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Abstract. This work investigated the thermal putrefaction and inherent
irreversibility in a steady flow of an incompressible inconstant viscosity
radiating fluid within two concentric pipes filled with a porous medium.
Following the Brinkmann-Darcy-Forchheimer approach, the nonlinear
differential equations governing the model were obtained. The model boundary
value problem was addressed numerically via a shooting quadrature with the
Runge-Kutta-Fehlberg integration scheme. The effects of diverse emerging
parameters on the fluid velocity, temperature, skin friction, Nusselt number,
entropy generation rate and the Bejan number are provided in graphs and
discussed in this paper.
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1 Introduction

In recent years convective flow in a concentric annulus has attracted much
attention owing to its importance for industrial and engineering applications
such as aero-engines, thermal energy storage systems, cooling of electronic
components and transmission cables, oil and gas drilling wells, and extruders,
just to mention a few. In all these applications, the two concentric cylinders may
be fixed, moving, or one fixed and the other moving during operation.
Watanabe et al. [1] carried out a theoretical and experimental study on the fluid
flows inside two concentric cylinders coupled with vertical axes. They surmised
that the inner cylinder movement changes the flow structure. They also reported
that the critical Reynolds numbers fluctuate at the free surface as the kinetic
energy in the velocity component surges precipitously. Fénot et al. [2] surveyed
the heat transfer of the flow between concentrically spinning cylinders and
compared the different gap thickness, axial radial ratio, and velocity rotational
of some works. Makinde [3] numerically examined the problem of steady
universal axial Couette flow of Ostwald-de Waele power-law responsive fluids
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between two concentric cylindrical tubes. The fixed outside cylinder trades heat
with the surrounding conditions following Newton’s law of cooling while the
isothermal inside cylinder moved in an axial direction. The work revealed the
thermal criticality for the onset of instability in the flow environment. It was
reported that the entire circulating structure and thermal decomposition strongly
depend on the embedded thermophysical parameters. The heat transfer
capability of a viscoelastic fluid in an annular flow within two rotating
concentric cylinders was analytically examined by Lorenzini et al. [4] using the
Giesekus model. It was found that a rise in Brinkmann number may lead to
asymptotic behavior of the Nusselt number. Coelho et al. [5] theoretically
examined the impact of an embedded porous medium in conduit flows of a non-
Newtonian fluid and obtained a generalized Brinkmann number that is valid for
any flow regime to calculate the proportion of frictional heat and heat exchange
at the wall.

The thermodynamic performance of engineering systems can be enhanced by
effectively regulating various factors related to entropy generation.
Thermodynamic irreversibility and entropy generation are connected, and this
happens in practically all flow and heat exchange activities. Bejan [6] presents
an investigation of the second law of fluid flow and heat transfer with entropy
minimization in a thermal device. He obtained a suitable analytical solution
(entropy generation number) to estimate the destruction of available work in a
flow process involving heat transfer.

Thereafter, several authors [7-10] have investigated entropy generation
minimization in fluid currents with heat and mass exchange problems under
various physical conditions. Yurusoy et al. [11] investigated the problem of heat
exchange characteristics in a non-Newtonian fluid flow inside annulated pipes
with entropy generation. Their study revealed that a reduction of the non-
Newtonian parameter increases the inherent irreversibility in the flow regime.
The combined influence of thermal radiation, buoyancy force, convective
cooling and viscous dissipation on entropy generation rate in the microchannel
flow of an EG/Ag nanofluid was numerically studied by Monaledi & Makinde
[12]. They found that an increase in nanoparticle volume fraction, buoyancy
forces and thermal radiation boosts the thermodynamic irreversibility in the
flow regime.

Chakraborty & Ray [13] made use of the laws of thermodynamics, both the first
and second, to investigate entropy generation minimization criteria in a thermal-
hydraulic duct flow with round corners. It was shown that the geometry of the
ducts may not greatly influence the thermodynamic irreversibility in the flow
regime. The inherent irreversibility in an unsteady Poiseuille-Rayleigh-Bénard
hydromagnetic blended convection through a channel was numerically



Inherent Irreversibility of Mixed Convection 397

investigated by Marzougui et al. [14]. Their results revealed that a variation in
Brinkmann number considerably affected the entropy generation rate within the
flow regime. Recently, Mebarek-Oudina et al. [15] numerically investigated the
consequences of a magnetic field on the thermodynamic irreversibility inside an
enclosed trapezoidal cavity with a zig-zag wall containing a hybrid nano-liquid
with heat transfer. They reported that an increase in magnetic field intensity
reduces the entropy production rate. For interested readers, further relevant
recent literature on entropy generation minimization in fluid flows with heat
exchange features can be found in [16-18].

From a literature survey, it was found that the combined impacts of Brinkmann-
Darcy-Forchheimer porous medium, thermal radiation, velocity slip, and
variable viscosity on thermodynamic irreversibility in buoyant convection
within a concentric annulus have not been thoroughly investigated yet. Hence,
the present work aimed to fill this gap in the literature. Buoyant transmittal in an
annular configuration filled with porous media consisting of two concentric
pipes has many important applications, namely, in heat exchange systems in
metallurgical and petrochemical procedures, moisture migration in fibrous
insulation, underground discarding of nuclear wastes, and thermal converters
with a porous liner. In the next section, the controlling equations of the problem
are given; the equations are therefore dimensionless and solved numerically.
The consequences of diverse rooted parameters on the velocity profile,
temperature profile, skin friction, Nusselt number, entropy generation rate and
the Bejan number are provided with graphs and discussed.

2 Model

We address an incompressible changeable viscosity fluid steady flow through
the annulus inside two concentric vertical pipes loaded with a penetrable
medium in addition to the united action of thermal buoyancy and axial pressure
gradient. The inner pipe surface was assumed to be slippery and maintained at a
uniform high temperature, To (this assumption illustrates the occurrence of a
heat-generating mechanical process within the hollow of the inner pipe), while
the outer pipe surface was adapted to convective heat swap with the ambient
environment following Newton’s law of cooling, as pictured in Figure 1. To
describe the flow of the fluid through a porous medium with high enough
velocity, the Brinkmann-Darcy-Forchheimer model was employed. The
Forchheimer model incorporates two terms that indicate the viscous effect and
the inertial effect. The model utilizes the square root of permeability as the
corresponding length characteristics are in agreement with the linearized Darcy
law at low velocities, while the non-dimensional coefficient in the quadratic
term is used to represent the inertial effect.
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Figure 1 Schematic diagram of the model.

With these assumptions, the continuity, momentum, energy and volumetric
entropy generation equations take the following form [3,4,7,11];

ou
oP 190 ou u(Mu  pcu?
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e’ (4)
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The relevant boundary conditions at both the inner slip surface and the outer
convective cooling surface are as follows:

u=L% roT atr=n, (5)
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u=0, —kS=hnT-T,), atr=r, (6)

In line with the Roseland approximation [19,20], the local radiative heat flux
term for an optically thick gray fluid is given by

40%dT* _ 160%T§ OT

=

qr = 3k* Or 3kx  Or’ (7)

where T* ~ 4T3T — 3T+ (using Taylor series estimation), k* is the mean
absorption coefficient, and o *is the Stefan-Boltzmann constant. Thus, we obtain

dqr _  160+T3 9°T

ar 3kx  9r?’ (8)

The dynamical temperature-dependent viscosity (T) is taken as

u(T) = poe ™I Ta), ()

where Lo is the dynamic viscosity of the fluid at ambient temperature T, so that
Ta < To, m material property, z is the axial length, K is the porous medium’s
permeability, c is the Forchheimer inertial coefficient, r is the radial length, Jis
the slip coefficient, T denotes the temperature of the fluid, u stands for axial
velocity, ry, », are the inside and outside radii respectively, p is the density of
the fluid, kis the thermal conductivity of the fluid, P is the fluid pressure, 8
represents the volumetric thermal enlargement coefficient, E; is the volumetric
entropy production (generation) rate, g represents acceleration as a result of
gravity, 4 is the heat transfer coefficient. Using dimensionless variables

2
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the dimensionless controlling equations in addition to the suitable boundary
conditions can be written as:

d?w dw dé ( L

Ln+1

— aw _ 2 yo _ W _
el Gmpe ) an + (Gr6 — Fw* + ¢)e = =0, (11)
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with

w(0) = Ae"VZ—:(O), (0)=1, w(1)=0, g(l) = —Bif(1), (14)

where y is the decrease rate of fluid viscosity due to temperature variation, Nr is
the thermal radiation parameter, Da is the Darcy number, F is the Forchheimer
inertial parameter, A is the slip parameter, ¢ is the pressure gradient variable, Gr
is the Grashof number, C, represents the specific heat at a steady pressure, L
denotes the concentric cylinder annulus parameter, Pr is the Prandtl variable,
Ec refers to the Eckert number, Bi represents the thermal Biot number and
denotes the dimensionless annulus in the two cylinders. The other relevant
parameters are skin friction (Cf) and Nusselt number (Nu), expressed as:

Cf =1L = ¢-vo () W0

“OU d’? 7]:0,1'
_ _Nhlq _ a6 (n)
= s =~ N |n=0,1 (15)
_ du _ 160"T3 dT .
where t = u(T) ar by, 7, ,q =—k (1 + = )dr o The Bejan number (Be)
is defined as
Be=2=_1_ (16)
Ns  N;+N,

_yg (Aw\2 = PrEce”VOw?
where N, = PrEce™"? (—W) y
an Da

generation as a result of viscous dissipation and porous medium resistance

+ FPrEcw3® is the entropy

2
heating, N; = (1 + Nr) [%] represents the irreversibility owning to heat
exchange.

3 Numerical Procedure

In the interest of solving the non-linear boundary value problem defined by Egs.
(11)-(14), the shooting approach combined with the Runge-Kutta-Fehlberg
integration approach are numerically employed [21, 22]. Suppose that
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w=y,w =y,,0=y30 =y, (17)

We modify the controlling equations into a set of non-linear initial value
problems:

Yi=Y2 1
L
Y3 =YY2Ya — (m) Y2+ (Fyf = Grys — e)e?”s + 2%
r_ (18)
V3 = V4
r_ L Ya  PrEc —v6.,2 _ PrEce™Y® 2 FPrEc _ 3
Ya = (Ln+1) v v Y2 T Gavmpe Yt T @enn 21
with the equivalent initial conditions given as:
y1(0) = 2e77y;3(0),y2(0) = a1, y3(0) = 1,¥4,(0) = a,. (19)

The unknown initial values of a; and a; in Eq. (19) are first assumed and
thereafter determined precisely via the shooting procedure with an iteration
technique using a Newton-Raphson step size of An = 0.01. The solutions
obtained numerically for the velocity and temperature contours are utilized to
work out the values of skin friction, Nusselt number, entropy production rate,
and Bejan number as stipulated in Eq. (15) together with Eq. (16).

4 Results and Discussion

The calculation results show the effects of the variation of the thermophysical
parameters on fluid temperature, velocity, Nusselt number, skin friction,
entropy generation rate, and Bejan number, as presented in Figures 2-7. The
parameter value range employed in our numerical calculation (Gr = 1-2.5; Nr =
0.1-1.5; ¢ = 1-4; L = 0.5-3.5; etc.) was selected in order to give an insight into
their impact on the overall thermal and flow structure within the annulus. In
order to verify the precision of our numerical approach, we consider a special
case of constant viscosity fluid flow within a no-slip concentric annulus without
porous medium with L = 2, Da = w0, ¢ =1, Gr = F = A =y = 0, whose exact
solution for the velocity profile in Eq. (11) is given as:

__ & g(L+2) In(Ln+1)
w(n) = 4L (Ln +2) + 4L In(L+1) (20)
A comparison between the exact solution as obtained by Eq. (20) and the results
obtained from the shooting method combined with the Runge-Kutta-Fehlberg
integration are displayed in Table 1, showing excellent agreement. This
confirms the precision of our numerical results.
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Tablel  Computations exhibiting the correspondence
between exact and numerical solution for L =2, Da = o, ¢

=1,Gr=F=%=y=0.

w(n)
n Exac\':vggl)ution Shooting n_umerical
solution

0 0.000000000 0.0000000000
0.1 0.0554781164 0.0554781163
0.2 0.0931351142 0.0931351142
0.3 0.1164078699 0.1164078697
0.4  0.1275132396 0.1275132398
0.5  0.1279648767 0.1279648765
0.6 0.1188424088 0.1188424087
0.7  0.1009429931 0.1009429930
0.8  0.0748719992 0.0748719991
0.9  0.0410999908 0.0410999910
1.0  0.0000000000 0.0000000000

The effects of concentric gap parameter, pressure gradient, Grashof number,
Forchheimer inertial parameter, and Darcy number on the velocity parameter
are presented in Figure 2. It can be seen in Figure 2(a) that with an increase in
the concentric gap parameter, the fluid velocity in the annular gap decreases.
This may be attributed to the existence of wall shear stress, which has a great
impact on the flow motion. It can be seen from Figure 2(b) that the pressure
gradient was the main driving force. By increasing the pressure gradient, the
velocity profile shoots up within the annulus gap.

The buoyancy effect on the flow was also examined through the Grashof
number. A rise in the Grashof number automatically transfers to an increase in
the temperature difference, which leads to a rise in the velocity profile, as can
be seen in Figure 2(c). Moreover, an increase in temperature difference
enhances the flow convection. The influence of the Darcy number on the
velocity profile is displayed in Figure 2(d). An increase in the Darcy number
causes an increase in the permeability of the porous medium. As a result, there
exists little resistance in the flow through the porous medium. This causes the
velocity to increase. Figure 2(e) presents the influence of the Forchheimer
inertial parameter on the velocity profile. A decreasing effect is noticed at the
center of the gap with an increase of the Forchheimer inertial parameter.
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Figure 2 (a) Velocity profile with increasing L, (b) velocity profile with

increasing &, (c) velocity profile with increasing Gr, (d) velocity profile with
increasing Da, () velocity profile with increasing F.
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Figure 3 presents the effect of the thermal radiation parameter, concentric gap
parameter, pressure gradient, Grashof number, Darcy number and Forchheimer
inertial parameter on the temperature profile. The effect of the thermal radiation
parameter on the temperature profile is presented in Figure 3(a). It can be seen
that the temperature profile decreases with higher thermal radiation parameters

. . L 160*T3
because an increase in the thermal radiation parameter (Nr = 3Zk*a) for a

given k and T, leads to a decrease in mean absorption coefficient k*. From Egs.
(3) and (7) we conclude that the local radiative heat flux term for optically thick
gray fluid increases as the mean absorption coefficient decreases the rate of heat
exchange to the fluid and thereby decreases the temperature profile.

The effect of the concentric gap parameter is shown in Figure 3(b). It is noted
that as the concentric gap parameter goes up, the temperature profile decreases,
which is more pronounced at the exterior of the pipe. Figure 3(c) shows the
effect of the pressure gradient on the temperature profile. It can be seen that an
increase in the pressure gradient causes the fluid molecules to increase and
thereby raise the temperature contour. The effect of the Grashof number on the
temperature profile is shown in Figure 3(d). The Grashof number correlates
with the buoyancy and the viscous force acting on the fluid. The Grashof
number and the boundary layer are proportional to each other; a rise in one
leads to a rise in the other. It can be seen that increasing the Grashof number
transfers more thermal energy to the fluid molecules and thereby relaxes the
intermolecular forces in the fluid particles, which results in an increase of heat
exchange in the fluid.

Figures 3(e)-(f) show the effects of the Darcy number and the Forchheimer
inertial parameter on the temperature profile. It can be seen that any increase in
the temperature profile at the outer pipe will increase the Darcy number while a
decrease occurs in the temperature profile by increasing the Forchheimer
inertial parameter, as shown in Figure 3(f).

The effects of pressure gradient versus thermal radiating parameter, Grashof
number versus thermal radiating parameter, Darcy number versus thermal
radiating parameter and Forchheimer inertial parameter versus thermal radiating
parameter on both skin friction and Nusselt number are presented in Figures 4
and 5. In Figures 4 (a)-(c) it can be seen that as the pressure gradient versus the
thermal radiating parameter, the Grashof number versus the thermal radiating
parameter and the Darcy number versus the thermal radiating parameter are
increasing, the skin friction also increases at both the interior and exterior of the
pipes. However, the skin friction decreases as the Forchheimer inertial
parameter versus the thermal radiating parameter increases, as shown in Figure
4(d).
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Figure 4 (a) Skin friction with increasing Nr and &, (b) skin friction with
increasing Nr and Gr, (c) skin friction with increasing Nr and Da, (d) skin
friction with increasing Nr and F.

The significance of these parameters is also reflected in the Nusselt number
shown in Figure 5. We observe that an increase in these variables leads to a
reduction in the Nusselt number at both the interior and exterior of the pipes, as
shown in Figures 5(b)-(d). However, the outer pipe in Figure 5(a) increases
slightly with an increase in the concentric gap parameter versus the thermal
radiating parameter.



Inherent Irreversibility of Mixed Convection

407

0.20 0.20
¥=01,Ec=01,Pr=6.2,Bi=
0184 01 2=01,Da=001Gr=2 ";1
e=2,F=0.38 Lt
0.16 ;s""‘ 015
F1
014 ";a"
§¥
012 ny ) 0.10-E
Nu !ﬂ!* Nu
0104 4t
0.05
0.08 L=051525
0.06 sy = f 'yfl].l,E}ch].l,PrZﬁ.Z,
“o ol Bi=0.1 5.=0.1, Da =0.0L,
0.041 b Gr=2
. L=12,F=08
0 02 04 06 08 1 0 02 04 06 08 1
Nr Nr
(a) ()
020
Da =0.01,0.02, 0.03 483 ¥=01,Ec=01,Pr=62,Bi=0.1
s3¥ 05 L=01,L=lL2e=2Da=2,
;lﬁ* Gr=1
0.15 gt
it
E}‘
ey 0.4+
¥¥¥¥;x
Nu 0.10 iﬂgﬁ* Nu
0.3+
o
P—
003 —_n=0 "
02 —=0 Ty
¥=01Ec=01Pr=62, *H"*ﬂ""
Bi=015%=01L=1l2e=2F=08, ﬂﬂ\s‘*ﬂ***
Gr=1 FLbd
Wk
0 P Lk ‘ ‘
0 02 04 06 0g 1 o 0.2 04 06 08 1
Nr Nr

(© (@

Figure 5 (a) Nusselt number with increasing Nr and L, (b) Nusselt number with
increasing Nr and &, (c) Nusselt number with increasing Nr and Da, (d) Nusselt
number with increasing Nr and F.

Figure 6 present the effects of the thermal radiation parameter, concentric gap
parameter, pressure gradient, Grashof number, Darcy number and Forchheimer
inertial parameter on the entropy generation rate profile. In Figure 6(a), the
entropy profile increases with increasing thermal radiating parameter in the flow
channel and inside the pipes but with little effect on the outer pipe. It can be
seen that there is a restrictive medium, which leads to a high disorder of the
flow particles inside the pipe and increases the entropy generation, while little
or no effect of the restrictive medium is detected at the outer pipe. Figure 6(b)
details the influence of the concentric gap parameter on the entropy profile.
Here, we see that the entropy profile increases at the inner wall and toward the
channel center as the concentric gap parameter increases. Meanwhile, there is
no effect from the middle of the gap to the outer pipe. We conclude from this
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result that the restrictive medium gradually fades away from the inner pipe
toward the outer pipe.
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Figure 6 (a) Entropy profile with increasing Nr, (b) entropy profile with
increasing L, (c) entropy profile with increasing &, (d) entropy profile with
increasing Gr, (e) entropy profile with increasing Da, (f) entropy profile with
increasing F.
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The effect of the pressure gradient on the entropy profile is revealed in Figure
6(c). It can be seen that an increase in the pressure gradient enhances the
entropy profile throughout the flow channel and the same explanation applies to
Figures 6(d)-(e), which show the effects of the Grashof number and the Darcy
number. The effect of the Forchheimer inertial parameter is presented in Figure
6(f). We notice a slight decrease in the entropy generation rate in both pipes and
a slight increase at the center of the gap as the Forchheimer inertial parameter
increases.

The effect of varied values of the thermal radiation parameter, concentric gap
parameter, pressure gradient, Grashof number, Darcy number and Forchheimer
inertial parameter on the Bejan number profile are shown in Figure 7. In Figure
7(a) we see that an increase of the thermal radiating parameter increases the
Bejan number profile within the flow channel. This implies that irreversibility
due to heat exchange has a dominant effect on the flow. Figure 7(b) shows the
effect of the concentric gap parameter on the Bejan number. This figure shows
that the Bejan number increases inside the pipe with increasing concentric gap
parameter while there is no impact of the Bejan number on the outer pipe. This
shows that the dominant effect of the irreversibility resulting from heat transfer
is more visible inside the pipe.

The influence of the pressure gradient on the Bejan number is illustrated in
Figure 7(c). Here we see that the Bejan number decreases throughout the flow
with an increase of the pressure gradient parameter. This implies that the
entropy generation rate, as a result of viscous dissipation and porous medium
resistance heating, has a dominant effect on the flow. With an increase of the
Grashof number, as shown in Figure 7(d), the Bejan number decreases. The
decrease in the Bejan number is more obvious at the inner pipe compared to the
outer pipe. This shows that the dominant effect of entropy generation related to
viscous dissipation and porous medium resistance heating is greater at the inner
pipe compared to the outer pipe. The effect of variation of the Darcy number on
the Bejan number is shown in Figure 7(e). It can be seen that the Darcy number
increases the Bejan number at the inner wall while it reduces it at the outer wall
of the pipe. Meanwhile, the Forchheimer inertial parameter reduces the Bejan
number from the inner wall towards to center of the gap and slightly increases it
from the same point towards the outer wall, as shown in Figure 7(f).
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Figure 7 (a) Bejan number profile with increasing N, (b) Bejan number profile
with increasing L, (c) Bejan number profile with increasing &, (d) Bejan number
profile with increasing Gr, (e) Bejan number profile with increasing Da, (f)

Bejan number profile with increasing F.
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Conclusions

The buoyancy convection of an inconstant viscosity radiating fluid within a
slippery annulus formed between two concentric pipes filled with a porous
medium was numerically examined via the shooting method coupled with the
Runge-Kutta-Fehlberg integration method. Our results can be summarized as
follows:

Fluid velocity increases with increasing Grashof number, pressure
gradient and Darcy number while it decreases with a rise in thermal
radiation, annulus gap and Forchheimer inertial parameter.

The fluid temperature increases with an increase in Grashof number,
pressure gradient and Darcy number but decreases with an increase in
thermal radiation, annulus gap and Forchheimer inertial parameter.

The skin friction increases with increasing thermal radiation, annulus
gap, Grashof number and Darcy number but decreases with increasing
Forchheimer inertial parameter.

The Nusselt number increases slightly with increasing thermal radiation
parameter concentric gap parameter and decreases with increasing
thermal radiation, annulus gap, Grashof number, Darcy number and
Forchheimer inertial parameter in both vertical pipes.

An increase of the Grashof number, pressure gradient, thermal
radiation, annulus gap and the Darcy number leads to an increase of the
entropy generation rate.

An increase of the annulus gap boosts the Bejan number and increases
the heat transfer irreversibility, while an increase in the Grashof number
and pressure gradient decreases it. A rise in Darcy number increases the
Bejan number at the inner wall, while the Forchheimer inertial
parameter decreases the Bejan number at the inner wall.

Finally, it is noteworthy that suitable fine-tuning of the thermophysical
parameters will enhance the entropy generation minimization in engineering
thermal and fluid flow applications such as concentric pipe heat exchangers
involving buoyant convection in a porous medium for optimal performance.
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Nomenclatures

Bejan number
Thermal Biot number
Skin friction

= Specific heat at constant pressure (JKg/K)

Darcy number

= Eckert number
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E; = Volumetric entropy generation

F = Forchheimer inertial parameter

Gr = Grashof number

g = Acceleration due to gravity (m/s?)

h = Heat transfer coefficient (W /m?k)

k = Fluid thermal conductivity (Wm™1K~1)
m = Material property

N; = lrreversibility because of heat transfer
N, = Entropy generation because of viscous dissipation
Ns = Dimensionless entropy production rate
Nu = Nusselt number

Nr = Radiating parameter

P = Fluid pressure (N/m?)

Pr = Prandtl number

r,m = Inward and outward pipes radii (m)

r = Radial distance (m)

T = Fluid temperature (°K)

T, = Temperature at the inner pipe surface (°K)
T, = Ambient temperature (°K)

u = Dimensional axial velocity (m/s?)

w = Dimensionless axial velocity(m/s?)

z = Axial distance

Greek Symbols

Uo = Fluid dynamic viscosity (the ambient temperature). (Ns/m?)
Dynamic viscosity of the fluid (Ns/m?)

Density of the fluid (Kg/m?)

Volumetric thermal expansion coefficient (K1)

Fluid electrical conductivity (Q~1m™1)

Decrease in fluid viscosity rate due to temperature difference
Dimensionless gap between two-cylinder

Dimensionless axial pressure gradient

Dimensionless temperature

Slip parameter
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