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Abstract. The SIQRS epidemic model developed in this study is intended to
analyze the spread characteristics of the infectious disease tuberculosis. It is a
modification of the SIQR model developed by Cao et al., using a stochastic
model called the Continuous Time Markov Chains (CTMC) approach. Further
analysis of the SIQRS model was done to determine the transitional probability,
the outbreak probability, the expected time until disease extinction and to
simulate the effect of quarantine treatment on the expected time until disease
extinction. Based on the simulation it can be concluded that a decrease of the
healing rate together with an increase of the transmission rate changes the basic
reproduction number (R,), the expected number of infected individuals (m), the
time until disease extinction, and the outbreak probability. A disease outbreak
will occur if both R, > 1and m > 1 hold. Also, based on the simulation it was
concluded that the decrease of the healing rate and the increase of the
transmission rate cause increases of R, and m. An increase of the quarantine rate
reduces the expected time to disease extinction, R, and m. As a consequence, the
disease will gradually disappear from the system.

Keywords: CTMC approach; disease outbreak probability; expected time until disease
extinction; quarantine; SIQRS model.

1 Introduction

The World Health Organization states that infectious diseases may be caused by
bacteria, viruses or other pathogens [1]. An increase in the population of such
organisms may increase the number of infectious disease cases. Also, the
number infections is correlated with the number of contacts. Epidemic models
can be used to analyze the spread of infectious diseases. The models themselves
are often expressed in terms of differential equation systems that describe the
growth rate of the state variables within the system.

In 1927, Kermack and Mckendrick presented the SIR epidemic model. This
model describes the phenomenon of a disease spreading among susceptible
individuals who become infected when they have contact with infected
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individuals and who may recover following treatment [2]. In 2017, Cai et al.
introduced a modification of the SIR model, namely the SIRS epidemic model,
which uses a nonlinear incidence rate [3]. This model showed that recovered
individuals may become susceptible again.

One disease that allows recovered individuals to become susceptible again is
tuberculosis. Tuberculosis is an infectious disease caused by the bacteria
Mycobacterium tuberculosis [4]. The WHO has states that tuberculosis is one of
the top 10 causes of death in the world [5]. The tuberculosis bacteria can remain
dormant for years and become active again; the incidence of secondary
tuberculosis is around 90% [6]. Tuberculosis sufferers who have recovered can
be infected again when there is a decrease in their immune system. Tuberculosis
spreads quickly among people who have a weak immune system [7].

Epidemic models can be categorized into deterministic and stochastic models.
Deterministic models are not sufficient to represent epidemic conditions in the
field, so a stochastic model which considers the random effects of uncertain
cases is needed [8]. The stochastical model developed by Cao et al. [9] in 2019
(SIQR) showed what happens when there is a quarantining process for infected
individuals.

The SIQR model uses the Stochastic Differential Equation (SDE) to know the
influence of white noise in a stochastic system. They verified if there is a
stationary distribution under certain conditions. The SIQR model of Cao et al.
does not describe a specific kind of infectious disease and they did not discuss
the transition and outbreak probabilities in their paper. In essence, the state of
the number of individuals is a discrete random variable when time is
continuous. The present research examined a model of disease spread with a
different approach, namely using the CTMC (Continuous Time Markov Chain).
The SIQR model of Cao et al. was modified to become the SIQRS model,
which was applied to tuberculosis. The purposes of this study were: (1) to
modify the SIQR model into the SIQRS model; (2) to determine the transition
probability, the outbreak probability and the expected time until disease
extinction using the CTMC approach; and (3) to simulate the effect of
guarantining on the expected time until disease extinction.

2 Mathematical Model

The mathematical model used in this article is a modification of the SIQR
model into the SIQRS model. The modification of the SIQR model into SIQRS
was carried out because sufferers of some diseases can become susceptible
again after having recovered. The SIQRS model consists of four
subpopulations, i.e. susceptible individuals (S), infected individuals (),
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quarantined individuals (Q), and recovered individuals (R). The total of
population is assumed constant. Then, N(t) = N and the birth rate is the same
as the death rate. A compartment diagram of the model is shown in Figure 1.
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Figure 1 Compartment diagram of the deterministic SIQRS model, which is a
modification of the SIQR model, which considers that recovered individuals
may become susceptible again.

Based on the compartment diagram in Figure 1, the ordinary differential
equation system of the SIQRS model was obtained:

ds@e) BS(OI®)

a = AN —uS@) - =5 HYR(O
di(t) _ BS®I(®)
T (e+u+8)I®) (1)
d?i_it) =68I1(t) — (u+a)Q(t)
d};_(tt) = el(t) + aQ(t) — (u + Y)R(E)

The parameters A, u, B, €, 6, a, y are positive values and N = S(t) + I(t) +
Q(t) + R(t) for all t = 0. A description of each parameter is presented in
Table 1.

Table 1 List of parameters in the SIQRS model.

Parameters Description
A Birth rate
u Death rate
B Transmission rate
€ Rate of healing without quarantine treatment
1) Quarantine rate
a Rate of healing with quarantine treatment
y Rate of entry of recovered individuals back into the susceptible class
N Total population number
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3 CTMC Stochastic SIQRS Model

3.1  Transition Probability

The transition probability is the probability of a stochastics process moving
from state i to state j. Here, the stochastic SIQRS model consists of three
random variables, i.e. S(t),I(t), Q(t). N(t) is the size of the total population,
which is assumed to be constant. Then N(t) = N forall t = 0 where N(t) =
S() +1(t) + Q(t) + R(t). Thus, variable R(t) is determined by R(t) =
N(t) —S(t) —I(t) —Q(t), where t is time. Suppose an ordered pair
S@®),1t),Q)=(s,i,q) and (S(t+At),I(t+At),Q(t+At) = (k,I,m)
where s,i,q,k,I,m=0,1,2... Then based on Allen [8] the transition
probability for the SIQRS model can be formulated as follows:

Probm),(siq) (& t + At)

= Prob{S(t + At) = k,I(t + At) = L, Q(t + At) = m|(S(t) =
s, 1(t) =1,Q(t) = q)}

( (AN + yR)At + o(At), (k, L, m) = (s + 1,i,q)
(E) At + o(AD), (k, Lm) = (s — 1,i + 1,9)

N
(uS)At + o(At), (k,I,m) = (s — 1,i,q)
=1 (BDAt+o(At), (k,L,m)=(s,i—1,q+1) )

((u + e)I)At + o(At), (k,I,m) = (s,i — 1,q)
((u + a)Q)At + o(At), (k,I,m) = (s,i,q — 1)
(1 -8At +o(AL), (k, L,m) = (s,i,q)
o(At), otherwise

where &= AN + YR + 55+ S+ 61 + (u+ &)l + (u + a)Q. The transition

probabilities of susceptible, infected, and quarantined individuals in the time
interval (t + At) only depend on time t, where t > 0. The time value At is
assumed to be very small so that the change occurring in susceptible, infected,
and quarantined individuals is the maximum of one individual in such a short
time interval At. The value of o(At) represents a small probability value and

. o o(At)
satisfies v =0 [8].

3.2 Outbreak Probability

Outbreak events occur when the number of infected individuals increases over
time. The basic reproduction number (R,) and the expected number of infected
individuals (m) are used as criteria for the occurrence of disease outbreaks in
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the long term. The basic reproduction number (R,) is the number of susceptible
individuals getting infected after an infected individual is introduced into the
system. Based on Basir et al. [10], the value of R, for the SIQRS model is Ry =

(Hi s The basic reproduction number (R,) has the same definition as the

expected number of infected individuals (m), which is calculated using a
probability method. In deterministic models, disease outbreak events occur
when R, > 1, whereas in stochastic models this is associated with a condition
when the expected number of infected individuals (m) > 1. Basic reproduction
number (Ry) and m are obtained with different approaches. If R, > 1 it cannot
be ascertained if m > 1, both are just similar. The outbreak probability and the
expected number of infected individuals is obtained through a branching
process approach [8]. The benchmark for the outbreak probability is determined
by the expected number of infected individuals (m), not from the basic
reproduction number (R,). Based on this process, the SIQRS model has the
following disease extinction probabilities:

o, _(1,;m<1

Prob{I(t) = 0} = {T ot 3)

Consequently, the probability of an outbreak occurring is:
0 ;m<1

1— Prob{I(t) = 0} = {1_T;m> 3 (4)

where
—_— N iO
T= (E) . )

3.3  Expected Time Until Disease Extinction

The expected time until disease extinction is the time it takes for the disease to
disappear. Based on Syams [11], the expected time until disease extinction can
be determined by generator matrix Q. Generator matrix Q gives the rate of
transition [8], which can be derived from the transition probability. Suppose the

transition probabilities Prob;;(t) = (pﬁ(t)) are assumed to be continuous,
differentiable for ¢ > 0. Then, att = 0, p;;(0) = 0,7 # j and p;(0) = 1. The
derivation of the transition probability can be expressed as:

2 = o, (6)
where Q = (qﬁ) is the rate of transition from state i to state j and can be
expressed as:
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The formula to determine the expected time until disease extinction by
generator matrix Q is as follows:

T=cQ7, (8)

where ¢ = (0,—1,—1,...,—1), and Q! is the inverse of generator matrix Q. If
the population is small, such as 3, 4, or 5 people, it can be obtained by that
formula, but if the population number is large, then generator matrix Q is
difficult to obtain [11].

In this study, because the population number that was simulated was large, a
computer simulation was carried out with 100 trials to get the expected time
until disease extinction. The number of 100 trials was selected because it is
sufficient to get the probability distribution of the expected time of disease
extinction from a manual simulation. The 100 trials were performed for
different quarantine rates (§),i.e.§ =0.1,6 =0.2,§ = 0.4, 6§ = 0.6, § = 0.8,
and § = 1 to get the distribution of the disease extinction probability for each
parameter value. Thus, the expected time until disease extinction could be
obtained from this distribution by multiplying the middle point of the time
interval with its probability.

4 Numerical Simulation

Numerical simulations were carried out to describe the spread of an infectious
disease, namely tuberculosis, by applying the SIQRS model. In particular,
simulations were carried out to determine the effect of quarantine on the
expected time until disease extinction. The scenarios investigated were: (1) the
effect of decreasing the healing rate (meaning the healing time increases)
without quarantine; (2) the effect of increasing the transmission rate without
quarantine; (3) the effect of increasing the quarantine rate on the expected time
until disease extinction. In other words, the simulation was carried out by
varying the values of the following parameters: healing rate without quarantine
(¢), transmission rate (B), quarantine rate (&), while the other parameter values
were unchanged, i.e. birth rate (1), death rate (u), rate of healing with
quarantine (@), rate of entry of recovered individuals back into the susceptible
class (y). This stochastic model simulation was carried out using the software
package R-3.6.1 by adaptivetau. As mentioned, the parameter values used in the
simulation were based on the case of tuberculosis, as presented in Table 2.
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Table 2 Parameter values.

Variable  Parameter Values Unit Source
u 0.014 1/year (BPS 2020) [12]
A 0.014 1lyear Assumed
B 0.002 l/year  (Kemenkes RI 2019) [13]
€ (365/210) 1lyear Assumed
) 0.5 1lyear Assumed
a (365/180) l/year ~ (Naomi et al. 2016) [14]
y (1/5) 1lyear Assumed
N 100 person Assumed

The total population simulated was 100 people (N = 100) with the following
initial values for susceptible, infected, quarantined, recovered individuals:
5(0) =70, 1(0) =10, Q(0) = 10, R(0) = 10, assuming that 50% of the total
population was quarantined. The simulation result is shown in Figure 2.
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Figure 2 Population dynamics for tuberculosis.

Based on the simulation results, when the number of infected individuals and
quarantined individuals was initially 10 people, after some time it will go to 0.
When there are 70 susceptible individuals initially, after a while this number
will continue to increase. Tuberculosis disappeared around 6-7 months, to be
precise at 0.671156 years. This means that tuberculosis will not occur as an
epidemic if the infected individuals are taking regular medication for 6 to 7
months and 50% of infected individuals quarantined themselves. This is
consistent with analytical calculations, namely a basic reproduction number
(Rp) of 0.000888 < 1, which means there is no outbreak in the long term with a
probability of 1. The results of this simulation were the basis for knowing the
effects of changes in the values of the healing rate, the transmission rate, and
the rate of quarantine influencing population dynamics.
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41  Scenario 1: Effect of Decreasing Healing Rate Without
Quarantine

Based on the initial values, it was found that the recovery time was around 6 to
7 months. With Scenario 1 it was studied what happens when the healing time is
longer, that is about 1 year with £ = (365/365), 2 years with £ = (365/730), 3
years with ¢ = (365/1095), and the quarantine rate is 0, while the other
parameter values were the same as those presented in Table 2. The results of
analytic calculations for the basic reproduction number (R,), the expected
number of infected individuals (1) and the outbreak probability are presented in
Table 3.

Table 3 Influence of & on basic reproduction number, expected number of
infected individuals, and outbreak probability.

Parameter Basic reproduction Expected number of Outbreak

values of ¢ number infected individuals probability
(365/365) 0.001972 0.002758 0
(365/730) 0.003891 0.005433 0
(365/1095) 0.005758 0.008029 0

Below are the simulation results for the influence of parameter &:

100 ——S———| Q—~R
S
S 60
= 40
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N

Figure 3 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time t for £ = (365/365).
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Figure 4 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time t for £ = (365/730).
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Figure 5 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time t for ¢ = (365/1095).

The simulation results in Figures 3, 4 and 5 describe that when the healing rate
was decreased or the length of the healing time was increased, the number of
susceptible individuals in Figures 3, 4, and 5 increased, while the number of
infected and recovered individuals decreased. In Figures 3, 4, and 5 it can be
seen that when the healing rate was decreased, the decrease in the number of
infected individuals was slower. The time of disease extinction for tuberculosis
in Figures 3, 4 and 5 was 2.07, 6.45, and 11.76, respectively. This indicates that
tuberculosis will disappear slower from the population if the healing rate () is
decreased.

Based on Table 3 it can be seen that a decrease in the healing rate increases the
basic reproduction number (R,) and the expected number of infected
individuals (m) even though values of Ry < 1 and m < 1 are obtained. This
indicates that in the long term there will be no outbreak event, i.e. the
probability of an outbreak is O because the number of infected individuals will
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go to 0 in the same time. Based on the results of the simulation, it can be
concluded that a decrease in the healing rate without quarantine will result in
longer time until disease extinction.

4.2  Scenario 2: Effect of Increasing Transmission Rate Without
Quarantine

In Scenario 2, based on the initial values, the simulation of the transmission rate
is 0.002. With this scenario it is studied what happens when the transmission
rate increases 100 times, 200 times, and 300 times. The transmission rate
becomes g =0.2, B = 0.4, B = 0.6 and the quarantine rate is 0, while the other
parameter values are the same as shown in Table 2. The basic reproduction
number (R,) and the expected number of infected individuals (m) can be used
to determine whether or not an outbreak will occur in the future. The results of
calculating the basic reproduction number (R,), the expected number of infected
individuals (m), and the outbreak probability are presented in Table 4.

Table 4 Influence of £ on basic reproduction number, expected number of
infected individuals, and outbreak probability

Parameter Basic reproduction Expected number of Outbreak

values of 8 number infected individuals probability
0.2 0.575816 0.574555 0
0.4 1.151631 0.892667 0
0.6 1.727447 1.0947 0.850386

Below are the simulation results for the influence of S:
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Figure 6 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time ¢ for § = 0.2.
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Figure 7 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time t for § = 0.4.
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Figure 8 Dynamics of susceptible, infected, quarantined, and recovered
individuals at time ¢t for 5 = 0.6.

The simulation results in Figures 6, 7 and 8 show that if g = 0.2, the number of
infected individuals decreased, with time until disease extinction time at 18.18
years. When the contact rate was increased to g = 0.4 and 8 = 0.6, the number
of infected individuals fluctuated and made the disease disappear slower than in
the previous simulation. Likewise, the result of the analytical calculations in
Table 4 shows that an increase in the transmission rate causes an increase in the
basic reproduction number (R,) > 1 and the expected number of infected
individuals (m) > 1, which increases the outbreak probability. Based on the
result of the simulations conducted it can be concluded that an increase in the
transmission rate without quarantine makes the disease disappear from the
population over a longer time and allows an outbreak in the long term.
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4.3  Scenario 3: Effect of Increasing the Quarantine Rate on the
Expected Time until Disease Extinction

Scenario 3 was used to determine the effect of the quarantine rate on the
expected time until disease extinction. At baseline, 50% of infected individuals
are quarantined. In this scenario it was studied what happens when the
quarantine rate was (@) § = 0.1, (b) § =0.2, (¢) § =0.4, (d) 6 = 0.6, (e) 6§ = 0.8,
(f) & = 1. The parameter values in this simulation were the same as in Table 2
except for the values of the transmission rate (8), which was 0.6, and the
healing rate (), which was (365/1095). The reason for choosing these
parameter values was because, based on the previous simulations, these values
indicate the highest time until disease extinction compared to the previous
parameter values. Below is the distribution of the probability of disease
extinction from 100 trials for each value of the quarantine rate (&). Based on
this the expected time until disease extinction was calculated.
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Figure 9 Disease extinction probabilities diagram for § = 0.1.
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Figure 10 Disease extinction probabilities diagram for § = 0.2.
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Disease extinction probabilities diagram for § = 0.4.
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Disease extinction probabilities diagram for 6 = 0.6.
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Figure 13

Disease extinction probabilities diagram for § = 0.8.
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Figure 14 Disease extinction probabilities diagram for § = 1.
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Based on the simulation in Figures 9-14, the expected time until disease
extinction was obtained as follows:

40
35
30
25
20
15
10

Expected time until
diseases-extinction

0 0.2 0.4 0.6 0.8 1
Quarantine rate (8)

Figure 15 Graph of the effect of the quarantine rate on the expected time until
disease extinction.

Figure 15 shows that for 6=0.1, § =0.2, 6§ =04, 6 =0.6, § = 0.8,and § = 1,
the expected time until disease extinction was 35.34, 17.86, 9.22, 5.261, 4.277,
and 3.284, respectively. The results of calculating the basic reproduction
number (R,), the expected number of infected individuals (m), and the
outbreak probability are presented in Table 5.

Table5 Influence of § on basic reproduction number, expected number of
infected individuals, and outbreak probability.

Value of Basic reproduction Expected number of Outbreak
Parameter § number (Ro) infected individuals (m) probability
0.1 1.341282 0.968486 0
0.2 1.096224 0.868367 0
0.4 0.802855 0.719589 0
0.6 0.633357 0.614334 0
0.8 0.522952 0.535942 0
1 0.445324 0.475292 0

Based on Table 5 it can be seen that for § = 0.1, § = 0.2, § = 0.4, § = 0.6,
6 =0.8 and § = 1 an expected number of infected individuals (m) < 1 was
obtained, which caused the value of outbreak probability to be 0 in each case.
This means that when the quarantine rate is given in the system, if the number
of infected individuals is decreasing then stochastically there will be no
outbreak in the long-term. The outbreak probability is determined from the
expected number of infected individuals (m) and not from the basic
reproduction number (R,). Because of this, although R, >1 for § = 0.1, and
6 = 0.2, alsom < 1 is obtained, which makes the outbreak probability 0.
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In this study we did not focus on a comparison between stochastic and
deterministic models. Especially for quarantine rate 0.1 and 0.2, the values of
R, >1 and m < 1 indicate that disease extinction will happen in the long run
after an outbreak in a certain period. This means that even though a
deterministic model shows an outbreak in the long term, it can be stochastically
determined, because when the quarantine rate is 0.1 and 0.2 tuberculosis can
disappear and there will be no outbreak in the long term.

The stochastic result can be different from the deterministic result because it
considers the random effects of uncertain cases. The stochastic model uses
random variables such as S (susceptible), I (infected), and Q (quarantined),
which can change every time so there are probabilities in each case. Especially
random variable I, the number of infected individuals, is probable to increase
and decrease. Based on the branching process approach, for quarantine rate § =
0.1 and 6 = 0.2, the probability of a decreasing number of infected individuals
is 0.5157 and 0.5658, respectively, so the probability of an increasing number
of infected individuals is 0.4842 and 0.4341. Stochastically this indicates that
there is a chance of m < 1 and the disease will become extinct so there will be
no outbreak in the long term.

Based on the simulation and analytical calculations it can be concluded that
increasing the quarantine rate from § = 0.1 to § = 1 decreases the expected
time until disease extinction, the basic reproduction number (R,) and the
expected number of infected individuals (m), because of which m < 1. This
indicates that increasing the quarantine rate makes the disease disappear more
rapidly from the population and reduces the contact between infected
individuals and non-infected individuals so there will be no outbreak in the long
term.

4.4  Sensitivity Analysis

A sensitivity analysis was performed to examine the effect of varying the
parameter values in the model. The sensitivity index of R, may be alternatively
defined using partial derivatives as follows:

Yy =2 x v ©)
where p is the parameter value in the model. The sensitivity index can show the
effect of relative changes of basic reproduction number R, when the value of p
is changed [15]. A positive sensitivity index indicates that every increase of the
number of p units will increase R, to [Y,*°| [16]. Based on Equation (9) and
the parameter value of the simulation when R, > 1, it is obtained that the
sensitivity index of R is as follows:
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Table 6 Sensitivity index of R,,.

Parameters  Sensitivity Index (Y,,"°)
1
—0.7451
—0.0313
-0.2235
0
0

y 0

QREDMOE O

Based on Table 6, it can be concluded that £ is a sensitive parameter towards
R,. This is in accordance with the stochastic results in Tables 3, 4 and 5, where
the transmission rate (8) has a larger influence on the expected number of
infected individuals (m) than the other parameters.

5 Conclusion

It can be concluded that the SIQRS model can be used to determine the
characteristics of the spread of infectious diseases such as tuberculosis. In
stochastic models, an outbreak occurs when the expected number of infected
individuals (m) > 1, whereas it does not occur when m < 1. Based on the
simulation of Scenario 1, the expected number of infected individuals (m) for €
= (365/365), ¢ = (365/730), and & = (365/1095) was 0.002758, 0.005433, and
0.008029, respectively, where m < 1. This indicates that an outbreak does not
occur when the healing rate is decreasing, but it needs a long of time for the
disease to disappear from the population.

In Scenario 2, the expected number of infected individuals (m) for § =0.2, 8 =
0.4, and B = 0.6 was 0.574555, 0.892667, and 1.0947, respectively. This
indicates that an increase of the transmission rate can increase the expected
number of infected individuals (i), which leads to an outbreak in the long
term. On the other hand, the simulation repeated 100 times with Scenario 3
showed that for § = 0.1, § =02, § =04, § =06, § = 0.8, and § = 1, the
expected time until disease extinction was 35.34, 17.86, 9.22, 5.261, 4.277, and
3.284, respectively, and the expected number of infected individuals (m) was
0.968486, 0.868367, 0.719589, 0.614334, 0.535942, and 0.475292,
respectively, where m < 1.

It can be concluded that an increase of the quarantine rate decreases the
expected time until disease extinction and reduces the contact between infected
individuals and non-infected individuals. It also makes the disease disappear
more rapidly from the population so there will not be an outbreak in the long
term. In general, the transmission rate is the most sensitive parameter in this
system towards the occurrence of outbreaks.
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