from 20 outcrops. The outcrops were in the 

Samarinda Area of Kutai Basin, East Kalimantan, Indonesia (Figure 1), part of 

the Serravallian-Tortonian sequence. 

Figure 2 shows a flowchart of the data processing. Also, the figure shows the 

stratigraphic profile with a tiering diagram, ichnofabric units, 

ichnotaxon/ichnotaxa, and ichnofabric variables, including BI, ID, NB, PD, and 

DM. Statistical methods were applied. Multiple histograms generated from the 

ichnofabric parameters were the most prominent of these results. 

2.1 Ichnofossil Associations 

Spots, dots, and smudges with a circular shape of an elliptical cut are standard 

features of ichnofossils in outcrops or cores. The features are a cross-sectional 

view of cylindrical burrows cut at various angles. Therefore, the cross-sectional 

view should be thought of as a three-dimensional ichnofossil morphology. 

The scheme in Figures 3(a) and 3(b) [16] illustrates the three-dimensional 

morphology of ichnofossils with their circular and elliptical shapes. The three-

dimensional view of an ichnofossil is essential to characterize the general 

morphology, orientation to the bedding surface, and branching, as depicted in 

Figures 3(c) and 3(d). We integrated all of them with the burrow fill (active 

fill/meniscate backfill or passive fill) and the burrow lining. Characterization of 

the burrow fill and the burrow lining is required for the taxonomy of ichnofossils 

[17]. 

If ichnofossils can be detected, then we can recognize the dominant ichnotaxon. 

An ichnotaxon is dominant when its presence is higher than  50% compared to 

other ichnotaxon/ichnotaxa [18]. The dominant ichnotaxon in each ichnofabric 

unit is the basis for naming the ichnofossil association. After that, we give a code 

to the ichnofabric units. For example, the Skolithos association ichnofabric unit 

is coded ‘03-Sk-04’. The code means: 03 is the outcrop name, Sk = Skolithos is 

the dominant ichnotaxon, and 04 is the secondary ichnotaxon (e.g., Paleophycus). 

Figure  SEQ Figure \* ARABIC 3 Ichnofossil cut circular to elliptical shapes in 

outcrops. A) the burrow view cut tangentially at various angles (after [16]). B) 

view of the holes in various orientations (after [16]). Based on figure A and B, 

the various patterns of exposed Ophiomorpha as commonly shown in figure C 

and D can predict the angle to the outcrop plane. C) the smudge of Ophiomorpha 

in the outcrop surface. D) the sketch of the Figure 3C shows the dominance of the 

vertical branching. 
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Hence, ‘03-Sk-04’ denotes an ichnofabric unit in the TAM-2 outcrop, with 

Skolithos association, while the rest is Paleophycus. Examples of 29 variants of 

Skolithos associations are shown in Table 1.  

Figure 1 Geological map of Samarinda Area, Indonesia [15]. Reprinted with 

permission from the Geological Agency, Ministry of Energy and Mineral 

Resources of Indonesia.   
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The codification is helpful for statistical analysis to investigate the probability of 

appearance of the particular ichnofossil association. We applied the same 

codification to the Ophiomorpha, Palaeophycus, Planolites, Thalassinoides, and 

Chondrites associations.  

2.2 Bioturbation Index (BI) 

The bioturbation index (BI) reflects the ratio of biogenic and physical sediment 

structures in an ichnofabric unit. BI is how much physical structure of sediment 

is left in the ichnofabric unit because of animal rework [4]. 

Figure 4 shows the standard bioturbation as a BI scheme that was developed by 

Droser and Bottjer [19][20]. Because of its practical use in the field, this BI 

scheme is the most widely used in ichnological studies. We used the scheme as a 

comparator to determine BI in the field, such as the grain size comparator used 

by geologists (Figure 4). BI scores are 1-2, 3-4, and more than 5, categorizing 

Figure 2  Flow chart of data processing. (1) The step of the outcrop observation and 

depicted as outcrops stratigraphic column in which showed the coded ichnofabric unit 

(IU). (2) Each ichnofabric unit includes ichnotaxa/ichnotaxon (ICH), BI, ID, NB, PD, 

and DM. 
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them as low, medium, and high, respectively. We recognize that the BI scores do 

not consider ichnodiversity in the ichnofabric unit.  

There are no references, even Droser and Bottjer [19][20] did not explain explicit 

assumptions when using the BI scheme. The BI scheme may be used because of 

the varying sizes of ichnofossils, including the penetration depth and burrow 

diameter. We could find a depth of penetration of various sizes, from a few 

centimeters to tens of centimeters. Ichnofossil diameters range from millimeters 

to several centimeters.  

Figure 5 An example of using BI comparator in determining the BI 
degree in the field. 

 

Figure 3 Ichnofossil cut circular to elliptical shapes in outcrops. (a) cross-

sectional view of cylindrical burrows cut at various angles [16]. (b) cross-

sectional view of cylindrical burrows in random orientation [16]. Based on (a) 

and (b), the various patterns of exposed Ophiomorpha as shown in (c) and (d) 

can predict the angle to the outcrop surface. (c) the smudge of Ophiomorpha in 

the outcrop surface. (d) the sketch of panel (c) illustrates the dominance of the 

vertical branching.  
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Table 1 The examples of  29 variants of coded Skolithos associations [14]. 

2.3 Ichnodiversity (ID) 

Ichnodiversity (ID) is the number of ichnotaxon variations within the ichnofabric 

unit [21]. ID has nothing to do with fauna diversity. The ID score is an aspect of 

fauna innovation on substrate reworking. The scores are 1-2, 3-4, and 5-7, 

denoting low, medium, and high, respectively. 

Ichnodiversity reflects physical-chemical pressure in the depositional 

environment [22]. Gingras et al. [22] argued that a high ID score shows optimal 

environmental conditions for fauna to colonize, such as marine conditions. 

Likewise, a low ID score shows stressed environmental conditions.   

Variants 
Dominant 

ichnotaxon 
Accompanying ichnotaxon/ichnotaxa 

Sk-01 Skolithos Bergaueria 

Sk-02 Skolithos trackway 

Sk-03 Skolithos 
Arenicolites, Macanopsis, Planolites, 

Taenadium 

Sk-04 Skolithos Paleophycus 

Sk-05 Skolithos - 

Sk-06 Skolithos Arenicolites 

Sk-07 Skolithos Cylindrichnus, Paleophycus 

Sk-08 Skolithos Conichnus 

Sk-09 Skolithos Platycites 

Sk-10 Skolithos Bergaueria, Conichnus 

Sk-11 Skolithos Rosselia 

Sk-12 Skolithos Conichnus, Bergaueria, Chondrites 

Sk-13 Skolithos Ophiomorpha 

Sk-14 Skolithos Monocraterion 

Sk-15 Skolithos Ophiomorpha, Zoophycos 

Sk-16 Skolithos Platycites, Diplocraterion 

Sk-17 Skolithos Asterosoma, Arenicolites 

Sk-18 Skolithos 
Asterosoma, Paleophycus, Scolicia, 

Fugichnia 

Sk-20 Skolithos Fugichnia 

Sk-21 Skolithos Ophiomorpha, Arenicolites, Paleophycus 

Sk-22 Skolithos Heimdalia 

Sk-23 Skolihos Scolicia 

Sk-24 Skolithos Arenicolites, Cylindrichnus 

Sk-25 Skolithos Fugichnia, Equilibrichnia 

Sk-26 Skolithos Polykladichnus, Psilonichnus 

Sk-27 Skolithos Arenicolites, Psilonichnus, Ophiomorpha 

Sk-28 Skolithos Planolites 

Sk-29 Skolithos Paleophycus, Teichichnus 

Sk-30 Skolithos Chondrites 
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An example of calculating ID is when an ichnofabric unit consists of Skolithos, 

Polykladichnus, and Psilonichnus, then the ID score is three. Thus, the ID score 

ignores the dominance of one ichnotaxa in the ichnofabric unit. 

2.4 Number of Behaviors (NB) 

Behavior consists of the habits of organisms to keep internal conditions constant 

against fluctuating external environmental conditions [23]. We deciphered modes 

of behavior in the ichnofabric units by looking at the ichnofossil structure. Thus, 

we found: (1) how animals build ichnofossil structures, either by the intrusion, 

compressive, excavation, or backfill processes [24]; (2) the general direction of 

animal movement based on the burrow orientation [14]; and (3) the duration of 

the colonization window, which can be inferred from the morphological 

complexity of the ichnofossil. 

For example, the Sk-03 ichnofabric unit (see Table 1) contains Arenicolites, 

Macanopsis, Planolites, and Taenadium. Based on our observations, at least in 

Figure 4 Two schematic diagrams of BI used for bed or laminae that (a) dominated by 

horizontally oriented ichnofossil [19] and (b) dominated by vertically oriented ichnofossil 

[20]. Reprinted with permission from the Society for Sedimentary Geology, Broken 

Arrow, Oklahoma. 



 Basin-scale Paleoecology: Using Semi-quantitative 293 

 

this unit, trace maker intrusion, compressive, excavation, and backfill processes 

are relics. According to the classification by Vallon et al. [23], several ethologies 

could be identified, i.e., domichnia, fodinichnia, and repichnia. Thus, there were 

at least three behaviors from this identification.   

2.5 Penetration depth (PD) 

Infauna animals penetrate the substrate at varying depths in marine environments 

[25]. Paleoecological factors regulate PD. The factors are oxygenation [25], 

fluctuations of salinity [6], and temperature [7] in the transition zone. Besides 

that, biological factors may also be necessary, such as a trace maker’s efforts to 

avoid predators by penetrating deeper into the substrate. 

Because the PD of each ichnofabric unit varies, the PD represented in that unit is 

the longest [27]. We studied the ichnofossils whose burrow fill contained 

sediment from the upper layer. The burrow fill might differ from the surrounding 

lithology caused by animal activity and be filled by the above-eroded sediment 

layer (Figure 5).  

Table 2 List of PD Scores [14]. 

Scores Class Width (cm) 

1 < 7.00 

2 7.00 – 14.00 

3 14.10 – 21.10 

4 21.20 – 28.20 

5 28.30 – 36.00 

6 > 36.00 

The PD scores were classified with a range of 1-2 categorized as shallow, 3-4 

categorized as medium, and 5-6 as deep. This classification method requires 

several stages: (1) determining the number of classes; (2) determining the upper 

and lower fences of the PD data sample distribution; and (3) determining the class 

width at the upper and lower fence intervals. Based on these stages, we present 

the width of the PD class in Table 2. Data classification of the burrow diameter 

(DM) was also carried out. 

2.6 Ichnofossil Diameter (DM) 

The burrow diameter (DM) shows the relative size of the burrow’s shaft and 

tunnel. Before measuring the DM, it is necessary to determine the burrow lining 

and the burrow fill [14]. The burrow lining can become thicker because of 

diagenesis processes so that the diameter of the ichnofossil becomes wider. Thus, 

the actual DM is the diameter of the burrow fill. Ichnofossils in the field are not 
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always circular but can also be elliptical because of the angle made by the burrow 

to the outcrop surface.  

The range of DM scores was the same as the range of classes set for PD. DM 

scores in the range of 1-2 were categorized as small, 3-4 as medium, and 5-6 

categorized as large (Table 3).  

Table 3 List of DM Scores [14]. 

Scores Class Width (cm) 

1 < 0.70 

2 0.70 – 1.40 

3 1.50 – 2.20 

4 2.30 – 3.00 

5 3.10 – 3.90 

6 > 3.90 

Figure 5 The PD measurement method. The dish arrow shows the PD measured from 

the erosion contact boundary above it. The burrow fills contrast with the surrounding 

lithology which is a product of the activity of the trace maker. 
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3 Results 

3.1 Six Ichnotaxa 

We identified thirty-four ichnotaxa, twenty of which were dominant in the 

ichnofabric unit. Based on the Pareto histogram, only six ichnotaxa stood out 

(Figure 6), about 17% of the total identified ichnotaxa. These are called elite 

ichnofossils [28]. From the figure it can be seen that Ophiomorpha (27%), 

Skolithos (23%), Palaeophycus (13%), Planolites (10%), Thalassinoides (10%), 

and Chondrites (8%) had a cumulative frequency of 91.09%. Thus, the actual 

pattern is 91/17. This means that only a tiny part of ichnotaxa had a significant 

share of the total ichnofabric units. In order to understand the ichnotaxa, we 

present brief explanations in the following paragraphs. 

Figure 6 The Pareto histogram of the ichnofossil, there are only six ichnotaxa that stand 

out [14]. Notes: Op: Ophiomorpha, Sk: Skolithos, Pa: Paleophycus, Th: Thalassinoides, 

Pl: Planolites, Ch: Chondrites, Ma: Macaronichnus, Te: Teichichnus, As: Asterosoma, 

He: Helmintoidinichnites, Rh: Rhizocorallium, Zo: Zoophycos, Ar: Arenicolites, Sb: 

Schaubcylindrichnus, Tr: Trackway, Co: Conichnus, Ps: Psilonichnus, Sc: Scolicia, Al: 

Alcyonidiopsis, Pn: Phycosiphon. 
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Ophiomorpha shows structures that are tunnels and shafts (Figure 7(a)). The 

appearance is complete relief and epirelief, while rounded-subrounded fragments 

(pellets) strengthen the burrow lining. These characteristics are typical of 

Ophiomorpha nodosa in particular. These ichnofossils have the color of iron 

oxide. Since the burrow fill of Ophiomorpha has passive fill and meniscate 

backfill structures, all Ophiomorpha are found in fine to coarse sandstones. 

Skolithos has a cylindrical shaft burrow, which means it has a vertical orientation 

to the bedding surface (Figure 7(b)). The shaft can turn up straight or has a 

curved-like shaft morphology, but we find no branches. The appearance is 

complete relief and epirelief, with no sign of burrow lining. Because of that, 

Skolithos can be found in both mudstone and sandstone.  

Figure 7 The Pareto histogram of the ichnofossil, there are only six 
ichnotaxa that stand out (After [14]). Notes: Op: Ophiomorpha, Sk: 
Skolithos, Pa: Paleophycus, Th: Thalassinoides, Pl: Planolites, Ch: 
Chondrites, Ma: Macaronichnus, Te: Teichichnus, As: Asterosoma, He: 
Helmintoidinichnites, Rh: Rhizocorallium, Zo: Zoophycos, Ar: Arenicolites, 
Sb: Schaubcylindrichnus, Tr: trackway, Co: Conichnus, Ps: Psilonichnus, 
Sc: Scolicia, Al: Alcyonidiopsis, Pn: Phycosiphon. 

 

Figure 7 The Pareto histogram of the ichnofossil, there are only 

six ichnotaxa that stand out (After [14]). Notes: Op: Ophiomorpha, Sk: 
Skolithos, Pa: Paleophycus, Th: Thalassinoides, Pl: Planolites, Ch: 
Chondrites, Ma: Macaronichnus, Te: Teichichnus, As: Asterosoma, He: 
Helmintoidinichnites, Rh: Rhizocorallium, Zo: Zoophycos, Ar: Arenicolites, 
Sb: Schaubcylindrichnus, Tr: trackway, Co: Conichnus, Ps: Psilonichnus, 
Sc: Scolicia, Al: Alcyonidiopsis, Pn: Phycosiphon. 

 

Figure 7 The six ichnotaxa [14]. (a) Ophiomorpha, (b) Skolithos, (c) 

Paleophycus, (d) Planolites, (e) Thalassinoides, and (f) Chondrites. 
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Palaeophycus is a cylindrical tunnel burrow, which means horizontal orientation 

to the bedding surface and can be straight or curved-like (Figure 7(c)). We see no 

branches. The tunnel comes out as complete and epirelief and always displays a 

thin burrow lining. The burrow fill has a passive fill structure. Palaeophycus is 

often found in fine to medium sandstones.  

Planolites has a cylindrical tunnel burrow that shows a sub-horizontal to a 

horizontal orientation to the bedding surface without branching (Figure 7(d)). 

Planolites does not have a burrow lining. The burrow fill shows active fill. Its 

color contrasts with the surrounding sediment and it is often found in mudstone 

or muddy sandstone. Sometimes the tunnel is mistaken for Chondrites; however, 

Planolites does not have a shaft like Chondrites have.  

Thalassinoides has a complex structure that displays a gallery and comes out as 

complete and epirelief (Figure 7(e)). The burrow fill of Thalassinoides has a 

meniscate backfill and passive fill. The morphology resembles Ophiomorpha, but 

the burrow lining is very dissimilar. Thalassinoides has a smooth burrow lining 

and often appears in mudstone or muddy sandstone. 

Chondrites are complex structures that show similarities to the morphology of 

roots (Figure 7(f)). Therefore, they have a shaft and tunnel and can turn up as 

complete relief and epirelief. In the epirelief feature, Chondrites appear with a 

tunnel structure only. Chondrites are preserved in both mudstone and fine 

sandstone.  

3.2 Scores of BI, ID, NB, PD, and DM 

The following histograms do not have a normal distribution (Figure 8). This 

means that the right skewness of the mean is more significant than the median. 

The histogram peaks, turns left, and tilts to the right. The BI, ID, NB, PD, and 

DM scores are concentrated on the left side and distributed to the right side. 

The scores 1-3 for BI, 1-2 for ID, 1 for NB, 1-3 for PD, and 1-3 for DM cover 

over 75% of the cumulative frequency. This means that the BI, ID, and NB scores 

all fall into the low to medium categories. The PD scores range from shallow to 

medium, and the DM scores ranged from small to medium.  

The results would have been pretty different if we had adopted the median or 

mean values from similar data of ichnofabric variables. The median and mean 

scores of BI, ID, NB, PD, and SM are 2 and 2.49; 1 and 1.69; 1 and 1.28; 2 and 

2.28; and 2 and 2.18 [14]. Arifullah [14] points out that the BI, ID, and NB scores 

are in the low category. The PD score is in the shallow category, and the DM 

score is in the small category.  
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4 Discussion 

We presented the paleoecological significance of six ichnofossil associations 

(Table 4). This suggests the paleocommunity structure; the way animals get food, 

substrate stability, the richness of organic material, and the level of water 

turbidity control the ichnofossil associations. We show the same ichnofossil 

Figure 8  The probability histograms in the study area [14]. (a) bioturbation index (BI), 

(b) ichnodiversity (ID), (c) number of behavior (NB), (d) penetration depth (PD) and (e) 

diameter (DM). 
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association that occurs in shallow to deep marine zones (Table 5). All of this 

shows that no relationship exists between ichnofossil association and bathymetry. 

Bathymetry is only one of many environmental factors that control ichnofossil 

formation [29]. 

The predominance of only six ichnofossil associations (Ophiomorpha, Skolithos, 

Paleophycus, Thalassinoides, Planolites, and Chondrites) may be the prominent 

ichnofabric model for the Serravallian-Tortonian depositional system of Kutai 

Basin. However, the question is: can the ichnofabric model become the norm? 

Given that it is such a complex depositional system it is not sure yet. Too many 

feedback loops and interactions with unknown ecological variables control the 

ichnofossil model. 

Table 4 Paleoecological Summary of the Ichnofossil Associations [14]. 

Association Behavior Paleoecology References 

Ophiomorpha Domichnia 1. Permanent structure 

2. Deposit and suspension 

feeder 

3. Thixotropic substrate 

4. Alternating erosion and 

deposition 

5. Clean water 

[24][31][32] 

Skolithos Domichnia 1. Incidental structure 

2. Suspension feeder 

3. Clean water 

[12][33] 

 

Palaeophycus Domichnia, 

fodinichnia 

1. Incidental structure 

2. Suspension feeder 

3. Thixotropic substrate 

4. Clean water 

[34] 

Planolites Fodinichnia 1. Incidental structure 

2. Detritus-deposit feeder 

3. Dilatancy substrate 

4. Cloudy water 

5. Anoxic 

[24][35] 

Thalassinoides Domichnia, 

fodinichnia 

1. Permanent structure 

2. Deposit and suspension 

feeder 

3. Dilatancy substrate 

[24][36] 

Chondrites Chemichnia 1. Permanent structure 

2. Deposit feeder 

3. Dilatancy substrate 

[37] 

There is a gap between the six ichnofossils related to their cumulative frequency 

and the other ichnofossils (Figure 6). There are two types of the six ichnofossils: 
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(1) permanent or complex structures (i.e. Ophiomorpha, Thalassinoides, and 

Chondrites), which are defined as an indicator of a longer colonization window 

than for incidental structures [17]; and (2) incidental structures (i.e. Skolithos, 

Palaeophycus, and Planolites) (Table 4).  

The symptoms mentioned above say that the trace maker is more effective in 

creating ichnofossil structures with almost negligible variation for optimal 

survival efforts. It concentrates on building essentially the same structure in 

fluctuating and unpredictable paleoecological conditions. This interpretation may 

be the same as ‘balancing benefits against costs theory’ [30]. 

Table 5 Ichnofossil Association and the Associated Place of 

Sedimentation Based on the Previous Works. 

Association Place of Sedimentation 

Ophiomorpha Shallow marine [38][39], deep marine [40][41] 

Skolithos 
Continental [42], shallow marine (transition 

zone) [43] deep marine [44] 

Palaeophycus Shallow marine [45], deep marine [41][46] 

Planolites Continental to deep marine [44] 

Thalassinoides Shallow marine to deep marine [47] 

Chondrites Shallow marine [48], deep marine [49] 

Other ichnofabric models had low to medium BI, ID, and NB scores and shallow 

PD and small DM scores, close to the findings from Pemberton et al. [50] and 

Gingras et al. [51]. Although they did not explain the low, small, and shallow 

categories, their findings could serve as a reference to modern analogies of a 

brackish ecology in estuarine systems. However, the brackish paleoecology in 

this study is associated with delta systems. Besides that, these brackish conditions 

also occur in several other shelf environments [2].   

The BI, ID, NB, PD, and DM score ranges may suggest random variation to a 

more permanent paleocommunity. According to [33], low BI, ID, and NB scores 

show incidental paleocommunity. The shallow PD and small DM show shallow 

infauna paleocommunity [52]. The trace maker does not have sufficient 

opportunities to build more permanent ichnofossil structures [32][53]. These 

scores suggest a fluctuating, random, rapid, strong, and unpredictable destructive 

force that disrupts the existing paleocommunity [54][55].  

5 Conclusion 

Ichnofabric data processed by semi-quantitative analysis has potential and is 

robust enough to determine the Serravallian-Tortonian paleoecology of the study 

area. The resulted histograms are reliable, and the distribution style is visible. 
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Thus, the histograms as ichnofabric models apply to basin-scale studies. In 

paleoecological studies, identification and classification of ichnofossil 

association alone are insufficient; therefore, several ichnofabric variables can be 

used, such as BI, ID, NB, PD, and DM. With these variables, the paleoecology of 

the study area can be identified, which helps figure out the depositional process. 

The resulting ichnofabric models may be a unique indicator of the brackish 

paleoecology of the Kutai Basin. Furthermore, these models need to be compared 

with the ichnofabric models derived from brackish paleoecology from other 

basins.    
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