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Abstract. This paper introduces a mathematical model for African animal
trypanosomiasis (AAT) in white rhino and tsetse fly populations. The model
accommodates two types of interventions, namely infection detection and ground
spraying. The dynamical system properties were thoroughly investigated to show
the existence of equilibrium points, backward bifurcation, and how they are related
to the basic reproduction number. We found that there is a chance that AAT may
die out from the population if the basic reproduction number is smaller than one.
However, the possible existence of backward bifurcation implies a condition
where we may have a stable endemic equilibrium, even when the basic
reproduction number is smaller than one. Hence, the basic reproduction number is
no longer sufficient to guarantee the disappearance of AAT from the population.
Our sensitivity analysis on the basic reproduction number showed that the
interventions of infection detection and ground spraying have good potential to
eradicate AAT from the population. To analyze the most effective intervention as
time-dependent variable, we reconstructed our model as an optimal control
problem. Numerical simulations on various scenarios were conducted for the
optimal control problem. Cost-effectiveness analysis using the Average Cost-
Effectiveness Ratio (ACER) and the Incremental Cost-Effectiveness Ratio (ICER)
methods was performed. From the cost-effectiveness analysis, we found that
ground spraying is the most cost-effective intervention to combat the spread of
AAT in white rhino populations.

Keywords: African animal trypanosomiasis; basic reproduction number; backward
bifurcation; optimal control; cost-effectiveness analysis.

1 Introduction

African animal trypanosomiasis (AAT) is a parasitic disease caused by parasites
of the genus Trypanosoma. The parasite lives in the blood, lymph, and various
tissues in vertebrates. The main parasitic species that spread the disease are
Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei. AAT is
transmitted by the blood-sucking tsetse fly, Glossina spp. The tsetse fly has a
strong mouthpart that can penetrate thick skin (including rhino skin), namely the
labium. The labium is the structure of the mouth of the tsetse fly, which consists

Received November 8", 2021, Revised May 21%, 2022, Accepted for publication May 23, 2022
Copyright © 2021 Published by ITB Institute for Research and Community Services, ISSN: 2337-5760,
DOI: 10.5614/j.math.fund.sci.2022.54.1.9



152 Dipo Aldila and Tama Windyhani

of a series of tiny, sharp teeth that are capable of scraping thick skin. Thus, these
flies can suck the host’s blood easily [1]. Parasites carried over by fly bites live
and multiply in the host’s red blood cells [2].

AAT is one of the largest obstacles in controlling animal populations in tropical
countries, especially in Africa. This is because parasite attacks by Trypanosoma
are among the most common disease causes in the rhino population in South
Africa, which includes white rhinos. The white rhino (Ceratotherium simum) is
one of five rhino species that are not yet threatened with extinction. The World
Wide Fund for Nature says that at the end of the nineteenth century, the southern
white rhino subspecies was thought to have become extinct due to rampant
poaching [3]. However, a small group of less than a hundred individuals was
found in 1895 in Kwazulu-Natal, South Africa. This discovery initiated
conservation practices to conserve the white rhino [3]. However, in 2012, the
International Union for Conservation of Nature designated the white rhino as an
endangered species with a declining population trend [4]. The difficulty of the
white rhino population translocation program was exacerbated by the discovery
of the AAT disease in the rhino population, especially those carried by
Trypanosoma conglense, simiae, and godfreyi [5].

At first, AAT was considered to have a minor influence on white rhino population
dynamics [6]. However, in the 1960s, researchers became aware of the fact that
an AAT infection can become a real health threat for white rhinos when the
animal is stressed [7]. Stress in rhinos can occur due to various factors, including
overpopulation, lack of water and food, and anxiety [8]. AAT should be suspected
if an animal in an endemic area is listless and in a problematic condition.

Based on the above and given that the white rhino is classified as Near Threatened
[3], it is important to understand the impact of AAT on the population dynamics
of white rhinos. Many authors have used different mathematical models to
understand the population dynamics of a species affected by disease. Ref. [9]
introduced an ecoepidemic mathematical model to understand the effect of
disease on predators. They also considered prey group defense in their model. A
mathematical model of disease in prey animals is discussed in [10]. Various types
of incidence rates in an eco-epidemiological model are discussed in [11], where
the possibility of Hopf bifurcation emerged from the proposed model. See [12-
15] for more references on ecoepidemiological models. Although many studies
discuss ecoepidemiological models of predator-prey interaction or population
dynamics models, few articles discuss mathematical models for AAT in rhino
populations. For example, an earlier study on AAT and its intervention using
insecticides and multi-host factors is presented in [16]. A mathematical model
regarding human African trypanosomiasis was developed in [17], where the
model was validated with real data. Recently, [18] introduced a fractional-order
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model and optimal control problem for a human African trypanosomiasis model.
They developed their model using a Susceptible-Infected-Recovered model on
the human population and a Susceptible-Infected model on the vector population.
Their numerical results showed that the combination of public education,
effective treatment, and vector control as control measures succeeded in
suppressing the spread of AAT in the human population. Ref. [19] analyzed a
model of the spread of AAT in livestock by considering the use of insecticide.
They constructed the basic reproduction number of their model with respect to
the growth rate of infected wildlife around the susceptible population. They
concluded that if treatment of cattle with insecticide did not take place, the
wildlife would continue to be the source of infections in the livestock population.
A model of the spread of AAT in livestock by considering treatment was
introduced in [20]. Three immunity stages were included in the model, which
revealed that it is possible that AAT may still exist even though the related
reproduction number is smaller than one.

According to the references mentioned above, in this article, we consider a
mathematical model for African animal trypanosomiasis. The novelty of this
study lies in the involvement of infection detection and ground spraying on the
rhino population. A mathematical model of the interaction between tsetse flies
and rhinos has never been developed before. A detailed mathematical analysis
was done to find the existence and local stability of equilibrium points. Using the
Castillo-Song bifurcation theorem [21], we showed that our model may exhibit
backward bifurcation at basic reproduction number equals one. To analyze the
optimal intervention, we reconstructed our model as an optimal control problem.
Pontryagin’s maximum principle [22] was used to characterize the optimal
condition of our problem. A cost-effectiveness analysis was conducted to
determine the most cost-effective scenario for AAT intervention. Our numerical
experiments on the optimal control problem indicated that a combination of
ground spraying and infection detection will be successful in suppressing the
spread of AAT in the rhino population. If a single intervention should be selected,
then ground spraying is more cost-effective compared to infection detection.

This paper is structured as follows. The mathematical model that was constructed
is discussed in detail in Section 2. The existence of all equilibrium points and
their stability criteria are analyzed in Section 3, continued with a bifurcation
analysis in Section 4. The sensitivity analysis and autonomous simulation to
determine the elasticity of each parameter in our proposed model to the dynamics
of the rhino and tsetse fly populations are discussed in Section 5 and also the
basic reproduction number. The construction of the mathematical model for the
optimal control problem is done in Section 6. Characterization, numerical
simulations, and the cost-effectiveness of the optimal control problem are also
discussed in Section 6. Finally, some conclusions are given in Section 7.
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2 Mathematical model formulation

African animal trypanosomiasis (AAT) can be transmitted to rhinos through bites
from tsetse flies. Here, we construct a novel mathematical model to describe the
dynamics of AAT transmission among white rhino and tsetse fly populations. The
model is based on a compartmental model with a system of non-linear ordinary
differential equations. Therefore, our white rhino population is divided into five
compartments based on their health status and their symptoms, namely,
susceptible rhinos S(t), exposed rhinos E(t), undetected infected rhinos I, (t),
detected infected rhinos 1, (t), and recovered rhinos R(t). On the other hand, we
divide the fly population into two compartments, namely, susceptible flies U(t)
and infected flies V(t). We assume that due to the short life expectancy of flies,
once a fly gets infected by parasites, the disease will be lifelong. Hence, we have
the total population of rhinos denoted by N,, given by N.(t) = S(t) + E(t) +
[, () + I4(t) + R(t). On the other hand, the total population of flies, denoted by
Ng, is given by N¢(t) = U(t) + V(t). We construct our model based on the
transmission diagram given in Figure 1, and the description of all parameters is
given in Table 1.
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Figure 1 Transmission diagram of AAT in System (1).
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Table1 Description of parameters in model (1).

Par. Description Unit
. . . rhino
Ay Recruitment rate of white rhinos o
day
. . flies
As Recruitment rate of tsetse flies
day
Infecti te in white rhinos due to pri bit !
nfection rate in white rhinos due to primary bites _—
Bri P y day x flies
. . N . 1
Bra Infection rate in white rhinos due to secondary bites m
1
Infection rate of fli _—
By ection rate of tsetse flies day X Thino
« Progression towards infected rhino compartment due to 1
incubation period day

Proportion of exposed rhinos who experience a secondary

p bite but do not show any symptoms (undetected) B
Proportion of exposed rhinos who progress to infected
q rhinos after the incubation period but do not show -
symptoms (detected)

1

Uy Rate of infection detection m
1

U Rate of ground spraying day
1

Yu Recovery rate of infected undetected rhinos @
1

Ya Recovery rate of infected detected rhinos @
Natural death rate of rhi !

Uy atural death rate of rhinos day
1

Uy Natural death rate of tsetse flies -—

day

The construction of the model is as follows. We assume that all newborn (rate of
A,) are susceptible. We assume that AAT is not vertically transmitted through
newborns. The number of susceptible rhinos then decreases due to primary bites
from infected flies at a constant rate 3,1, and due to natural death at rate u,.. In
our model, we use a mass contact function to describe the infection process of
AAT in the rhino and fly populations.

The number of exposed individual rhinos increases due to new infections from a
susceptible compartment at a rate of §,. SV. This population can then decrease
due to three reasons. The first is the constant natural death rate. The second is
because of the disease’s progression. After an incubation period of a1, exposed
rhinos will move to the infected compartment. However, since AAT does not
always show symptoms, we have to add the $p$ portion of these individuals to
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the undetected cases and the rest (1 — p) to the detected cases. The last reason
why the number of exposed rhinos decreases are secondary bites from flies, at a
constant rate S,,. Similarly, some proportion of the exposed rhinos (q) who do
not show any symptoms will move to the undetected class, while 1 — g goes to
the detected class.

Due to detection efforts from the government to detect the existence of infection
in white rhinos (at rate u,), there is a transition from the undetected infected to
the detected infected rhino compartment. Furthermore, there is recovery of
undetected and detected infected white rhinos at constant rates y, and y,,
respectively. Note that due to additional treatment, we assume that y; = y,,. We
presume that AAT does not cause any additional deaths in the infected white
rhino population.

We assume that there is no vertical transmission in the population of tsetse flies.
Hence, all recruitments go to susceptible flies (U). Susceptible flies may get
infected by AAT due to biting of infected white rhinos (I,, and I;) at a constant
rate of . In order to control the vector population, we include ground spraying
at a constant rate of u,.

Based on the above description, the mathematical model of AAT transmission
considering infection detection and ground spraying as interventions is given by
the following system of ordinary differential equations.

ds (1a)
E = Ar - BrlSV - .urS
dE (1b)
dt = BrSV — aE — BBV — i E,

L, (1c)
E = p(ZE + qBTZ EV — ullu - yulu - .urlu,
dl, (1d)
T (1 —p)akE + (1 — Q)PrEV +usly — vala — wrla,
dR (1e)
% = Yuly +vala — R,
dU (1)

=7 = A = BrUUu+1a) = (1r +uz)U,
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dv (19)
yr BrU(Ly, + 1a) — ( + up)V.

Note that all parameters in System (1) are non-negative. In addition, System (1)
is completed by the following non-negative initial condition:

S(0) > 0,E(0) = 0,1, > 0,1; = 0,R(0) = 0,U(0) > 0,V (0) )
>0,

The following theorem guarantees that System (1) always has a unique solution
and each solution is always non-negative as long as the initial condition is also
non-negative.

Theorem 1. For any initial condition as in (2), System (1) has a unique solution
for all time t > 0.

Proof. The following inequality always holds:
ds
E > _(ﬁrlv + ,LLT)S.

With the method of factor of integration, choosing exp( fot(ﬁer(T) + u,)dr) as
the integration factor, and implementation into above equation, we have:

S > Sexp(= [y BV @dr + prt) > 0

f as . .-
forall t > 0. From the above expression, we can see that = has a unique positive

solution for a non-negative initial condition S(0). The existence and non-
negativity of all other variables in System (1) can be shown in the same way.
Hence, we can conclude that all solutions S, E, I,,, 14, R, U and V are always non-
negative for all time t > 0. Hence, the proof is completed.

In addition, we define the following feasible region of System (1):
r=rxI;,

where

5 Ay
L= {(S, E 1,14, R) € RN, < u_}

r

for the rhino population and
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I ={(U,V) € R3:Nf <
F {( ) € Ri: Ny uf+uz}

for the fly population. Using the same approach as in [23,24], we can show that

I is positively invariant.

3 Existence and Stability of Equilibrium Points

3.1 The AAT-free Equilibrium and the Basic Reproduction
Number

The ATT-free equilibrium point of System (1) is given by

A A
& =GHEL LY LT R, U VT = (l,o,o,o,o, / ,o>. ®)
Hr HUr +u;

From the expression of ST, we can see that the total population of rhinos in an
AAT-free equilibrium only depends on the ratio between the recruitment rate and
the natural death rate. On the other hand, the total population of flies depends not
only on the recruitment rate and the natural death rate but also on ground
spraying. Increasing ground spraying will reduce the number of flies in the
equilibrium.

Next, we calculate the basic reproduction number of our model. The basic
reproduction number (denoted by R,) defines the expected number of new cases
caused by one primary case in a completely susceptible population during its
infection period [25]. In many epidemiological models, the basic reproduction
number determines the existence or disappearance of the disease. In several
epidemiological models [26-30], the disease has a chance to die out from the
population if the basic reproduction number is less than one and always exists if
the basic reproduction number is larger than one. Using the next-generation
method [31], the basic reproduction number of System (1) will be calculated as
follows. The transmission (T) matrix and transition (X) matrix of the infected
sub-compartment of System (1), which are evaluated at £,, are given by

— A -
O 0 O ﬁrl T
Uy
0 0 0 0
=l o 0 0o |
0 Bely  Brdy
L Mt ux pptup
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and
—pa— (1 —pla—p, 0 0 0
¥y = pa —U —Yu — W 0 0
(I —pa Uy —Ya — Mr 0o f
0 0 0 —‘Llf — U

respectively. Since T has a zero row, the next-generation matrix of System (1)
can be calculated using the following formula:

K = —E'TX71E,

1 0
where E = Ig 8 ,and E* is the transpose f E. Hence, the next generation matrix
0 1
of System (1) is given by:
[ 0 __ BnhAr ]
K_I “r(ﬂf+u2)|
B l_ BrAspa BAs(PYu+ Pl — Uy — Vu — ) 0 '
@+ m) g + vy + o) (i +uz) (@ + ) (g + vy + 1)V + 1) (B + uz)

The controlled basic reproduction number of System (1) is taken from the spectral
radius of K, i.e.,

R = BriArBrAra(pya + (1 = plyy + us + 1) (4)
0o — 2 .
.ur(:uf + uz) (a + :ur)(ul + Yu + .ur)(yd + ﬂr)

Following the results on Theorem 2 in [32], we have the following theorem:

Theorem 2. The AAT-free equilibrium of System (1) is always locally
asymptotically stable if R, < 1 and unstable if R, > 1.

The basic reproduction number R, in the context of our problem indicates the
possibility of whether AAT will spread in the population or not. The consequence
of Theorem 2 from an epidemiological point of view is that AAT has a possibility
to be controlled and disappeared from the population as long as the value of R,
is less than one. In many epidemiological models involving species interaction,
basic reproduction plays an essential role in determining the existence of the
disease. Keeping the basic reproduction number below one is enough to guarantee
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that the disease dies out. However, in some conditions, a basic reproduction

number below one does not ensure the disappearance of the disease. We will

discuss this in the following section.

The expression of R3 from (4) can be rewritten as follows:

jRZ:{ Br1 ﬁ}x{ By Ag }X{a(m/d+(1—l’))’u+u1+yr>}
T lat )T Uy +uy (s +vu+ 1)V + 1) )J

K1 K, K3

where J; represents the total of expected new infected rhinos per fly, &,
represents the total of expected new infected flies per rhino, and X5 represents
the effect of infection detection u; and treatment for detected infected white
rhinos y,. Hence, we can see that to reduce R, we have to pay attention to these
three components, because each of them represents a path of infection as well as
the impact of intervention. For example, we can reduce R, by reducing the
number of expected infected rhinos in terms of reducing the number of flies by
ground spraying. We can also increase the infection detection rate and recovery
rate of detected infected white rhinos in order to reduce R,. Further discussion
on the impact of each parameter in determining the size of R, will be discussed
in Section 5.

3.2 AAT-endemic Equilibrium

In this section, we analyze the criteria for the existence of a nontrivial equilibrium
point in System (1), namely the AAT-endemic equilibrium point £€,. The AAT-
endemic equilibrium point represents a condition where all infected individuals
are in equilibrium, which is given by:

& = (S E I, I, R, U V™), ®)
where
S* — AT * BrlArV*
V*ﬂrl + Uy ' (V*ﬁrl + .ur)(V*ﬁrZ +a+ 'ur)’
* * * 6
o BV V4B tap) | BrdVmy ©
: myg T (g + umg

* _ ﬁrlArV*mZ x _ (:uf + uz)()/d +.ur)m0
(yd + #r).“rmo , Arﬁfﬁr1V*m3 +m, ’

and
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my = (Vu tugt .ur)( VB + .ur)(VBrZ t+ta+ ,Ur),

my = —((q = Dyy + (@ — Dy —ug)VBry —a((p — Dy + (p — Dy
Zu,

my = ((=V(q = Dfrp —alp — Dptr + (ug + 1) (VBor2) + @))va
+ HrYu (VCIﬁrz +a p)

mz =By (Yaq — qQVu +Yu + iy +U1),
my = Bf (&, pYa — @, pYu + avy + ap, + au) Ay Brq

Note that V* is taken from the positive roots of the following second-degree
polynomial:

F(V) = d,V2+ dV +d, =0,
where
dy = BraBra( Uy +uz)d;,
dy = Bradi + Brattr (it +uz ) (YL} + {11 + 1) (va + 1),

do = {r(pp +u2)" (a+ 1) (uy + v + 1) (va + ) (1 — R2),

d; qydAr f + (1 - Q)Yu/lr f + Arﬁfyu + Arﬁfﬂr + Ar U1 + YaYully
t VaVulUz + Vallply + YallfUs + VallyUz + YalUyUs + Vyllely
+ VallyUp + et + Uplp g + UEU + frlg Uy,

di = (g +un) i+ (r +u2) Oa + v + @ +upp
+ ((ru + a +uya + alug +1))u?
+ (((Zyu +2a+2uy)yq + 2a(uy +1))us + Araﬁf)uf
+ (( Yu+ a+uvg + alug +n))us + Aca Bru,
- ﬁrZAfArﬁf) ur +yaa(ug + v us
+a( 2ya(ug + v dup + (pya + (=p + Dy +u)Bedy Jus

+vaa(uy +y)us + (pya + (=p + Dy, +uw)Brdra u,
- Af( qvat+(—q+ Dy + ul)ﬁrzﬁf/lr-
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From the expressions of d, and d,, we can easily see that d, is always positive,
while d is negative if R, > 1. Therefore, we know that the multiplication of the
root of F (V) will be negative if R, > 1. Hence, F(V) can always have exactly
one positive root if R, > 1. We state this result regarding the existence of the
AAT-endemic equilibrium in the following theorem:

Theorem 3. System (1) always has a unique AAT-endemic equilibrium if Ry >
1.

Since F(V) is a second-degree polynomial, and Theorem 3 only guarantees the
existence of £, when R, > 1 (not the opposite), it is possible that we may have
another equilibrium when R, < 1. Furthermore, it is also possible that we have
two AAT-endemic equilibriums for System (1). To analyze this, we use gradient
analysis of VV with respect to R, at R, = 1 and VV = 0. Note that the condition of
Ry =1 is qualitatively equivalent with RZ = 1. Hence, for simplification

. .V . av
purposes, instead of calculating N at Ry =1, we will calculate Frot An
0 0

illustration of this gradient analysis can be seen in Figure 2.

V A VA
av P17
— <0 i
OHy 8%, >0
> >
e%(j =1 ,@0 =1

Figure 2 Illustration of a(% < 0 (left) and a% > 0 (right). The left figure shows
0 0

the existence of a positive root of F(V) when R, < 1. The right figure shows the
existence of a positive root of F(V) when R, > 1

To do this analysis, we should rewrite d, and d, in (7) as a function of Rj. Hence,
since

RE_ BrilyBrAra(pya + (1 —plyy + us + 1) ©)
W (1 +uz) (@+p) @z +y, + 1) g+ 1)
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we can make S, a function of R3 as follows:

fRZ P‘r(.uf + uZ) (a + .ur)(ul + Yu + :ur)(yd + .ur) (9)
A BrAsa(Pyg — DYy + U + vy H i)

Br1

Substituting S, into F(V) in (7) and calculating the implicit differentiation of IV
with respect to R3 yields:

adl ov ddy (10)
v d, (R3 = 0.
aaez agzg +0332 1(Ro) + 52

ad,
—Zyzy4 2Vd2(fRO)

IR3 R

Substituting R, = 1 and V = 0 to (10), and solving it with respect to %, we
0
obtain:

v ad, 1

__ 11
IR3 OR2 d Ry (11)
2 1
=2u,(pp +uy)" (uy +vu+ i) (Ya + )@+ p) o—s (12)
17%0

where

dl(R(Z) =1)= co—¢1 Bra, (13)
and

cr= (U 4+ ((1=q)y +avq +udpr + aCyvqg — ) (q — p)BrArAf

Co = (Mf + uy)(a + .ur)(ap/lr.gfyd(yd —Yu) t+ aAr.BfVu + aAr.Bfﬂr
+ alBrus + aVaYully + QVaYuls + QYalisly + @Vallpiy
+ ayaiytiy + Qyquily + ayy sty + ayy ety + appps
+ apppuy + apiuy + apugy + YaVulis e + YaVulyUs
+ Yalelii + Vallpiyty + Valfuy + Yol Uy Uy + Vylbp U7
+ Vullfuy + pepd + pppfug + u, + piugu,.
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Let g > p, then we have :TVZ lgo=1,v=0 < O if Bz > B¥, where ¥ = Z—O Based
0 1
on the above analysis, we have the following theorem:

Theorem 4. System (1) has:
1. at least one positive AAT-endemic equilibrium for some Ry < 1if 8, > B*
2. no AAT-endemic equilibrium for all R, > 1 if B,, < B*.

Based on Theorems 3-4 and using the concept of determinant of second-degree
polynomials, we have the following corollary:

2
Corollary 1. Let R, = 4:1(1 with d,, d4, and d, is taken from the polynomial in
240

Equation (7). Based on the condition of R, R, and B,,, System (1) has:
1. aunique AAT-endemic equilibriumif Ry > 1

no AAT-endemic equilibrium when R, < 1 and 8, > ¥

no AAT-endemic equilibrium when Ry < R; < 1 and S, > S*
two AAT-endemic equilibriums when R, < R, < 1 and B,, > B*.

Mo

See [33] for another approach of determining a condition for the existence of non-
trivial equilibrium points for a second-degree polynomial equation. Based on the
analysis in this section, it appears that the existence of a basic reproduction
number that is smaller than one as an indicator of the disappearance of AAT can
no longer always be guaranteed. This is because there is still a chance of the
existence of AAT endemic equilibrium points even though the value of the basic
reproduction number is smaller than one. In fact, it is possible to have two
endemic equilibriums when the basic reproduction number is below one. This
indicates the possibility of backward bifurcation in our model, which will be
discussed in the following section. In our model, we can see that the possibility
of backward bifurcation is triggered by secondary bites from flies to exposed
rhinos (B,,). Increasing the value of S,, will increase the chance of the
occurrence of backward bifurcation in our model. In the absence of secondary

bites (B,, = 0), we have d; = ¢, > 0, which leads to the condition that % is
0

always positive. Hence, we have the following theorem:

Theorem 5. In the absence of secondary bites from flies to exposed rhinos (8,, =

0), the AAT transmission model (1) has no AAT-endemic equilibrium when R, <
1 and always has a unique AAT-endemic equilibrium when Ry, > 1.



Backward Bifurcation Emerging from a Mathematical Model 165

4 Backward bifurcation analysis

From the previous section, we see in Theorem 5 the possibility of the existence
of two AAT-endemic equilibriums for some value of R, < 1. For many classical
disease transmission models [34-36], the condition of a basic reproduction
number less than one is enough to guarantee the disappearance of the disease.
However, this condition is not always sufficient in the case of backward
bifurcation, since the endemic equilibrium may co-exist with a disease-free
equilibrium for some interval when the basic reproduction number is less than
one. See [37-40] for some epidemiological models where backward bifurcation
appears. Based on the above description, we conclude that backward bifurcation
has significant implications for the success of interventions to control the spread
of AAT.

In order to analyze the existence of backward bifurcation in our proposed AAT
model in (1), we will use the well-known Castillo-Song theorem [21], which is
based on the Center Manifold theory [41].

To apply the Castillo-Song Theorem to our model in (1), we make the following
simplification. Let vector X = (xq,x,,X3,X4,Xs5,X6,X7) and S = x,E =
Xy, I, = x3,15 = x4,R = x5,U = x4,V = x,. Substituting these into System
(1) yields:

dx;

gl = dr Ay = BriX1X7 — Xy,
dx,

g2 = ar BriX1X7 — QX = BraXaX7 — lyXz,
dx;

g3 = ar pax; + qBraXaXy — UXz = YyX3 — UrX3,
dx,

94 = E = (1 - p)a’xz + (1 - q)ﬁr2x2x7 - u1X3 - )/dxz], - l’lTx‘l-'
de

95 == = YuXz + YaXa — krXs,
dxg

g6 = ke Ap — Brxg(x3 + x4) — (Up + Up)Xe,

_ dxy

97 == Brxe(xs + x4) — (Mf + Uy )X

Now, let us choose 3, as the bifurcation parameter. Hence, by solving RZ = 1
with respect to B,, gives us (the same argument as in the previous section is
used in this section for R3 = 1 instead of R, = 1):
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2
,3* _ P‘r(ﬂf + uZ) (a + .ur)(ul + Yu + :ur)(yd + :“r) (15)
m ArBrAsa(pya — pYy + Us + Yy + Hy)

Evaluating the eigenvalues of the Jacobian matrix of System (14) at AAT-free
equilibrium gives us a simple zero eigenvalue, while the other six are negative.
Due to its complex form, we do not explicitly show these six eigenvalues. Next,
we need to determine the right and left eigenvectors of the Jacobian matrix that
correspond to zero eigenvalue. We denote v = [v; v, v3 v, Vs Vg V5] as the
left eigenvector and w = [w; w, ws w, ws we w] ¢ as the right eigenvector.
Then, we get:

171 = 0,
vz =aq,
Ve = (ul + uy + Yd)(a + :ur)
T DYa—pYutur v i
Uy + Uy + a+
by = (ug + pr + v (@ + py) , (16)
PYa _pYu+u1+Vu+.ur
Vg = 0,
176 = 0,
e = (Ya + ur)(y +uz) (@ + u) Uy + pr +vy)
7 ArBr(PYa — DYy + W1 + Yu + )
and
We = (:uf + uZ)Z(Yd + .ur)(a + .ur)(ul + Uy + Yu)
! (=pYa — tr + 0 — Dyy —wdura
s U)?(Ya + ir) (uy + i +v2)
2 ®Ya —PYu + U + Yy + )
e o Pt uz)?(Ya + 1)
T (Wa—vwWp U v
2
= (@ = Dyvutpur —ws — pr)urapy +uz) a7
* (1 —D)vy +DVa +us + iy ’
2
. (1 +uz)" (P — Dty — Uy = Vo)¥a — PlhrYa)
5 — — )

(L =P)vu + DVa +us + u)iy
we = —ArBy,

o)
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To determine the type of bifurcation of our Model (1) at Ry = 1, we have to
calculate A and B with the following formula:

7 2

%9
= D, v s 00
kij=1 L (18)

7 2

0°gr
B = ———(0,0).
2. " g OO

Kij=1

To calculate A and B, we calculate the associated non-zero partial derivatives of
Ik, evaluated at £;. The calculation is as follows:

0°g, _ 0%g, _ 0%g; _ 0%gs _
dx,0x, 0x,0x;,  0x,0x, 0x,0x, 9Pra
d%g d%g d%g d%g
== (1= Brg =5 =B
0x,0x, 0x,0x 0x,0x; 0x10x,

029, _ 99, _ 0%g, _ 99, _
0xg0x3 0xg0xy 0x30xg O0x40xg Br:
Calculation of A and B. Using Eq. (18), we have:

2 *
_ Z.Bf(.uf + uz) (Yd + :ur)(ul + My + Yu)a
(PYa — PYu tus + ¥y + 1) 2l

A= , (19)

where a* is a positive expression, which is too long to be shown in this article.
On the other hand, the result for the calculation of B is given by:

afeAeA
p = Wit
Hr
From the above calculation, we can see that B is always positive. On the other
hand, A can be positive or negative. After some algebraic calculations, we find

that <A will be positive if 8, > ¥, where B¥ is given the same critical parameter
used in Theorem 4 and 5. With this result, we have the following theorem:

0. (20)
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Theorem 6. The AAT model in (1) exhibits bifurcation at R, = 1 when S,, >
(¥, and exhibits forward bifurcation if 8,, > S*.

74
/ 0.254

102

F1.00 -1.00

: 0.159
* 02 *
%4 \ GV Ko
Stable &5 o &
-0.98 oo Stable £ .98
0.14
+0.96 0.054 -0.96
®,  Unsmble &y
Stable & "+, Tnstable £ Lg.94 o Stable & Unstable & 0,94
0.000026 0.000028 0.000030 0.000052 0.000027 0.000029 0.000032
T i
(a) Forward bifurcation (b) Backward bifurcation

Figure 3 Two types of possible bifurcation of AAT in Model (1). The red figure
is the plot of V* in &, from polynomial (7), the blue figure is V* in &;, and the
green figure is the plot of R, as a function of 8,,. The dot and solid curve present
unstable and stable equilibrium, respectively.

Figure 3 shows a numerical interpretation of Theorem 6. To conduct this
numerical experiment we used the following parameter values:

__1000 1000 1 L

rT50x365"F T 30 "M T50x365H T30 T
_0028 . 0028 _ 1 1 1

Bri = To00"Br = 1000’7 = 0> @ =57V = 134 T 63

u; = 0.01,u, = 0.01 1)

while B,, varies depending on the condition of S*. Using the above parameters,
we have ¥ = 0.085. Hence, using Theorem 6, we choose B,, = 0.08 < ¥ to
produce forward bifurcation at R, = 1 (Figure 3a), and B,, = 0.8 < ¥ to
produce backward bifurcation at R, = 1 (Figure 3b). Note that we have multiple
endemic equilibriums ~ when Ro<1 in Figure 3b for
B,1 € [0.000027949,0.000029529], which is equivalent to R, € [0.97287,1].
It can be seen that when forward bifurcation appears, then AAT always
disappears whenever R, < 1, and starts to exist when R, < 1. On the other hand,
we can see that when backward bifurcation appears, there still exists the
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possibility of a stable AAT-endemic equilibrium for some values of R, < 1.
Hence, when backward bifurcation arises, controlling AAT not only relies on
reducing R, to be smaller than one, but we should also consider the value of
reinfection parameter f3,-,.

5 Sensitivity Analysis and Autonomous Simulation

In this section, we analyze the sensitivity of R, and our model to parameter
change in System (1). Sensitivity analysis is essential to determine the qualitative
behavior of R, toward each parameter and knowing which parameter is the most
influential on our model. Several types of sensitivity analysis can be done
regarding this, such as the Latin hypercube-partial rank correlation coefficient
[42], the heat map method [43], and normalized forward sensitivity indices [44].

In this study, we used normalized forward sensitivity analysis to analyze the
elasticity of R, with respect to each parameter in ATT model (1), using the
following formula [44]:

P _ 6320 P
6330 =P X R—O, (22)

where P is any parameter in AAT model (1). If 55;0 > 0, then R, increases

whenever P increases. On the other hand, we have R, decreases for an increase
of P whenever 5§0- Using the expression of R, in (4) and the formula in (22),
we have:

Bri _ 1
gRo T2

Then, increasing fS,1 by 1% will increase R, for 0.5%. In addition, we also have:

w (Ya — YuPpuy

gl — :
Ro 2(pya(1 = D)y + us + py) (Yo + uq + 17)

which, when evaluated using the parameter values in (21), give us -0.023. On the
other hand,

U
u, + ,Llf,

Uz _
Ro —

which is equivalent to -0.231 when we use the parameter values in (21). Based
on this result, we conclude that both interventions (infection detection and ground
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spraying) have potential to reduce R,. However, since |Eg!| > |€5%|, we can say
that using the parameter values in (21), the ground spraying intervention is more
effective in reducing AAT spread compared to infection detection. Using the
same formula and parameter values, the elasticity of R, with respect to all
parameters in System (1) is given in Table 2.

Table 2  Elasticity of R, with respect to the parameters in System (1)

&gy &l £x! £x; € Exy £,
0.5 0.5 0.5 0 0.5 0.0014 -0.503
&k, &, €z, £z’ Ex Ex! Ex!
0.041 0 -0.022 -0.241 -0.058 -0.0417 -0.769

From Table 2, we can see clearly that uy,us,vg, Yy ir, and py are inversely
proportional to the change of R,, while the other parameters are directly
proportional to the change of R,. Increasing uy, u, g, Yu, 4r, and py will reduce
R,. However, only the values of uq, u,, and y,4 can be manipulated in the field to
control the spread of AAT. Furthermore, we can see that the most influential
parameter is us, which indicates the potential of ground spraying or even genetic
mutation to shorten the life expectancy of tsetse flies in order to reduce the spread
of AAT through controlling the value of R,. By substituting all parameter values
in (21) (except u4 and u,) into R, the contour plot of R, with respect to infection
detection and ground spraying is given in Figure 4. We can see that increasing
both interventions (infection detection and ground spraying) could reduce the
magnitude of R,. It was also confirmed that ground spraying is much more
sensitive to R, than infection detection.
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Figure 4 Level set of R, with respect to u, and u,.

Based on the results of the elasticity analysis using the normalized forward
elasticity analysis method, we next show the dynamic of solution of System (1)
for the total infected rhino and infected fly populations for variations in the values
of u, and u,. The result can be seen in Figure 5. In Figure 5a, it can be seen that
by increasing the value of infection detection interference wu,, the dynamics of the
infected rhino and fly populations decreased compared to when no infection
detection intervention was given. However, it can be seen that a change in
dynamic in both infected rhinos and flies for a value of u € [0.0.1] did not provide
a significant result. This is in line with the results of the elasticity calculation in
Table 2, which shows that the elasticity of R, toward parameter u, is relatively
small, namely 0.022.

The autonomous simulation results regarding the total number of infected rhinos
and flies in System (1) for various values of ground spraying intervention are
given in Figure 5b. It can clearly be seen that ground spraying was much more
effective in reducing the number of infected rhinos and flies than infection
detection. This is in line with the elasticity analysis of the ground spraying
intervention, which gave a relatively greater elasticity than the infection detection
intervention, which was 0.231. In addition, it can also be seen that ground
spraying at a sufficiently large intensity was able to prevent outbreaks of the
number of infections in the rhino and fly populations.
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Figure 5 Effect of infection detection (a) and ground spraying (b) on the dynamic
of total number of infected rhinos (left) and flies (right).

Based on Theorem 6, the AAT model in System (1) indicates that when R, < 1,
there is a probability of AAT disappearing from the environment, and conversely
the disease is always present in the environment when R, > 1. This result is
illustrated by the autonomous simulation of System (1) for several different initial
values of Ry < 1and R, > 1. The results can be seen in Figure 6. It shows that
when R, < 1 and backward bifurcation does not occur, all initial values will go
to the AAT-free equilibrium point. On the other hand, all solutions for all initial

values will go to the AAT endemic equilibrium when R, > 1.
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Figure 6 Simulations of System (1) for various initial conditions show a
convergence of solutions of System (1) (total number of infected rhinos (left) and
flies (right) to (a) an AAT-free equilibrium when R, > 1 and (b) an AAT-endemic
equilibrium when R, < 1.

6 Optimal Control Problem

In the previous section, it was found that AAT disease in white rhino populations
can be minimized (or even eliminated) if we can reach an R, < 1 condition. From
the results of the sensitivity analysis of R, it can be seen that early detection and
ground spraying have the potential to reduce the spread of AAT disease. The
greater the intervention, the greater the reduction in the value of R, achieved.
However, the high intensity of the intervention has the consequence of a high cost
of implementation in the field. Therefore, it is deemed necessary that the
interventions given are proportionate to the need. In this case, the infection
detection and ground spraying should be treated as time-dependent variables.
Based on this, the reconstruction of the model in System (1) to an optimal control
model will be discussed in this section.
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6.1 Characterization of the Optimal Control Problem

In order to construct our optimal control problem, we treat our constant
intervention in System (1) as a time-dependent variable, i.e., u; = u,(t),u, =
u, (t). Hence, System (1) now reads as follows:

ds

dt =N — .Brlsv — WS,

dE

2 = PnSV —pak — (1 —plak — qfr,EV - (1 — @), EV — u,E,
dl,

dt = paE + CI.BTZEV —u (Ol — Yulu —

dly

at =(1—-plaE+(1- Q)ﬁrzEV —u (O, —vala — trla, (23)

dR
% = Yuly + Vala — R,

du

== & = BUC + 1) = (b +w(O) U,

dv
= = BrUUu+ 1) = (1 + (D) V.

Let us define the set of state variables as:

X =(S,E 1,1, R UV).

Our aim is to minimize the number of infected white rhinos and flies with
intervention as low as possible. Hence, we define our objective function as
follows:

T
JX,ug,uy) = f (01E + wyly, + w3ly + w,V + @ u? + pui)dt, (24)
0
where T is the final time of simulation, w; for i = 1,2,3,4 is the weight parameter

for state variables E, I, I; and V, respectively, and w; for j = 1,2 is the weight
parameter for the control variables u, and u,, respectively. Note that

T
f (W1 E + wyl, + w3l + w,V)dt
0
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represents the total cost that is needed as a consequence of a high number of
infected white rhinos and tsetse flies (except the cost for interventions). On the
other hand,

T
f (p1uf + @u3)dt
0

represents the total cost of infection detection and ground spraying. For our model
we choose a quadratic cost function in our objective function, which is common
in epidemiological models [45-48].

Our optimal control problem is to seek a couple of controls uj and u;
corresponding to state variable X* on the interval [0, T']. In our case, the problem
is to find the uj and w5 that minimize the cost function (24) corresponding to
state variable X*. Therefore, we want to find the minimum /J, i.e.,

(X*'ui;uZ) = hpl J(XI uliuZ);

where

I' = {(uq, uy)|u, and u, are Lebesgue integrable, with 0 < u; < 1, fori = 1,2}
as the admissible control set.

We derive the necessary condition for our optimal control problem using the well-
known maximum principle of Pontryagin [22,49]. First, we define the
Hamiltonian as follows:

H = wE + wyly + wsly + 0,V + @ u? + pyu;
+ 1Ay = Br, SV — 1:S)
+ A2(Br, SV —pak — (1 —p)akE — qB,EV — (1 — @)Br,EV — i E)
+ 3(pak + qBr,EV — uy (O, — vuly — #rla)
+ 2 ((1 —p)aE + (1 — @B EV + us () — vala — trla) (25)
+ As(Vulu + Vala — urR
+ A6 (A = BrUUy +10) = (1y +u2(0)) U)

+ 27 (BrUUy + 1) = (1 +u2(0) V),
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where A; for i =1,2,...,7 are the adjoint variables. We have the following
theorem as a consequence of Pontryagin’s maximum principle:

Theorem 7. Given optimal control variables uj and u; that correspond to the
optimal state variables X* = (S*,E*, I,;, 15, R*,U", V"), which minimize the cost
function in (24), there exist adjoint variables that satisfy:

dl,

ar Br,V (A1 — 22) + prdy,

i,

=t (pa + B, V) Ay — A3) + ((1 —pa+(1- q)ﬂer) (A2 — )
A,

ds

L @2t U1 (A3 = A4) + (A3 = A5) + BrU(As — A7) + py A3,

dA,

E = —ws3 + Yd(All- - AS) + BfU(A6 - }{7) + “T}{4" (26)

ds

dr Hr s,

da

—= = Br(a + L) (A6 = A7) + (y +uz)e,

d,

L @st Br,S(A1 = 22) + 4B, E(Az — A3) + (1 = @)Br,E(A; — 44)

+(up +uy)As

with a transversality condition A;(T) = 0 for i = 1,2,...,7. Furthermore, the
following functions characterize our optimal controls:

I;(1;— A
u; = max {0, min {1,M}}, (27)
2¢4
) AU + A,V
u; = max{O, mln{l,—}}.
2¢,

Proof. The result of this theorem is a direct consequence of Pontryagin’s
maximum principle [22,49]. Taking the negative of the partial derivative of the
Hamiltonian function (25) with respect to each state variable gives us:
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dAy 9K dl, 9K dls 9K di, 0K

dt  aS’'dt  9E’dt oL, dt  aly

dls 0¥ dlg 0¥ dA;  OH 28

dt  O0R’dt  oU’dt oV’ (28)
with the transversality condition A;(T) = 0 for i = 1,2, ...,7. Taking the partial
derivative of H with respect to each control variable yields:

oH
O_ul =20uy — Ig(Ay — 43),
o0H
a_uz = 2(p2u2 - A6U - A7V

Solving 27}[ = 0 and 377{ = 0 with respect to u,; and u,, respectively, we have:
1 2
+_ I;(A3 — A4) i _ AU+ 47V

! 2¢, 2 2¢,

Due to the limited capability to implement the control variables, we chose that
each control variables should be in the interval of [0, 1]. Therefor we have:

I;(A; — 2
uj] = max {O, min{l, M}}, (29)
2¢4
X ] AU + A,V
U, = max {O, min {1,—}}.
2¢,

This completes the proof.

To sum up, our optimal control problem consists of the state system (23) with a
non-negative initial condition (2), adjoint system (26) with a transversality
condition A;(T) = 0 fori = 1,2, ...,7, cost function (24), and the optimal control
conditions (27).

6.2 Numerical Experiments

In this subsection, we solve our optimal control problem using a forward-
backward iterative method [49]. Several authors have used this method in
different types of epidemiological models [50-52]. First, using an initial guess for
the control variables, we solve the state system (23) forward in time numerically.
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With this result, we sole our adjoint system (26) backward in time with the
transversality condition given. We update our control variables using the formula
in (27). The iterative process continues until a convergence criterion is satisfied.
To conduct our simulation, we use the same parameter values as in (21), while
the weight parameters are w; = w, = w3 = 1,w, = 0.01, @, = @, = 10%,

6.2.1 Endemic prevention vs endemic reduction scenarios

The first numerical experiment was conducted based on a different initial
condition of System (23). Based on this assumption, we had two scenarios,
namely an endemic prevention scenario and an endemic reduction scenario. In
the endemic prevention scenario, the initial condition of infected white rhinos and
tsetse flies was relatively small compared to the total populations. For our case,
we chose the following initial condition for the endemic reduction scenario:

IC, = [S(0), E(0), 1,(0),1,(0), R(0), U(0),V(0)] = [950,20,30,0,0,960,0].

The result of optimal control for the endemic prevention scenario is given in
Figure 7. From the numerical experiments in Figure 7, it can be seen that the
success of the time-dependent interventions of infection detection and ground
spraying prevents the number of infected rhinos in compartment E and I,,, and
infected flies V' from increasing. The number of infected rhinos in I; increases
not because of failure of the controls, but because of the infection detection
intervention, which brings the rhinos in I, to I;. We can see that the infection
detection intervention is monotonically increasing at the beginning of the
simulation period, massively reducing the number of undetected infected rhinos.
After reaching its peak, it will decrease to zero until the end of the simulation.
Unlike the infection detection intervention, the ground spraying intervention
produced a higher rate at the beginning of the simulation period. It decreased
rapidly in the early period and decreased slower when the number of infected flies
was already small. The cost of intervention for this scenario was 10,721.3.

The next simulation was the endemic reduction scenario, which is characterized
by a high number of infected rhinos and flies at t = 0. The following initial
condition is given:

IC2= [S(0), E(0),1,(0),1,(0), R(0), U(0),V(0)] = [800,20,180,0,0,800,200].
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Figure 7 White rhinos, tsetse flies, and control trajectories under the endemic
prevention scenario.

The optimal control results are given in Figure 8. Although the profile of controls
in the endemic reduction scenario was somewhat similar in the endemic
prevention scenario (high at the beginning and monotonically decreasing after the
infected population decreased), it is clear that a higher intensity of intervention
should be given in the endemic reduction scenario. This should be done to reduce
the number of infected rhinos and flies as soon as possible. As a consequence, the
cost of endemic reduction was much higher than in the endemic prevention
scenario, i.e., 35,942.4 (more than three times larger).

Based on the numerical experiments in this section, it can be concluded that
preventing the spread of AAT from the outset is easier, because it requires lower
intervention costs. If the number of infections is already high at the start of a new
intervention, then the intensity of the intervention must be relatively high from
the start. This results in high intervention costs for endemic reduction cases.
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Figure 8 White rhinos, tsetse flies, and control trajectories under the endemic
reduction scenario.

6.2.2 Different combinations of interventions

Unlike in the previous subsection, numerical scenarios will be carried out based
on the type of combination of interventions used in this subsection. The scenarios
are divided into three, namely when both interventions are given (first scenario),
when infection detection is a single intervention (second scenario), and when
ground spraying is a single intervention (third scenario). To conduct the
simulation in this section, we used initial condition IC; for all scenarios.

Figure 7 shows the numerical result for the first scenario. As already explained
in the previous subsection, both interventions succeed in suppressing the number
of infected rhinos and flies almost during the whole simulation, except for the
number of detected infected rhinos. This glitch occurred due to the high intensity
of early detection at the beginning of the simulation.

The result for the second strategy is given in Figure 9. It can be seen that when
the policymakers only rely on infection detection to prevent the spread of AAT,
the result is not as good as in the first scenario. It can be seen that the reduced



Backward Bifurcation Emerging from a Mathematical Model

181

number of infected rhinos and flies was not as high as in the first scenario.
However, the cost of intervention for the second scenario was much lower than
for the first scenario, i.e., only 5,781.9, almost twice smaller than in the first

scenario.
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Figure 9 White rhinos, flies and control trajectories under the intervention

strategy of the second scenario (u,(t) = 0,u,(t) = 0).

In the last simulation, which involved the third scenario, ground spraying was the
only intervention implemented. The results are given in Figure 10. It can be seen
that the control trajectories of u, in the third scenario were somewhat similar with
the first scenario, i.e., high intensity should be implemented at the beginning and
decrease when the number of infected flies starts decreasing. As a result, the
number of infected rhinos and flies decreased much more compared to the second
scenario, but not as much as in the first scenario. The cost of intervention for the

third scenario was 6,320.1.
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Figure 10 White rhinos, tsetse flies and control trajectories under the intervention
strategy of the third scenario (u,(t) = 0,u,(t) = 0).

Cost-effectiveness analysis. From the numerical experiments with all of the
above scenarios, it can be seen that all scenarios provided a reduced number of
infected rhinos and flies. However, a good result comes with high intervention
costs. Hence, we have to determine which is the best strategy compared to the
other in terms of cost-effectiveness. To do this, we used two types of cost-
effectiveness measures, namely the Average Cost-Effectiveness Ratio (ACER)
and the Incremental Cost-Effectiveness Ratio (ICER).

The ACER method aims to determine which strategy produces the lowest average
cost for each reduction of one infected individual. The formula for calculating the
ACER value is as follows:

ACER = Total cost for intervention (30)
" Total number of infection averted

A lower ACER value indicates a better result. A low ACER value means that the
average cost for each infected rhino averted is also small. The result of the ACER
analysis is given in Figure 11. From Figure 11, we can see that intervention of
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ground spraying as a single intervention was more cost-effective compared to the
others, followed by the first and the second scenario, respectively.
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Figure 11 The result of ACER analysis.

The second method used to analyze the cost-effectiveness of the above strategies
was the Incremental Cost-Effectiveness Ratio (ICER) method. This method aims

to find the best strategy from two compared strategies. The following equation
expresses the formula:

ICER _ Dif ference of cost between strategy—i and j
t=J Dif ference of # of infection averted between strategy—i and j

(31)

First, we rank our strategies from the smallest number of infected rhinos averted
to the highest number of infected rhinos averted for each strategy. The result is
given in Table 3.



184 Dipo Aldila and Tama Windyhani

Table 3  All scenario in increasing order based on the number of rhino
infections averted.

Total infections

Strategy averted Total cost ICER
2" scenario 32210.2 5781.9 0.1795
3rdscenario 115 489.7 6320.1 0.00646
1stscenario 131 833.9 10721.3 0.269

Since ICER-2 > ICER-3, we eliminate the second scenario for the next
calculation. Hence, we can conclude that the second scenario was the least cost-
effective strategy based on the ICER analysis. For the next calculation, we
compare the third with the first scenario. The result is given in Table 4. Since
ICER-1 > ICER-3, we can conclude that the third strategy, i.e., the
implementation of ground spraying as a single intervention, is the best strategy.
This result is in line with our previous analysis using the ACER method.

Table 4 Comparison between third and first scenarios

Strategy Total infection averted Total cost ICER
3rdscenario 115 489.7 6320.1 0.05
1stscenario 131 833.9 10721.3 0.269

7 Conclusion

A large number of reports have noted the emergence of African Animal
Trypanosomiasis (AAT) in the Nearly Threatened white rhino population. Thus,
gualitative research related to efforts to minimize the spread of AAT is important,
requiring serious attention from various parties, including mathematicians.
Therefore, this article introduced a mathematical model for AAT, involving
populations of white rhinos and tsetse flies, and two interventions, namely
infection detection and ground spraying. Mathematical model analysis showed
how the AAT-free equilibrium point is always locally asymptotically stable when
the basic reproduction number is less than one. On the other hand, it is possible
to have multiple AAT-endemic equilibriums when the basic reproduction number
is less than one. A unique AAT-endemic equilibrium always exists when the
basic reproduction number is larger than one. Bifurcation analysis using the
Castillo-Song theorem [21], showed the possibility of backward bifurcation
emerging from our model. Hence, there is a situation when the basic reproduction
number being less than one is not enough to guarantee the disappearance of AAT
from the population [37-40]. Sensitivity analysis of the basic reproduction
number showed that infection detection and ground spraying both have potential
to suppress the spread of AAT. However, we found that ground spraying is more
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effective in influencing the basic reproduction number’s size than infection
detection.

From numerical simulations of the optimal control problem, it was found that
time-dependent interventions successfully reduced the spread of AAT in the
white rhino and tsetse fly populations. The cost-effectiveness analysis found that
ground spraying as a single intervention is a better strategy than infection
detection as a single intervention or a combination between infection detection
and ground spraying. In addition, we also found that preventive interventions are
more advisable to save on intervention costs rather than waiting for a high number
of infections and then implementing interventions.

This research showed that AAT can significantly influence the dynamics of white
rhino populations. To suppress the spread of AAT, ground spraying is highly
recommended as a single intervention to prevent possible endemics.
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