
 

 

J. Math. Fund. Sci. Vol. 53, No. 3, 2021, 395-414                       395 

 

Received February 15th, 2021, Revised August 27th, 2021, Accepted for publication November 18th, 2021 
Copyright © 2021 Published by ITB Institute for Research and Community Services, ISSN: 2337-5760, 

DOI: 10.5614/j.math.fund.sci.2021.53.3.5 

Inherent Irreversibility of Mixed Convection within 

Concentric Pipes in a Porous Medium with Thermal 

Radiation  

Oluwole Daniel Makinde1, Adetayo Samuel Eegunjobi2* 

1Faculty of Military Science, Stellenbosch University, Private Bag X2, 

Saldanha 7395, South Africa 
2Mathematics Department, Namibia University of Science and Technology, 

Windhoek 9000, Namibia 

*E-mail: samdet1@yahoo.com  

 

 

Abstract. This work investigated the thermal putrefaction and inherent 

irreversibility in a steady flow of an incompressible inconstant viscosity 

radiating fluid within two concentric pipes filled with a porous medium. 

Following the Brinkmann-Darcy-Forchheimer approach, the nonlinear 

differential equations governing the model were obtained. The model boundary 

value problem was addressed numerically via a shooting quadrature with the 

Runge-Kutta-Fehlberg integration scheme. The effects of diverse emerging 

parameters on the fluid velocity, temperature, skin friction, Nusselt number, 

entropy generation rate and the Bejan number are provided in graphs and 

discussed in this paper. 
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1 Introduction 

In recent years convective flow in a concentric annulus has attracted much 

attention owing to its importance for industrial and engineering applications 

such as aero-engines, thermal energy storage systems, cooling of electronic 

components and transmission cables, oil and gas drilling wells, and extruders, 

just to mention a few. In all these applications, the two concentric cylinders may 

be fixed, moving, or one fixed and the other moving during operation. 

Watanabe et al. [1] carried out a theoretical and experimental study on the fluid 

flows inside two concentric cylinders coupled with vertical axes. They surmised 

that the inner cylinder movement changes the flow structure. They also reported 

that the critical Reynolds numbers fluctuate at the free surface as the kinetic 

energy in the velocity component surges precipitously. Fénot et al. [2] surveyed 

the heat transfer of the flow between concentrically spinning cylinders and 

compared the different gap thickness, axial radial ratio, and velocity rotational 

of some works. Makinde [3] numerically examined the problem of steady 

universal axial Couette flow of Ostwald-de Waele power-law responsive fluids 
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between two concentric cylindrical tubes. The fixed outside cylinder trades heat 

with the surrounding conditions following Newton’s law of cooling while the 

isothermal inside cylinder moved in an axial direction. The work revealed the 

thermal criticality for the onset of instability in the flow environment. It was 

reported that the entire circulating structure and thermal decomposition strongly 

depend on the embedded thermophysical parameters. The heat transfer 

capability of a viscoelastic fluid in an annular flow within two rotating 

concentric cylinders was analytically examined by Lorenzini et al. [4] using the 

Giesekus model. It was found that a rise in Brinkmann number may lead to 

asymptotic behavior of the Nusselt number. Coelho et al. [5] theoretically 

examined the impact of an embedded porous medium in conduit flows of a non-

Newtonian fluid and obtained a generalized Brinkmann number that is valid for 

any flow regime to calculate the proportion of frictional heat and heat exchange 

at the wall.  

The thermodynamic performance of engineering systems can be enhanced by 

effectively regulating various factors related to entropy generation. 

Thermodynamic irreversibility and entropy generation are connected, and this 

happens in practically all flow and heat exchange activities. Bejan [6] presents 

an investigation of the second law of fluid flow and heat transfer with entropy 

minimization in a thermal device. He obtained a suitable analytical solution 

(entropy generation number) to estimate the destruction of available work in a 

flow process involving heat transfer. 

Thereafter, several authors [7-10] have investigated entropy generation 

minimization in fluid currents with heat and mass exchange problems under 

various physical conditions. Yurusoy et al. [11] investigated the problem of heat 

exchange characteristics in a non-Newtonian fluid flow inside annulated pipes 

with entropy generation. Their study revealed that a reduction of the non-

Newtonian parameter increases the inherent irreversibility in the flow regime. 

The combined influence of thermal radiation, buoyancy force, convective 

cooling and viscous dissipation on entropy generation rate in the microchannel 

flow of an EG/Ag nanofluid was numerically studied by Monaledi & Makinde 

[12]. They found that an increase in nanoparticle volume fraction, buoyancy 

forces and thermal radiation boosts the thermodynamic irreversibility in the 

flow regime. 

Chakraborty & Ray [13] made use of the laws of thermodynamics, both the first 

and second, to investigate entropy generation minimization criteria in a thermal-

hydraulic duct flow with round corners. It was shown that the geometry of the 

ducts may not greatly influence the thermodynamic irreversibility in the flow 

regime. The inherent irreversibility in an unsteady Poiseuille-Rayleigh-Bénard 

hydromagnetic blended convection through a channel was numerically 
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investigated by Marzougui et al. [14]. Their results revealed that a variation in 

Brinkmann number considerably affected the entropy generation rate within the 

flow regime. Recently, Mebarek-Oudina et al. [15] numerically investigated the 

consequences of a magnetic field on the thermodynamic irreversibility inside an 

enclosed trapezoidal cavity with a zig-zag wall containing a hybrid nano-liquid 

with heat transfer. They reported that an increase in magnetic field intensity 

reduces the entropy production rate. For interested readers, further relevant 

recent literature on entropy generation minimization in fluid flows with heat 

exchange features can be found in [16-18].  

From a literature survey, it was found that the combined impacts of Brinkmann-

Darcy-Forchheimer porous medium, thermal radiation, velocity slip, and 

variable viscosity on thermodynamic irreversibility in buoyant convection 

within a concentric annulus have not been thoroughly investigated yet. Hence, 

the present work aimed to fill this gap in the literature. Buoyant transmittal in an 

annular configuration filled with porous media consisting of two concentric 

pipes has many important applications, namely, in heat exchange systems in 

metallurgical and petrochemical procedures, moisture migration in fibrous 

insulation, underground discarding of nuclear wastes, and thermal converters 

with a porous liner. In the next section, the controlling equations of the problem 

are given; the equations are therefore dimensionless and solved numerically. 

The consequences of diverse rooted parameters on the velocity profile, 

temperature profile, skin friction, Nusselt number, entropy generation rate and 

the Bejan number are provided with graphs and discussed. 

2 Model 

We address an incompressible changeable viscosity fluid steady flow through 

the annulus inside two concentric vertical pipes loaded with a penetrable 

medium in addition to the united action of thermal buoyancy and axial pressure 

gradient. The inner pipe surface was assumed to be slippery and maintained at a 

uniform high temperature, T0 (this assumption illustrates the occurrence of a 

heat-generating mechanical process within the hollow of the inner pipe), while 

the outer pipe surface was adapted to convective heat swap with the ambient 

environment following Newton’s law of cooling, as pictured in Figure 1. To 

describe the flow of the fluid through a porous medium with high enough 

velocity, the Brinkmann-Darcy-Forchheimer model was employed. The 

Forchheimer model incorporates two terms that indicate the viscous effect and 

the inertial effect. The model utilizes the square root of permeability as the 

corresponding length characteristics are in agreement with the linearized Darcy 

law at low velocities, while the non-dimensional coefficient in the quadratic 

term is used to represent the inertial effect. 
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Figure 1 Schematic diagram of the model. 

With these assumptions, the continuity, momentum, energy and volumetric 

entropy generation equations take the following form [3,4,7,11];
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The relevant boundary conditions at both the inner slip surface and the outer 

convective cooling surface are as follows: 

 𝑢 =
𝜇(𝑇0)

𝛿

∂𝑢

∂𝑟
,   𝑇 = 𝑇0,    at  r = 𝑟1,  (5)
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 𝑢 = 0,   − 𝑘
∂𝑇

∂𝑟
= ℎ(𝑇 − 𝑇𝑎),    at  r = 𝑟2. (6) 

 
In line with the Roseland approximation [19,20], the local radiative heat flux 

term for an optically thick gray fluid is given by  
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, (7)                                         

where 𝑇4 ≈ 4𝑇𝑎
3𝑇 − 3𝑇𝑎

4 (using Taylor series estimation),  k* is the mean 

absorption coefficient, and 𝜎∗is the Stefan-Boltzmann constant. Thus, we obtain                      
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The dynamical temperature-dependent viscosity (T) is taken as 

 𝜇(𝑇) = 𝜇0𝑒
−𝑚(𝑇−𝑇𝑎), (9) 

where 0 is the dynamic viscosity of the fluid at ambient temperature Ta so that 

Ta < T0, 𝑚 material property, z is the axial length, K is the porous medium’s 

permeability, c is the Forchheimer inertial coefficient, r is the radial length,  is 

the slip coefficient, T denotes the temperature of the fluid, u stands for axial 

velocity, 𝑟1, 𝑟2  are the inside and outside radii respectively, 𝜌 is the density of 

the fluid, 𝑘is the thermal conductivity of the fluid, 𝑃 is the fluid pressure, 𝛽 

represents the volumetric thermal enlargement coefficient, 𝐸𝐺  is the volumetric 

entropy production (generation) rate, g represents acceleration as a result of  

gravity, ℎ is the heat transfer coefficient. Using dimensionless variables 
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the dimensionless controlling equations in addition to the suitable boundary 

conditions can be written as: 
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is the decrease rate of fluid viscosity due to temperature variation, Nr is 

the thermal radiation parameter, 𝐷𝑎 is the Darcy number, F is the Forchheimer 

inertial parameter,  is the slip parameter, 𝜀 is the pressure gradient variable, 𝐺𝑟 

is the Grashof number, 𝐶𝑝 represents the specific heat at a steady pressure, L 

denotes the concentric cylinder annulus parameter, 𝑃𝑟 is the Prandtl variable, 

𝐸𝑐 refers to the Eckert number, 𝐵𝑖 represents the thermal Biot number and 𝜂 

denotes the dimensionless annulus in the two cylinders. The other relevant 

parameters are skin friction (𝐶𝑓) and Nusselt number
 
(𝑁𝑢), expressed as:     
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represents the irreversibility owning to heat 

exchange. 

3 Numerical Procedure 

In the interest of solving the non-linear boundary value problem defined by Eqs. 

(11)-(14), the shooting approach combined with the Runge-Kutta-Fehlberg 

integration approach are numerically employed [21, 22]. Suppose that 
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  𝑤 = 𝑦1, 𝑤
′ = 𝑦2, 𝜃 = 𝑦3, 𝜃

′ = 𝑦4. (17) 

We modify the controlling equations into a set of non-linear initial value 

problems: 
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 (18) 

with the equivalent initial conditions given as:    

 𝑦1(0) = 𝜆𝑒
−𝛾𝑦2(0), 𝑦2(0) = 𝑎1, 𝑦3(0) = 1, 𝑦4(0) = 𝑎2. (19)  

The unknown initial values of a1 and a2 in Eq. (19) are first assumed and 

thereafter determined precisely via the shooting procedure with an iteration 

technique using a Newton-Raphson step size of  = 0.01. The solutions 

obtained numerically for the velocity and temperature contours are utilized to 

work out the values of skin friction, Nusselt number, entropy production rate, 

and Bejan number as stipulated in Eq. (15) together with Eq. (16). 

4 Results and Discussion 

The calculation results show the effects of the variation of the thermophysical 

parameters on fluid temperature, velocity, Nusselt number, skin friction, 

entropy generation rate, and Bejan number, as presented in Figures 2-7. The 

parameter value range employed in our numerical calculation (𝐺𝑟 = 1-2.5; 𝑁𝑟 = 

0.1-1.5;  = 1-4; L = 0.5-3.5; etc.) was selected in order to give an insight into 

their impact on the overall thermal and flow structure within the annulus. In 

order to verify the precision of our numerical approach, we consider a special 

case of constant viscosity fluid flow within a no-slip concentric annulus without 

porous medium with L = 2, 𝐷𝑎 = ∞,  = 1, 𝐺𝑟 = F =  =  = 0, whose exact 

solution for the velocity profile in Eq. (11) is given as:  

 𝑤(𝜂) = −
𝜀𝜂

4𝐿
(𝐿𝜂 + 2) +

𝜀(𝐿+2)

4𝐿

𝑙𝑛(𝐿𝜂+1)

𝑙𝑛(𝐿+1)
. (20) 

A comparison between the exact solution as obtained by Eq. (20) and the results 

obtained from the shooting method combined with the Runge-Kutta-Fehlberg 

integration are displayed in Table 1, showing excellent agreement. This 

confirms the precision of our numerical results. 
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Table 1 Computations exhibiting the correspondence 

between exact and numerical solution for L = 2, Da = ∞,  

= 1, Gr = F =  =  = 0.  

 
w() 

Exact solution 

w() 

Shooting numerical 

solution 

0 0.000000000 0.0000000000 

0.1 0.0554781164 0.0554781163 

0.2 0.0931351142 0.0931351142 

0.3 0.1164078699 0.1164078697 

0.4 0.1275132396 0.1275132398 

0.5 0.1279648767 0.1279648765 

0.6 0.1188424088 0.1188424087 

0.7 0.1009429931 0.1009429930 

0.8 0.0748719992 0.0748719991 

0.9 0.0410999908 0.0410999910 

1.0 0.0000000000 0.0000000000 

The effects of concentric gap parameter, pressure gradient, Grashof number, 

Forchheimer inertial parameter, and Darcy number on the velocity parameter 

are presented in Figure 2. It can be seen in Figure 2(a) that with an increase in 

the concentric gap parameter, the fluid velocity in the annular gap decreases. 

This may be attributed to the existence of wall shear stress, which has a great 

impact on the flow motion. It can be seen from Figure 2(b) that the pressure 

gradient was the main driving force. By increasing the pressure gradient, the 

velocity profile shoots up within the annulus gap. 

The buoyancy effect on the flow was also examined through the Grashof 

number. A rise in the Grashof number automatically transfers to an increase in 

the temperature difference, which leads to a rise in the velocity profile, as can 

be seen in Figure 2(c). Moreover, an increase in temperature difference 

enhances the flow convection. The influence of the Darcy number on the 

velocity profile is displayed in Figure 2(d). An increase in the Darcy number 

causes an increase in the permeability of the porous medium. As a result, there 

exists little resistance in the flow through the porous medium. This causes the 

velocity to increase. Figure 2(e) presents the influence of the Forchheimer 

inertial parameter on the velocity profile. A decreasing effect is noticed at the 

center of the gap with an increase of the Forchheimer inertial parameter. 
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Figure 2 (a) Velocity profile with increasing L, (b) velocity profile with 

increasing 𝜀, (c) velocity profile with increasing 𝐺𝑟, (d) velocity profile with 

increasing 𝐷𝑎, (e) velocity profile with increasing F. 
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Figure 3 (a) Temperature profile with increasing 𝑁𝑟, (b) temperature profile 

with increasing L, (c) temperature profile with increasing 𝜀, (d) temperature 

profile with increasing 𝐺𝑟, (e) temperature profile with increasing 𝐷𝑎, (f) 

temperature profile with increasing F. 
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Figure 3 presents the effect of the thermal radiation parameter, concentric gap 

parameter, pressure gradient, Grashof number, Darcy number and Forchheimer 

inertial parameter on the temperature profile. The effect of the thermal radiation 

parameter on the temperature profile is presented in Figure 3(a).  It can be seen 

that the temperature profile decreases with higher thermal radiation parameters 

because an increase in the thermal radiation parameter  (𝑁𝑟 =
16𝜎∗𝑇𝑎

3

3𝑘𝑘∗
) for a 

given 𝑘 and 𝑇𝑎 
leads to a decrease in mean absorption coefficient 𝑘∗. From Eqs. 

(3) and (7) we conclude that the local radiative heat flux term for optically thick 

gray fluid increases as the mean absorption coefficient decreases the rate of heat 

exchange to the fluid and thereby decreases the temperature profile. 

The effect of the concentric gap parameter is shown in Figure 3(b). It is noted 

that as the concentric gap parameter goes up, the temperature profile decreases, 

which is more pronounced at the exterior of the pipe. Figure 3(c) shows the 

effect of the pressure gradient on the temperature profile. It can be seen that an 

increase in the pressure gradient causes the fluid molecules to increase and 

thereby raise the temperature contour. The effect of the Grashof number on the 

temperature profile is shown in Figure 3(d). The Grashof number correlates 

with the buoyancy and the viscous force acting on the fluid. The Grashof 

number and the boundary layer are proportional to each other; a rise in one 

leads to a rise in the other. It can be seen that increasing the Grashof number 

transfers more thermal energy to the fluid molecules and thereby relaxes the 

intermolecular forces in the fluid particles, which results in an increase of heat 

exchange in the fluid. 

Figures 3(e)-(f) show the effects of the Darcy number and the Forchheimer 

inertial parameter on the temperature profile. It can be seen that any increase in 

the temperature profile at the outer pipe will increase the Darcy number while a 

decrease occurs in the temperature profile by increasing the Forchheimer 

inertial parameter, as shown in Figure 3(f). 

The effects of pressure gradient versus thermal radiating parameter, Grashof 

number versus thermal radiating parameter, Darcy number versus thermal 

radiating parameter and Forchheimer inertial parameter versus thermal radiating 

parameter on both skin friction and Nusselt number are presented in Figures 4 

and 5. In Figures 4 (a)-(c) it can be seen that as the pressure gradient versus the 

thermal radiating parameter, the Grashof number versus the thermal radiating 

parameter and the Darcy number versus the thermal radiating parameter are 

increasing, the skin friction also increases at both the interior and exterior of the 

pipes. However, the skin friction decreases as the Forchheimer inertial 

parameter versus the thermal radiating parameter increases, as shown in Figure 

4(d). 
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Figure 4 (a) Skin friction with increasing Nr and 𝜀, (b) skin friction with 

increasing Nr and Gr, (c) skin friction with increasing Nr and Da, (d) skin 

friction with increasing Nr and F. 

The significance of these parameters is also reflected in the Nusselt number 

shown in Figure 5. We observe that an increase in these variables leads to a 

reduction in the Nusselt number at both the interior and exterior of the pipes, as 

shown in Figures 5(b)-(d). However, the outer pipe in Figure 5(a) increases 

slightly with an increase in the concentric gap parameter versus the thermal 

radiating parameter. 
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Figure 5 (a) Nusselt number with increasing Nr and L, (b) Nusselt number with 

increasing Nr and 𝜀, (c) Nusselt number with increasing Nr and Da, (d) Nusselt 

number with increasing Nr and F. 

Figure 6 present the effects of the thermal radiation parameter, concentric gap 

parameter, pressure gradient, Grashof number, Darcy number and Forchheimer 

inertial parameter on the entropy generation rate profile. In Figure 6(a), the 

entropy profile increases with increasing thermal radiating parameter in the flow 

channel and inside the pipes but with little effect on the outer pipe. It can be 

seen that there is a restrictive medium, which leads to a high disorder of the 

flow particles inside the pipe and increases the entropy generation, while little 

or no effect of the restrictive medium is detected at the outer pipe. Figure 6(b) 

details the influence of the concentric gap parameter on the entropy profile. 

Here, we see that the entropy profile increases at the inner wall and toward the 

channel center as the concentric gap parameter increases. Meanwhile, there is 

no effect from the middle of the gap to the outer pipe. We conclude from this 
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result that the restrictive medium gradually fades away from the inner pipe 

toward the outer pipe. 

 

Figure 6 (a) Entropy profile with increasing 𝑁𝑟, (b) entropy profile with 

increasing L, (c) entropy profile with increasing 𝜀, (d) entropy profile with 

increasing 𝐺𝑟, (e) entropy profile with increasing 𝐷𝑎, (f) entropy profile with 

increasing F. 
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The effect of the pressure gradient on the entropy profile is revealed in Figure 

6(c). It can be seen that an increase in the pressure gradient enhances the 

entropy profile throughout the flow channel and the same explanation applies to 

Figures 6(d)-(e), which show the effects of the Grashof number and the Darcy 

number. The effect of the Forchheimer inertial parameter is presented in Figure 

6(f). We notice a slight decrease in the entropy generation rate in both pipes and 

a slight increase at the center of the gap as the Forchheimer inertial parameter 

increases. 

The effect of varied values of the thermal radiation parameter, concentric gap 

parameter, pressure gradient, Grashof number, Darcy number and Forchheimer 

inertial parameter on the Bejan number profile are shown in Figure 7. In Figure 

7(a) we see that an increase of the thermal radiating parameter increases the 

Bejan number profile within the flow channel. This implies that irreversibility 

due to heat exchange has a dominant effect on the flow. Figure 7(b) shows the 

effect of the concentric gap parameter on the Bejan number. This figure shows 

that the Bejan number increases inside the pipe with increasing concentric gap 

parameter while there is no impact of the Bejan number on the outer pipe. This 

shows that the dominant effect of the irreversibility resulting from heat transfer 

is more visible inside the pipe. 

The influence of the pressure gradient on the Bejan number is illustrated in 

Figure 7(c). Here we see that the Bejan number decreases throughout the flow 

with an increase of the pressure gradient parameter. This implies that the 

entropy generation rate, as a result of viscous dissipation and porous medium 

resistance heating, has a dominant effect on the flow. With an increase of the 

Grashof number, as shown in Figure 7(d), the Bejan number decreases. The 

decrease in the Bejan number is more obvious at the inner pipe compared to the 

outer pipe. This shows that the dominant effect of entropy generation related to 

viscous dissipation and porous medium resistance heating is greater at the inner 

pipe compared to the outer pipe. The effect of variation of the Darcy number on 

the Bejan number is shown in Figure 7(e). It can be seen that the Darcy number 

increases the Bejan number at the inner wall while it reduces it at the outer wall 

of the pipe. Meanwhile, the Forchheimer inertial parameter reduces the Bejan 

number from the inner wall towards to center of the gap and slightly increases it 

from the same point towards the outer wall, as shown in Figure 7(f). 



410 Makinde, O.D. & Eegunjobi, A.S. 

 

Figure 7 (a) Bejan number profile with increasing 𝑁𝑟, (b) Bejan number profile 

with increasing L, (c) Bejan number profile with increasing 𝜀, (d) Bejan number 

profile with increasing 𝐺𝑟, (e) Bejan number profile with increasing 𝐷𝑎, (f) 

Bejan number profile with increasing F. 
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5 Conclusions 

The buoyancy convection of an inconstant viscosity radiating fluid within a 

slippery annulus formed between two concentric pipes filled with a porous 

medium was numerically examined via the shooting method coupled with the 

Runge-Kutta-Fehlberg integration method. Our results can be summarized as 

follows:  

• Fluid velocity increases with increasing Grashof number, pressure 

gradient and Darcy number while it decreases with a rise in thermal 

radiation, annulus gap and Forchheimer inertial parameter. 

• The fluid temperature increases with an increase in Grashof number, 

pressure gradient and Darcy number but decreases with an increase in 

thermal radiation, annulus gap and Forchheimer inertial parameter. 

• The skin friction increases with increasing thermal radiation, annulus 

gap, Grashof number and Darcy number but decreases with increasing 

Forchheimer inertial parameter. 

• The Nusselt number increases slightly with increasing thermal radiation 

parameter concentric gap parameter and decreases with increasing 

thermal radiation, annulus gap, Grashof number, Darcy number and 

Forchheimer inertial parameter in both vertical pipes. 

• An increase of the Grashof number, pressure gradient, thermal 

radiation, annulus gap and the Darcy number leads to an increase of the 

entropy generation rate. 

• An increase of the annulus gap boosts the Bejan number and increases 

the heat transfer irreversibility, while an increase in the Grashof number 

and pressure gradient decreases it. A rise in Darcy number increases the 

Bejan number at the inner wall, while the Forchheimer inertial 

parameter decreases the Bejan number at the inner wall. 

Finally, it is noteworthy that suitable fine-tuning of the thermophysical 

parameters will enhance the entropy generation minimization in engineering 

thermal and fluid flow applications such as concentric pipe heat exchangers 

involving buoyant convection in a porous medium for optimal performance.  

6 Nomenclatures 

𝐵𝑒 = Bejan number 

𝐵𝑖 = Thermal Biot number 

𝐶𝑓 = Skin friction 

𝐶𝑝  = Specific heat at constant pressure (𝐽Kg 𝐾⁄ ) 
𝐷𝑎 = Darcy number 

𝐸𝑐 = Eckert number 
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𝐸𝐺   = Volumetric entropy generation 

𝐹 = Forchheimer inertial parameter 

𝐺𝑟 = Grashof number 

g = Acceleration due to gravity (𝑚 𝑠2⁄ ) 
ℎ = Heat transfer coefficient (𝑊 𝑚2𝑘⁄ ) 
𝑘 = Fluid thermal conductivity (𝑊𝑚−1𝐾−1) 
𝑚 = Material property 

𝑁1 = Irreversibility because of heat transfer 

𝑁2 = Entropy generation because of viscous dissipation 

𝑁𝑠 = Dimensionless entropy production rate 

𝑁𝑢 = Nusselt number 

Nr = Radiating parameter 

𝑃 = Fluid pressure (𝑁 𝑚2⁄ )  
𝑃𝑟 = Prandtl number 
𝑟1, 𝑟2 = Inward and outward pipes radii (𝑚) 
𝑟 = Radial distance (𝑚) 
𝑇 = Fluid temperature (°𝐾) 
𝑇0 = Temperature at the inner pipe surface (°𝐾) 
𝑇𝑎 = Ambient temperature (°𝐾) 
𝑢 = Dimensional axial velocity (𝑚 𝑠2⁄ ) 
𝑤 = Dimensionless axial velocity(𝑚 𝑠2⁄ ) 
𝑧 = Axial distance 

 

Greek Symbols 

𝜇0 = Fluid dynamic viscosity (the ambient temperature). (𝑁𝑠 𝑚2⁄ ) 
𝜇 = Dynamic viscosity of the fluid (𝑁𝑠 𝑚2⁄ ) 
𝜌 = Density of the fluid  (𝐾𝑔 𝑚2⁄ ) 
𝛽 = Volumetric thermal expansion coefficient (𝐾−1) 
𝜎 = Fluid electrical conductivity (Ω−1𝑚−1) 
𝛾 = Decrease in fluid viscosity rate due to temperature difference 

𝜂 = Dimensionless gap between two-cylinder 

𝜀 = Dimensionless axial pressure gradient 

𝜃 = Dimensionless temperature 

𝜆 = Slip parameter 

References 

[1] Watanabe, T., Toya, Y. & Nakamura, I., Development of Free Surface 

Flow Between Concentric Cylinders with Vertical Axes, Journal of 

Physics: Conference Series, 14, pp. 9-19, 2005. 

[2] Fénot, M., Bertin, Y., Dorignac, E. & Lalizel, G., A Review of Heat 

Transfer Between Concentric Rotating Cylinders with or without Axial 



 Inherent Irreversibility of Mixed Convection 413 

Flow, International Journal of Thermal Sciences, 50, pp. 1138-1155, 

2011. 

[3] Makinde, O.D., Thermal Analysis of a Reactive Generalized Couette 

Flow of Power-Law Fluid Between Concentric Cylindrical Pipes, 

European Physical Journal Plus, 129(270), 2014. 

[4] Lorenzini, M., Dapra, I. & Scarpri, G., Heat Transfer for a Giesekus 

Fluid in a Rotating Concentric Annulus. Applied Thermal Engineering, 

122, pp. 118-125, 2017. 

[5] Coelho, P.M. & Pinho, F. T., A Generalized Brinkman Number for Non-

Newtonian Duct Flows. Journal of Non-Newtonian Fluid Mechanics, 

156(3), pp. 202-206, 2009.  

[6] Bejan, A., Second-Law Analysis in Heat Transfer and Thermal Design. 

Advance in Heat Transfer, 15, pp. 1-58, 1982.  

[7] Eegunjobi, A.S. & Makinde, O.D., Entropy Generation Analysis in 

Transient Variable Viscosity Couette Flow Between Two Concentric 

Pipes, Journal of Thermal Science and Technology, 9(2), pp. 1-11, 2014. 

[8] Jain, S., Kumar, V. & Bohra, S., Entropy Generation in Generalized 

Couette Flow Through Porous Medium with Different Thermal Boundary 

Conditions, International Journal of Energy & Technology, 7, pp. 40-48, 

2015. 

[9] Makinde, O.D., Irreversibility Analysis for Gravity-Driven Non-

Newtonian Liquid Film Along with an Inclined Isothermal Plate, Physica 

Scripta, 74, pp. 642-645, 2006. 

[10] Saouli, S. & Aiboud-Saouli, S., Second Law Analysis of The Laminar 

Falling Liquid Film Along with an Inclined Heated Plate, Inter. Comm. 

Heat Mass Transfer, 31, pp. 879-886, 2004. 

[11] Yurusoy, M., Yilbas, B.S. & Pakdemirli, M., Non-Newtonian Fluid Flow 

in Annular Pipes and Entropy Generation: Temperature-dependent 

Viscosity, Sadhana, 31(6), pp. 683-695, 2006. 

[12] Monaledi, R.L. & Makinde, O.D., Entropy Analysis of a Radiating 

Variable Viscosity EG/Ag Nanofluid Flow in Microchannels with 

Buoyancy Force and Convective Cooling, Defect and Diffusion Forum, 

387, pp. 273-285, 2018. 

[13] Chakraborty, S. & Ray, S., Performance Optimisation of Laminar Fully 

Developed Flow Through Square Ducts with Rounded Corners. 

International Journal of Thermal Sciences, 50(12), pp. 2522-2535, 2011. 

[14] Marzougui, S., Bouabid, M., Mebarek-Oudina, F., Abu-Hamdeh, N., 

Magherbi, M. & Ramesh K., A Computational Analysis of Heat 

Transport Irreversibility Phenomenon in a Magnetized Porous Channel. 

International Journal of Numerical Methods for Heat & Fluid Flow, 

31(7), pp. 2197-2222, 2021. 

[15] Mebarek-Oudina, F., Fares, R., Aissa, A., Lewis, R. W. & Abu-Hamdeh 

N.H., Entropy and Convection Effect on Magnetized Hybrid Nano-Liquid 

https://www.emerald.com/insight/search?q=K.%20Ramesh
https://www.emerald.com/insight/publication/issn/0961-5539
https://www.emerald.com/insight/publication/issn/0961-5539/vol/31/iss/7
https://www.sciencedirect.com/science/article/abs/pii/S0735193321001731?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0735193321001731?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0735193321001731?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0735193321001731?via%3Dihub#!
https://www.sciencedirect.com/science/article/abs/pii/S0735193321001731?via%3Dihub#!


414 Makinde, O.D. & Eegunjobi, A.S. 

Flow Inside a Trapezoidal Cavity with The Zigzagged Wall. International 

Communications in Heat and Mass Transfer, 125, 105279, 2021. 

[16] Venkateswarlu, M., Lakshmi, D.V. & Makinde, O.D., Thermodynamic 

Analysis of Hall Current and Soret Number Effect on Hydromagnetic 

Couette Flow in a Rotating System with a Convective Boundary 

Condition. Heat Transfer Research, 51(1), pp. 83-102, 2020. 

[17] Nayak, M. K., Hakeem, A.K.A., Ganga, B., Khan, M.I., Waqas, M. & 

Makinde, O.D., Entropy Optimized MHD 3D Nanomaterial of Non-

Newtonian Fluid: A Combined Approach to a Good Absorber of Solar 

Energy and Intensification of Heat Transport. Computer Methods and 

Programs in Biomedicine, 186, 105131 pp. 1-15, 2020. 

[18] Shaw, S., Dogonchi, A.S., Nayak, M.K. & Makinde, O.D., Impact of 

Entropy Generation and Nonlinear Thermal Radiation on Darcy-

Forchheimer Flow of MnFe2O4-Casson/Water Nanofluid Due to a 

Rotating Disk: Application to Brain Dynamics. Arabian Journal for 

Science and Engineering, 45(7), pp. 5471-5490, 2020.  

[19] Brewster, M.A., Thermal Radiative Transfer and Properties. New York: 

John Wiley and Sons, 1992. 

[20] Rosseland, S., Theoretical Astrophysics. Oxford University, New York, 

USA, 1936. 

[21] Na, T.Y., Computational Methods in Engineering Boundary Value 

Problem, Academic Press, 1979. 

[22] Cebeci, T. & Bradshaw, P., Physical and Computational Aspects of 

Convective Heat Transfer. New York, USA: Springer, 1988. 

https://www.sciencedirect.com/science/journal/07351933
https://www.sciencedirect.com/science/journal/07351933
https://www.sciencedirect.com/science/journal/07351933/125/supp/C
javascript:void(0)
javascript:void(0)
javascript:void(0)
https://www.springerprofessional.de/en/arabian-journal-for-science-and-engineering/6085892
https://www.springerprofessional.de/en/arabian-journal-for-science-and-engineering/6085892

