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Abstract. The SIQRS epidemic model developed in this study is intended to 

analyze the spread characteristics of the infectious disease tuberculosis. It is a 

modification of the SIQR model developed by Cao et al., using a stochastic 

model called the Continuous Time Markov Chains (CTMC) approach.  Further 

analysis of the SIQRS model was done to determine the transitional probability, 

the outbreak probability, the expected time until disease extinction and to 

simulate the effect of quarantine treatment on the expected time until disease 

extinction. Based on the simulation it can be concluded that a decrease of the 

healing rate together with an increase of the transmission rate changes the basic 

reproduction number (𝑅0), the expected number of infected individuals (𝑚), the 

time until disease extinction, and the outbreak probability. A disease outbreak 

will occur if both 𝑅0 > 1 and 𝑚 > 1 hold. Also, based on the simulation it was 

concluded that the decrease of the healing rate and the increase of the 

transmission rate cause increases of 𝑅0 and 𝑚. An increase of the quarantine rate 

reduces the expected time to disease extinction, 𝑅0 and 𝑚. As a consequence, the 

disease will gradually disappear from the system. 

Keywords: CTMC approach; disease outbreak probability; expected time until disease 

extinction; quarantine; SIQRS model. 

1 Introduction 

The World Health Organization states that infectious diseases may be caused by 

bacteria, viruses or other pathogens [1]. An increase in the population of such 

organisms may increase the number of infectious disease cases. Also, the 

number infections is correlated with the number of contacts. Epidemic models 

can be used to analyze the spread of infectious diseases. The models themselves 

are often expressed in terms of differential equation systems that describe the 

growth rate of the state variables within the system. 

In 1927, Kermack and Mckendrick presented the SIR epidemic model. This 

model describes the phenomenon of a disease spreading among susceptible 

individuals who become infected when they have contact with infected 
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individuals and who may recover following treatment [2]. In 2017, Cai et al. 

introduced a modification of the SIR model, namely the SIRS epidemic model, 

which uses a nonlinear incidence rate [3]. This model showed that recovered 

individuals may become susceptible again. 

One disease that allows recovered individuals to become susceptible again is 

tuberculosis. Tuberculosis is an infectious disease caused by the bacteria 

Mycobacterium tuberculosis [4]. The WHO has states that tuberculosis is one of 

the top 10 causes of death in the world [5]. The tuberculosis bacteria can remain 

dormant for years and become active again; the incidence of secondary 

tuberculosis is around 90% [6]. Tuberculosis sufferers who have recovered can 

be infected again when there is a decrease in their immune system. Tuberculosis 

spreads quickly among people who have a weak immune system [7]. 

Epidemic models can be categorized into deterministic and stochastic models. 

Deterministic models are not sufficient to represent epidemic conditions in the 

field, so a stochastic model which considers the random effects of uncertain 

cases is needed [8]. The stochastical model developed by Cao et al. [9] in 2019 

(SIQR) showed what happens when there is a quarantining process for infected 

individuals. 

The SIQR model uses the Stochastic Differential Equation (SDE) to know the 

influence of white noise in a stochastic system. They verified if there is a 

stationary distribution under certain conditions. The SIQR model of Cao et al. 

does not describe a specific kind of infectious disease and they did not discuss 

the transition and outbreak probabilities in their paper. In essence, the state of 

the number of individuals is a discrete random variable when time is 

continuous. The present research examined a model of disease spread with a 

different approach, namely using the CTMC (Continuous Time Markov Chain). 

The SIQR model of Cao et al. was modified to become the SIQRS model, 

which was applied to tuberculosis. The purposes of this study were: (1) to 

modify the SIQR model into the SIQRS model; (2) to determine the transition 

probability, the outbreak probability and the expected time until disease 

extinction using the CTMC approach; and (3) to simulate the effect of 

quarantining on the expected time until disease extinction. 

2 Mathematical Model 

The mathematical model used in this article is a modification of the SIQR 

model into the SIQRS model. The modification of the SIQR model into SIQRS 

was carried out because sufferers of some diseases can become susceptible 

again after having recovered. The SIQRS model consists of four 

subpopulations, i.e. susceptible individuals (𝑆), infected individuals (𝐼), 
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quarantined individuals (𝑄), and recovered individuals (𝑅). The total of 

population is assumed constant. Then, 𝑁(𝑡) = 𝑁 and the birth rate is the same 

as the death rate. A compartment diagram of the model is shown in Figure 1.  

 

Figure 1 Compartment diagram of the deterministic SIQRS model, which is a 

modification of the SIQR model, which considers that recovered individuals 

may become susceptible again. 

Based on the compartment diagram in Figure 1, the ordinary differential 

equation system of the SIQRS model was obtained: 

 
𝑑𝑆(𝑡)

𝑑𝑡
= 𝜆𝑁 − 𝜇𝑆(𝑡) −

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
+ 𝛾𝑅(𝑡) 

 
𝑑𝐼(𝑡)

𝑑𝑡
=

𝛽𝑆(𝑡)𝐼(𝑡)

𝑁(𝑡)
− (𝜀 + 𝜇 + 𝛿)𝐼(𝑡) 

 
𝑑𝑄(𝑡)

𝑑𝑡
= 𝛿𝐼(𝑡) − (𝜇 + 𝛼)𝑄(𝑡) 

 
𝑑𝑅(𝑡)

𝑑𝑡
= 𝜀𝐼(𝑡) + 𝛼𝑄(𝑡) − (𝜇 + 𝛾)𝑅(𝑡) 

(1) 

The parameters 𝜆, 𝜇, 𝛽, 𝜀, 𝛿, 𝛼, 𝛾 are positive values and 𝑁 = 𝑆(𝑡) + 𝐼(𝑡) +
𝑄(𝑡) + 𝑅(𝑡) for all 𝑡 ≥  0. A description of each parameter is presented in 

Table 1. 

Table 1 List of parameters in the SIQRS model. 

Parameters Description 

𝜆 Birth rate 

𝜇 Death rate 

𝛽 Transmission rate 

𝜀 Rate of healing without quarantine treatment 

𝛿 Quarantine rate 

𝛼 Rate of healing with quarantine treatment 

𝛾 Rate of entry of recovered individuals back into the susceptible class 

𝑁 Total population number 
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𝜇𝑆 𝜇𝐼 𝜇𝑄 
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𝜇𝑅 

𝛾𝑅 



34 Fatimatuzzahroh, et al. 

3 CTMC Stochastic SIQRS Model 

3.1 Transition Probability 

The transition probability is the probability of a stochastics process moving 

from state 𝑖 to state 𝑗. Here, the stochastic SIQRS model consists of three 

random variables, i.e. 𝑆(𝑡), 𝐼(𝑡), 𝑄(𝑡). 𝑁(𝑡) is the size of the total population, 

which is assumed to be constant. Then 𝑁(𝑡) = 𝑁 for all 𝑡 ≥  0 where 𝑁(𝑡) =
𝑆(𝑡) + 𝐼(𝑡) + 𝑄(𝑡) + 𝑅(𝑡). Thus, variable 𝑅(𝑡) is determined by 𝑅(𝑡) =
𝑁(𝑡) − 𝑆(𝑡) − 𝐼(𝑡) − 𝑄(𝑡), where 𝑡 is time. Suppose an ordered pair 

(𝑆(𝑡), 𝐼(𝑡), 𝑄(𝑡))=(𝑠, 𝑖, 𝑞) and (𝑆(𝑡 + ∆𝑡), 𝐼(𝑡 + ∆𝑡), 𝑄(𝑡 + ∆𝑡) = (𝑘, 𝑙,𝑚) 
where 𝑠, 𝑖, 𝑞, 𝑘, 𝑙,𝑚 = 0,1,2…. Then based on Allen [8] the transition 

probability for the SIQRS model can be formulated as follows:  

 𝑃𝑟𝑜𝑏(𝑘,𝑙,𝑚),(𝑠,𝑖,𝑞)(𝑡, 𝑡 + ∆𝑡) 

 = 𝑃𝑟𝑜𝑏{𝑆(𝑡 + ∆𝑡) = 𝑘, 𝐼(𝑡 + ∆𝑡) = 𝑙, 𝑄(𝑡 + ∆𝑡) = 𝑚|(𝑆(𝑡) =
𝑠, 𝐼(𝑡) = 𝑖, 𝑄(𝑡) = 𝑞)}  

=

{
 
 
 
 

 
 
 
 
(𝜆𝑁 + 𝛾𝑅)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙, 𝑚) = (𝑠 + 1, 𝑖, 𝑞)

(
𝛽𝑆𝐼

𝑁
)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠 − 1, 𝑖 + 1, 𝑞)

(𝜇𝑆)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠 − 1, 𝑖, 𝑞)

(𝛿𝐼)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠, 𝑖 − 1, 𝑞 + 1)

((𝜇 + 𝜀)𝐼)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠, 𝑖 − 1, 𝑞)

((𝜇 + 𝛼)𝑄)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠, 𝑖, 𝑞 − 1)

(1 − 𝜉)∆𝑡 + 𝜊(∆𝑡), (𝑘, 𝑙,𝑚) = (𝑠, 𝑖, 𝑞)

𝜊(∆𝑡), otherwise

 (2) 

where 𝜉 = 𝜆𝑁 + 𝛾𝑅 +
𝛽𝑆𝐼

𝑁
+ 𝜇𝑆 + 𝛿𝐼 + (𝜇 + 𝜀)𝐼 + (𝜇 + 𝛼)𝑄. The transition 

probabilities of susceptible, infected, and quarantined individuals in the time 

interval (𝑡 + ∆𝑡) only depend on time 𝑡, where 𝑡 ≥  0. The time value ∆𝑡 is 

assumed to be very small so that the change occurring in susceptible, infected, 

and quarantined individuals is the maximum of one individual in such a short 

time interval ∆𝑡. The value of 𝜊(∆𝑡) represents a small probability value and 

satisfies 
𝜊(∆𝑡)

∆𝑡
 = 0 [8]. 

3.2 Outbreak Probability 

Outbreak events occur when the number of infected individuals increases over 

time. The basic reproduction number (𝑅0) and the expected number of infected 

individuals (𝑚) are used as criteria for the occurrence of disease outbreaks in 
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the long term. The basic reproduction number (𝑅0) is the number of susceptible 

individuals getting infected after an infected individual is introduced into the 

system. Based on Basir et al. [10], the value of 𝑅0 for the SIQRS model is 𝑅0 =
𝛽

(𝜀+𝜇+𝛿)
. The basic reproduction number (𝑅0) has the same definition as the 

expected number of infected individuals (𝑚), which is calculated using a 

probability method. In deterministic models, disease outbreak events occur 

when 𝑅0 > 1, whereas in stochastic models this is associated with a condition 

when the expected number of infected individuals (𝑚) > 1. Basic reproduction 

number (𝑅0) and 𝑚 are obtained with different approaches. If 𝑅0 > 1 it cannot 

be ascertained if 𝑚 > 1, both are just similar. The outbreak probability and the 

expected number of infected individuals is obtained through a branching 

process approach [8]. The benchmark for the outbreak probability is determined 

by the expected number of infected individuals (𝑚), not from the basic 

reproduction number (𝑅0). Based on this process, the SIQRS model has the 

following disease extinction probabilities: 

 𝑃𝑟𝑜𝑏{𝐼(𝑡) = 0} = {
1  ; 𝑚 ≤ 1
𝜏  ;𝑚 > 1,

 (3) 

Consequently, the probability of an outbreak occurring is: 

 1 − 𝑃𝑟𝑜𝑏{𝐼(𝑡) = 0} = {
0       ;𝑚 ≤ 1
1 − 𝜏 ;𝑚 > 1,

 (4) 

where 

  𝜏 = (
𝑁

𝑠𝑅0
)
𝑖0

.       (5) 

3.3 Expected Time Until Disease Extinction 

The expected time until disease extinction is the time it takes for the disease to 

disappear. Based on Syams [11], the expected time until disease extinction can 

be determined by generator matrix 𝑄. Generator matrix 𝑄 gives the rate of 

transition [8], which can be derived from the transition probability. Suppose the 

transition probabilities 𝑃𝑟𝑜𝑏𝑗𝑖(𝑡) = (𝑝𝑗𝑖(𝑡)) are assumed to be continuous, 

differentiable for 𝑡 ≥  0. Then, at 𝑡 = 0, 𝑝𝑗𝑖(0) = 0, 𝑖 ≠ 𝑗 and 𝑝𝑖𝑖(0) = 1. The 

derivation of the transition probability can be expressed as: 

 
𝑑𝑝

𝑑𝑡
= 𝑄𝑝, (6) 

where 𝑄 = (𝑞𝑗𝑖) is the rate of transition from state 𝑖 to state 𝑗 and can be 

expressed as: 
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 𝑄 = (

𝑞00 𝑞01 𝑞02 ⋯

𝑞10 𝑞11 𝑞12 ⋯
𝑞20
⋮

𝑞21
⋮

𝑞22 ⋯

⋮     ⋮

) (7) 

The formula to determine the expected time until disease extinction by 

generator matrix 𝑄 is as follows: 

 𝜏 = 𝑐𝑄−1, (8) 

where 𝑐 = (0,−1,−1,… ,−1), and 𝑄−1 is the inverse of generator matrix 𝑄. If 

the population is small, such as 3, 4, or 5 people, it can be obtained by that 

formula, but if the population number is large, then generator matrix 𝑄 is 

difficult to obtain [11]. 

In this study, because the population number that was simulated was large, a 

computer simulation was carried out with 100 trials to get the expected time 

until disease extinction. The number of 100 trials was selected because it is 

sufficient to get the probability distribution of the expected time of disease 

extinction from a manual simulation. The 100 trials were performed for 

different quarantine rates (𝛿), i.e. 𝛿 = 0.1, 𝛿 = 0.2, 𝛿 = 0.4, 𝛿 = 0.6, 𝛿 = 0.8, 

and 𝛿 = 1 to get the distribution of the disease extinction probability for each 

parameter value. Thus, the expected time until disease extinction could be 

obtained from this distribution by multiplying the middle point of the time 

interval with its probability. 

4 Numerical Simulation 

Numerical simulations were carried out to describe the spread of an infectious 

disease, namely tuberculosis, by applying the SIQRS model. In particular, 

simulations were carried out to determine the effect of quarantine on the 

expected time until disease extinction. The scenarios investigated were: (1) the 

effect of decreasing the healing rate (meaning the healing time increases) 

without quarantine; (2) the effect of increasing the transmission rate without 

quarantine; (3) the effect of increasing the quarantine rate on the expected time 

until disease extinction. In other words, the simulation was carried out by 

varying the values of the following parameters: healing rate without quarantine 
(𝜀), transmission rate (𝛽), quarantine rate (𝛿), while the other parameter values 

were unchanged, i.e. birth rate (𝜆), death rate (𝜇), rate of healing with 

quarantine (𝛼), rate of entry of recovered individuals back into the susceptible 

class (𝛾). This stochastic model simulation was carried out using the software 

package R-3.6.1 by adaptivetau. As mentioned, the parameter values used in the 

simulation were based on the case of tuberculosis, as presented in Table 2.  



An Analysis of CTMC Stochastic Models with Quarantine       37 

 

 

Table 2 Parameter values. 

Variable Parameter Values Unit Source 

𝜇 0.014 1/year (BPS 2020) [12] 

𝜆 0.014 1/year Assumed 

𝛽 0.002 1/year (Kemenkes RI 2019) [13] 

𝜀 (365/210) 1/year Assumed 

𝛿 0.5 1/year Assumed 

𝛼 (365/180) 1/year (Naomi et al. 2016) [14] 

𝛾 (1/5) 1/year Assumed 

𝑁 100 person Assumed 

The total population simulated was 100 people (𝑁 = 100) with the following 

initial values for susceptible, infected, quarantined, recovered individuals: 

𝑆(0) = 70, 𝐼(0) = 10, 𝑄(0) = 10, 𝑅(0) = 10, assuming that 50% of the total 

population was quarantined. The simulation result is shown in Figure 2. 

 

Figure 2  Population dynamics for tuberculosis. 

Based on the simulation results, when the number of infected individuals and 

quarantined individuals was initially 10 people, after some time it will go to 0. 

When there are 70 susceptible individuals initially, after a while this number 

will continue to increase. Tuberculosis disappeared around 6-7 months, to be 

precise at 0.671156 years. This means that tuberculosis will not occur as an 

epidemic if the infected individuals are taking regular medication for 6 to 7 

months and 50% of infected individuals quarantined themselves. This is 

consistent with analytical calculations, namely a basic reproduction number 

(𝑅0) of 0.000888 < 1, which means there is no outbreak in the long term with a 

probability of 1. The results of this simulation were the basis for knowing the 

effects of changes in the values of the healing rate, the transmission rate, and 

the rate of quarantine influencing population dynamics. 
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4.1 Scenario 1: Effect of Decreasing Healing Rate Without 

Quarantine 

Based on the initial values, it was found that the recovery time was around 6 to 

7 months. With Scenario 1 it was studied what happens when the healing time is 

longer, that is about 1 year with 𝜀 = (365/365), 2 years with 𝜀 = (365/730), 3 

years with 𝜀 = (365/1095), and the quarantine rate is 0, while the other 

parameter values were the same as those presented in Table 2. The results of 

analytic calculations for the basic reproduction number (𝑅0), the expected 

number of infected individuals (𝑚) and the outbreak probability are presented in 

Table 3. 

Table 3  Influence of 𝜀 on basic reproduction number, expected number of 

infected individuals, and outbreak probability. 

Parameter 

values of  𝜀 

Basic reproduction 

number 

Expected number of 

infected individuals 

Outbreak 

probability 

(365/365) 0.001972 0.002758 0 

(365/730) 0.003891 0.005433 0 

(365/1095) 0.005758 0.008029 0 

Below are the simulation results for the influence of parameter 𝜀: 

 

Figure 3  Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝜀 = (365/365). 
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Figure 4  Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝜀 = (365/730). 

 

Figure 5  Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝜀 = (365/1095). 

The simulation results in Figures 3, 4 and 5 describe that when the healing rate 

was decreased or the length of the healing time was increased, the number of 

susceptible individuals in Figures 3, 4, and 5 increased, while the number of 

infected and recovered individuals decreased. In Figures 3, 4, and 5 it can be 

seen that when the healing rate was decreased, the decrease in the number of 

infected individuals was slower. The time of disease extinction for tuberculosis 

in Figures 3, 4 and 5 was 2.07, 6.45, and 11.76, respectively. This indicates that 

tuberculosis will disappear slower from the population if the healing rate (𝜀) is 

decreased.  

Based on Table 3 it can be seen that a decrease in the healing rate increases the 

basic reproduction number (𝑅0) and the expected number of infected 

individuals (𝑚) even though values of 𝑅0 < 1 and 𝑚 < 1 are obtained. This 

indicates that in the long term there will be no outbreak event, i.e. the 

probability of an outbreak is 0 because the number of infected individuals will 
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go to 0 in the same time. Based on the results of the simulation, it can be 

concluded that a decrease in the healing rate without quarantine will result in 

longer time until disease extinction. 

4.2 Scenario 2: Effect of Increasing Transmission Rate Without 

Quarantine 

In Scenario 2, based on the initial values, the simulation of the transmission rate 

is 0.002. With this scenario it is studied what happens when the transmission 

rate increases 100 times, 200 times, and 300 times. The transmission rate 

becomes 𝛽 = 0.2, 𝛽 = 0.4, 𝛽 = 0.6 and the quarantine rate is 0, while the other 

parameter values are the same as shown in Table 2. The basic reproduction 

number (𝑅0) and the expected number of infected individuals (𝑚) can be used 

to determine whether or not an outbreak will occur in the future. The results of 

calculating the basic reproduction number (𝑅0), the expected number of infected 

individuals (𝑚), and the outbreak probability are presented in Table 4. 

Table 4  Influence of 𝛽 on basic reproduction number, expected number of 

infected individuals, and outbreak probability 

Parameter 

values of 𝛽  

Basic reproduction 

number 

Expected number of 

infected individuals 

Outbreak 

probability 

0.2 0.575816 0.574555 0 

0.4 1.151631 0.892667 0 

0.6 1.727447 1.0947 0.850386 

Below are the simulation results for the influence of 𝛽: 

 

Figure 6  Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝛽 = 0.2. 
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Figure 7 Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝛽 = 0.4. 

 

Figure 8  Dynamics of susceptible, infected, quarantined, and recovered 

individuals at time 𝑡 for 𝛽 = 0.6. 

The simulation results in Figures 6, 7 and 8 show that if 𝛽 = 0.2, the number of 

infected individuals decreased, with time until disease extinction time at 18.18 

years. When the contact rate was increased to 𝛽 = 0.4 and 𝛽 = 0.6, the number 

of infected individuals fluctuated and made the disease disappear slower than in 

the previous simulation. Likewise, the result of the analytical calculations in 

Table 4 shows that an increase in the transmission rate causes an increase in the 

basic reproduction number (𝑅0) > 1 and the expected number of infected 

individuals (𝑚) > 1, which increases the outbreak probability. Based on the 

result of the simulations conducted it can be concluded that an increase in the 

transmission rate without quarantine makes the disease disappear from the 

population over a longer time and allows an outbreak in the long term. 

0

20

40

60

80

100

0 20 40 60 80 100

S I Q R

In
d

iv
id

u
al

s

Time (Year)

0

20

40

60

80

100

0 20 40 60 80 100

S I Q R

In
d
iv

id
u
al

s

Time (Year)



42 Fatimatuzzahroh, et al. 

4.3 Scenario 3: Effect of Increasing the Quarantine Rate on the 

Expected Time until Disease Extinction  

Scenario 3 was used to determine the effect of the quarantine rate on the 

expected time until disease extinction. At baseline, 50% of infected individuals 

are quarantined. In this scenario it was studied what happens when the 

quarantine rate was (a) 𝛿 = 0.1, (b) 𝛿 = 0.2, (c) 𝛿 = 0.4, (d) 𝛿 = 0.6, (e) 𝛿 = 0.8, 

(f) 𝛿 = 1. The parameter values in this simulation were the same as in Table 2 

except for the values of the transmission rate (𝛽), which was 0.6, and the 

healing rate (𝜀), which was (365/1095). The reason for choosing these 

parameter values was because, based on the previous simulations, these values 

indicate the highest time until disease extinction compared to the previous 

parameter values. Below is the distribution of the probability of disease 

extinction from 100 trials for each value of the quarantine rate (𝛿). Based on 

this the expected time until disease extinction was calculated. 

 

Figure 9  Disease extinction probabilities diagram for 𝛿 = 0.1. 

 

Figure 10 Disease extinction probabilities diagram for 𝛿 = 0.2. 
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Figure 11 Disease extinction probabilities diagram for 𝛿 = 0.4. 

 

Figure 12 Disease extinction probabilities diagram for 𝛿 = 0.6. 

 

Figure 13 Disease extinction probabilities diagram for 𝛿 = 0.8. 

 

Figure 14 Disease extinction probabilities diagram for 𝛿 = 1. 
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Based on the simulation in Figures 9-14, the expected time until disease 

extinction was obtained as follows: 

 

Figure 15  Graph of the effect of the quarantine rate on the expected time until 

disease extinction. 

Figure 15 shows that for 𝛿= 0.1, 𝛿 = 0.2, 𝛿 = 0.4, 𝛿 = 0.6, 𝛿 = 0.8, and 𝛿 = 1, 

the expected time until disease extinction was 35.34, 17.86, 9.22, 5.261, 4.277, 

and 3.284, respectively. The results of calculating the basic reproduction 

number (𝑅0), the expected number of infected individuals (𝑚), and the 

outbreak probability are presented in Table 5. 

Table 5 Influence of 𝛿 on basic reproduction number, expected number of 

infected individuals, and outbreak probability. 

Value of 

Parameter 𝛿 

Basic reproduction 

number (𝑅𝑜) 

Expected number of 

infected individuals (𝑚) 

Outbreak 

probability 

0.1 1.341282 0.968486 0 

0.2 1.096224 0.868367 0 

0.4 0.802855 0.719589 0 

0.6 0.633357 0.614334 0 

0.8 0.522952 0.535942 0 

1 0.445324 0.475292 0 

Based on Table 5 it can be seen that for 𝛿 = 0.1, 𝛿 = 0.2, 𝛿 = 0.4, 𝛿 = 0.6, 

𝛿 = 0.8 and 𝛿 = 1 an expected number of infected individuals (𝑚) < 1 was 

obtained, which caused the value of outbreak probability to be 0 in each case. 

This means that when the quarantine rate is given in the system, if the number 

of infected individuals is decreasing then stochastically there will be no 

outbreak in the long-term. The outbreak probability is determined from the 

expected number of infected individuals (𝑚) and not from the basic 

reproduction number (𝑅0). Because of this, although 𝑅0 > 1 for 𝛿 = 0.1, and 

𝛿 = 0.2, also 𝑚 < 1 is obtained, which makes the outbreak probability 0.  
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In this study we did not focus on a comparison between stochastic and 

deterministic models. Especially for quarantine rate 0.1 and 0.2, the values of 

𝑅0 > 1 and 𝑚 < 1 indicate that disease extinction will happen in the long run 

after an outbreak in a certain period. This means that even though a 

deterministic model shows an outbreak in the long term, it can be stochastically 

determined, because when the quarantine rate is 0.1 and 0.2 tuberculosis can 

disappear and there will be no outbreak in the long term.  

The stochastic result can be different from the deterministic result because it 

considers the random effects of uncertain cases. The stochastic model uses 

random variables such as S (susceptible), I (infected), and Q (quarantined), 

which can change every time so there are probabilities in each case. Especially 

random variable I, the number of infected individuals, is probable to increase 

and decrease. Based on the branching process approach, for quarantine rate 𝛿 =
0.1 and 𝛿 = 0.2, the probability of a decreasing number of infected individuals 

is 0.5157 and 0.5658, respectively, so the probability of an increasing number 

of infected individuals is 0.4842 and 0.4341. Stochastically this indicates that 

there is a chance of 𝑚 < 1 and the disease will become extinct so there will be 

no outbreak in the long term. 

Based on the simulation and analytical calculations it can be concluded that 

increasing the quarantine rate from 𝛿 = 0.1 to 𝛿 = 1 decreases the expected 

time until disease extinction, the basic reproduction number (𝑅0) and the 

expected number of infected individuals (𝑚), because of which 𝑚 < 1. This 

indicates that increasing the quarantine rate makes the disease disappear more 

rapidly from the population and reduces the contact between infected 

individuals and non-infected individuals so there will be no outbreak in the long 

term. 

4.4 Sensitivity Analysis 

A sensitivity analysis was performed to examine the effect of varying the 

parameter values in the model. The sensitivity index of 𝑅0 may be alternatively 

defined using partial derivatives as follows: 

 ϒ𝑝
𝑅0 =

𝜕𝑅0

𝜕𝑝
×

𝑝

𝑅0
 (9) 

where 𝑝 is the parameter value in the model. The sensitivity index can show the 

effect of relative changes of basic reproduction number 𝑅0 when the value of 𝑝 

is changed [15]. A positive sensitivity index indicates that every increase of the 

number of 𝑝 units will increase 𝑅0 to |ϒ𝑝
𝑅0| [16]. Based on Equation (9) and 

the parameter value of the simulation when 𝑅0 > 1, it is obtained that the 

sensitivity index of 𝑅0 is as follows: 



46 Fatimatuzzahroh, et al. 

Table 6 Sensitivity index of 𝑅0. 

Parameters Sensitivity Index (ϒ𝑝
𝑅0) 

𝛽 1 

𝜀 – 0.7451 

𝜇 – 0.0313 

𝛿 – 0.2235 

𝜆 0 

𝛼 0 

𝛾 0 

Based on Table 6, it can be concluded that 𝛽 is a sensitive parameter towards 

𝑅0. This is in accordance with the stochastic results in Tables 3, 4 and 5, where 

the transmission rate (𝛽) has a larger influence on the expected number of 

infected individuals (𝑚) than the other parameters. 

5 Conclusion 

It can be concluded that the SIQRS model can be used to determine the 

characteristics of the spread of infectious diseases such as tuberculosis. In 

stochastic models, an outbreak occurs when the expected number of infected 

individuals (𝑚) > 1, whereas it does not occur when 𝑚 < 1. Based on the 

simulation of Scenario 1, the expected number of infected individuals (𝑚) for 𝜀 

= (365/365), 𝜀 = (365/730), and 𝜀 = (365/1095) was 0.002758, 0.005433, and 

0.008029, respectively, where 𝑚 < 1. This indicates that an outbreak does not 

occur when the healing rate is decreasing, but it needs a long of time for the 

disease to disappear from the population. 

In Scenario 2, the expected number of infected individuals (𝑚) for 𝛽 = 0.2, 𝛽 = 

0.4, and 𝛽 = 0.6 was 0.574555, 0.892667, and 1.0947, respectively. This 

indicates that an increase of the transmission rate can increase the expected 

number of infected individuals (𝑚), which leads to an outbreak in the long 

term. On the other hand, the simulation repeated 100 times with Scenario 3 

showed that for 𝛿 = 0.1, 𝛿 = 0.2, 𝛿 = 0.4, 𝛿 = 0.6, 𝛿 = 0.8, and 𝛿 = 1, the 

expected time until disease extinction was 35.34, 17.86, 9.22, 5.261, 4.277, and 

3.284, respectively, and the expected number of infected individuals (𝑚) was 

0.968486, 0.868367, 0.719589, 0.614334, 0.535942, and 0.475292, 

respectively, where 𝑚 < 1.  

It can be concluded that an increase of the quarantine rate decreases the 

expected time until disease extinction and reduces the contact between infected 

individuals and non-infected individuals. It also makes the disease disappear 

more rapidly from the population so there will not be an outbreak in the long 

term. In general, the transmission rate is the most sensitive parameter in this 

system towards the occurrence of outbreaks. 
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