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Abstract. This paper introduces a mathematical model for African animal 

trypanosomiasis (AAT) in white rhino and tsetse fly populations. The model 

accommodates two types of interventions, namely infection detection and ground 

spraying. The dynamical system properties were thoroughly investigated to show 

the existence of equilibrium points, backward bifurcation, and how they are related 

to the basic reproduction number. We found that there is a chance that AAT may 

die out from the population if the basic reproduction number is smaller than one. 

However, the possible existence of backward bifurcation implies a condition 

where we may have a stable endemic equilibrium, even when the basic 

reproduction number is smaller than one. Hence, the basic reproduction number is 

no longer sufficient to guarantee the disappearance of AAT from the population. 

Our sensitivity analysis on the basic reproduction number showed that the 

interventions of infection detection and ground spraying have good potential to 

eradicate AAT from the population. To analyze the most effective intervention as 

time-dependent variable, we reconstructed our model as an optimal control 

problem. Numerical simulations on various scenarios were conducted for the 

optimal control problem. Cost-effectiveness analysis using the Average Cost-

Effectiveness Ratio (ACER) and the Incremental Cost-Effectiveness Ratio (ICER) 

methods was performed. From the cost-effectiveness analysis, we found that 

ground spraying is the most cost-effective intervention to combat the spread of 

AAT in white rhino populations. 

Keywords: African animal trypanosomiasis; basic reproduction number; backward 

bifurcation; optimal control; cost-effectiveness analysis. 

1 Introduction  

African animal trypanosomiasis (AAT) is a parasitic disease caused by parasites 

of the genus Trypanosoma. The parasite lives in the blood, lymph, and various 

tissues in vertebrates. The main parasitic species that spread the disease are 

Trypanosoma congolense, Trypanosoma vivax and Trypanosoma brucei. AAT is 

transmitted by the blood-sucking tsetse fly, Glossina spp. The tsetse fly has a 

strong mouthpart that can penetrate thick skin (including rhino skin), namely the 

labium. The labium is the structure of the mouth of the tsetse fly, which consists 
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of a series of tiny, sharp teeth that are capable of scraping thick skin. Thus, these 

flies can suck the host’s blood easily [1]. Parasites carried over by fly bites live 

and multiply in the host’s red blood cells [2]. 

AAT is one of the largest obstacles in controlling animal populations in tropical 

countries, especially in Africa. This is because parasite attacks by Trypanosoma 

are among the most common disease causes in the rhino population in South 

Africa, which includes white rhinos. The white rhino (Ceratotherium simum) is 

one of five rhino species that are not yet threatened with extinction. The World 

Wide Fund for Nature says that at the end of the nineteenth century, the southern 

white rhino subspecies was thought to have become extinct due to rampant 

poaching [3]. However, a small group of less than a hundred individuals was 

found in 1895 in Kwazulu-Natal, South Africa. This discovery initiated 

conservation practices to conserve the white rhino [3]. However, in 2012, the 

International Union for Conservation of Nature designated the white rhino as an 

endangered species with a declining population trend [4]. The difficulty of the 

white rhino population translocation program was exacerbated by the discovery 

of the AAT disease in the rhino population, especially those carried by 

Trypanosoma conglense, simiae, and godfreyi [5]. 

At first, AAT was considered to have a minor influence on white rhino population 

dynamics [6]. However, in the 1960s, researchers became aware of the fact that 

an AAT infection can become a real health threat for white rhinos when the 

animal is stressed [7]. Stress in rhinos can occur due to various factors, including 

overpopulation, lack of water and food, and anxiety [8]. AAT should be suspected 

if an animal in an endemic area is listless and in a problematic condition. 

Based on the above and given that the white rhino is classified as Near Threatened 

[3], it is important to understand the impact of AAT on the population dynamics 

of white rhinos. Many authors have used different mathematical models to 

understand the population dynamics of a species affected by disease. Ref. [9] 

introduced an ecoepidemic mathematical model to understand the effect of 

disease on predators. They also considered prey group defense in their model. A 

mathematical model of disease in prey animals is discussed in [10]. Various types 

of incidence rates in an eco-epidemiological model are discussed in [11], where 

the possibility of Hopf bifurcation emerged from the proposed model. See [12-

15] for more references on ecoepidemiological models. Although many studies 

discuss ecoepidemiological models of predator-prey interaction or population 

dynamics models, few articles discuss mathematical models for AAT in rhino 

populations. For example, an earlier study on AAT and its intervention using 

insecticides and multi-host factors is presented in [16]. A mathematical model 

regarding human African trypanosomiasis was developed in [17], where the 

model was validated with real data. Recently, [18] introduced a fractional-order 
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model and optimal control problem for a human African trypanosomiasis model. 

They developed their model using a Susceptible-Infected-Recovered model on 

the human population and a Susceptible-Infected model on the vector population. 

Their numerical results showed that the combination of public education, 

effective treatment, and vector control as control measures succeeded in 

suppressing the spread of AAT in the human population. Ref. [19] analyzed a 

model of the spread of AAT in livestock by considering the use of insecticide. 

They constructed the basic reproduction number of their model with respect to 

the growth rate of infected wildlife around the susceptible population. They 

concluded that if treatment of cattle with insecticide did not take place, the 

wildlife would continue to be the source of infections in the livestock population. 

A model of the spread of AAT in livestock by considering treatment was 

introduced in [20]. Three immunity stages were included in the model, which 

revealed that it is possible that AAT may still exist even though the related 

reproduction number is smaller than one. 

According to the references mentioned above, in this article, we consider a 

mathematical model for African animal trypanosomiasis. The novelty of this 

study lies in the involvement of infection detection and ground spraying on the 

rhino population. A mathematical model of the interaction between tsetse flies 

and rhinos has never been developed before. A detailed mathematical analysis 

was done to find the existence and local stability of equilibrium points. Using the 

Castillo-Song bifurcation theorem [21], we showed that our model may exhibit 

backward bifurcation at basic reproduction number equals one. To analyze the 

optimal intervention, we reconstructed our model as an optimal control problem. 

Pontryagin’s maximum principle [22] was used to characterize the optimal 

condition of our problem. A cost-effectiveness analysis was conducted to 

determine the most cost-effective scenario for AAT intervention. Our numerical 

experiments on the optimal control problem indicated that a combination of 

ground spraying and infection detection will be successful in suppressing the 

spread of AAT in the rhino population. If a single intervention should be selected, 

then ground spraying is more cost-effective compared to infection detection. 

This paper is structured as follows. The mathematical model that was constructed 

is discussed in detail in Section 2. The existence of all equilibrium points and 

their stability criteria are analyzed in Section 3, continued with a bifurcation 

analysis in Section 4. The sensitivity analysis and autonomous simulation to 

determine the elasticity of each parameter in our proposed model to the dynamics 

of the rhino and tsetse fly populations are discussed in Section 5 and also the 

basic reproduction number. The construction of the mathematical model for the 

optimal control problem is done in Section 6. Characterization, numerical 

simulations, and the cost-effectiveness of the optimal control problem are also 

discussed in Section 6. Finally, some conclusions are given in Section 7. 
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2 Mathematical model formulation  

African animal trypanosomiasis (AAT) can be transmitted to rhinos through bites 

from tsetse flies. Here, we construct a novel mathematical model to describe the 

dynamics of AAT transmission among white rhino and tsetse fly populations. The 

model is based on a compartmental model with a system of non-linear ordinary 

differential equations. Therefore, our white rhino population is divided into five 

compartments based on their health status and their symptoms, namely, 

susceptible rhinos S(t), exposed rhinos 𝐸(𝑡), undetected infected rhinos 𝐼𝑢(𝑡), 
detected infected rhinos 𝐼𝑑(𝑡), and recovered rhinos 𝑅(𝑡). On the other hand, we 

divide the fly population into two compartments, namely, susceptible flies 𝑈(𝑡) 
and infected flies 𝑉(𝑡). We assume that due to the short life expectancy of flies, 

once a fly gets infected by parasites, the disease will be lifelong. Hence, we have 

the total population of rhinos denoted by 𝑁𝑟, given by Nr(t) = S(t) + E(t) +
Iu(t) + Id(t) + R(t). On the other hand, the total population of flies, denoted by 

𝑁𝑓, is given by Nf(t) = U(t) + V(t). We construct our model based on the 

transmission diagram given in Figure 1, and the description of all parameters is 

given in Table 1. 

 

Figure 1 Transmission diagram of AAT in System (1).  
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Table 1 Description of parameters in model (1). 

Par. Description Unit 

Λℎ Recruitment rate of white rhinos 
𝑟ℎ𝑖𝑛𝑜

𝑑𝑎𝑦
 

Λ𝑓 Recruitment rate of tsetse flies 
𝑓𝑙𝑖𝑒𝑠

𝑑𝑎𝑦
 

𝛽𝑟1 Infection rate in white rhinos due to primary bites 
1

𝑑𝑎𝑦 × 𝑓𝑙𝑖𝑒𝑠
 

𝛽𝑟2 Infection rate in white rhinos due to secondary bites 
1

𝑑𝑎𝑦 × 𝑓𝑙𝑖𝑒𝑠
 

𝛽𝑓 Infection rate of tsetse flies 
1

𝑑𝑎𝑦 × 𝑟ℎ𝑖𝑛𝑜
 

𝛼 
Progression towards infected rhino compartment due to 

incubation period 

1

𝑑𝑎𝑦
 

𝑝 
Proportion of exposed rhinos who experience a secondary 

bite but do not show any symptoms (undetected) 
− 

𝑞 

Proportion of exposed rhinos who progress to infected 

rhinos after the incubation period but do not show 

symptoms (detected) 

− 

𝑢1 Rate of infection detection 
1

𝑑𝑎𝑦
 

𝑢2 Rate of ground spraying 
1

𝑑𝑎𝑦
 

𝛾𝑢 Recovery rate of infected undetected rhinos 
1

𝑑𝑎𝑦
 

𝛾𝑑 Recovery rate of infected detected rhinos 
1

𝑑𝑎𝑦
 

   

𝜇𝑟 Natural death rate of rhinos 
1

𝑑𝑎𝑦
 

𝜇𝑓 Natural death rate of tsetse flies 
1

𝑑𝑎𝑦
 

The construction of the model is as follows. We assume that all newborn (rate of 

Λ𝑟) are susceptible. We assume that AAT is not vertically transmitted through 

newborns. The number of susceptible rhinos then decreases due to primary bites 

from infected flies at a constant rate 𝛽𝑟1, and due to natural death at rate 𝜇𝑟. In 

our model, we use a mass contact function to describe the infection process of 

AAT in the rhino and fly populations.  

The number of exposed individual rhinos increases due to new infections from a 

susceptible compartment at a rate of 𝛽𝑟1𝑆𝑉. This population can then decrease 

due to three reasons. The first is the constant natural death rate. The second is 

because of the disease’s progression. After an incubation period of 𝛼−1, exposed 

rhinos will move to the infected compartment. However, since AAT does not 

always show symptoms, we have to add the $p$ portion of these individuals to 
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the undetected cases and the rest (1 − 𝑝) to the detected cases. The last reason 

why the number of exposed rhinos decreases are secondary bites from flies, at a 

constant rate 𝛽𝑟2. Similarly, some proportion of the exposed rhinos (𝑞) who do 

not show any symptoms will move to the undetected class, while 1 − 𝑞 goes to 

the detected class.  

Due to detection efforts from the government to detect the existence of infection 

in white rhinos (at rate 𝑢1), there is a transition from the undetected infected to 

the detected infected rhino compartment. Furthermore, there is recovery of 

undetected and detected infected white rhinos at constant rates 𝛾𝑢 and 𝛾𝑑, 

respectively. Note that due to additional treatment, we assume that 𝛾𝑑 ≥ 𝛾𝑢. We 

presume that AAT does not cause any additional deaths in the infected white 

rhino population.  

We assume that there is no vertical transmission in the population of tsetse flies. 

Hence, all recruitments go to susceptible flies (𝑈). Susceptible flies may get 

infected by AAT due to biting of infected white rhinos (𝐼𝑢 and 𝐼𝑑) at a constant 

rate of 𝛽𝑓. In order to control the vector population, we include ground spraying 

at a constant rate of 𝑢2. 

Based on the above description, the mathematical model of AAT transmission 

considering infection detection and ground spraying as interventions is given by 

the following system of ordinary differential equations. 

𝑑𝑆

𝑑𝑡
= 𝛬𝑟 − 𝛽𝑟1𝑆𝑉 − 𝜇𝑟𝑆 

(1a) 

𝑑𝐸

𝑑𝑡
= 𝛽𝑟𝑆𝑉 − 𝛼𝐸 − 𝛽𝑟2𝐸𝑉 − 𝜇𝑟𝐸, 

(1b) 

𝑑𝐼𝑢
𝑑𝑡

= 𝑝𝛼𝐸 + 𝑞𝛽𝑟2 𝐸𝑉 − 𝑢1𝐼𝑢 − 𝛾𝑢𝐼𝑢 − 𝜇𝑟𝐼𝑢, 
(1c) 

𝑑𝐼𝑑
𝑑𝑡

= (1 − 𝑝)𝛼𝐸 + (1 − 𝑞)𝛽𝑟2𝐸𝑉 + 𝑢1𝐼𝑢 − 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝐼𝑑 , 
(1d) 

𝑑𝑅

𝑑𝑡
= 𝛾𝑢𝐼𝑢 + 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝑅, 

(1e) 

𝑑𝑈

𝑑𝑡
= 𝛬𝑓 − 𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2)𝑈,  

(1f) 
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𝑑𝑉

𝑑𝑡
= 𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2)𝑉. 

(1g) 

Note that all parameters in System (1) are non-negative. In addition, System (1) 

is completed by the following non-negative initial condition: 

𝑆(0) > 0, 𝐸(0) ≥  0, 𝐼𝑢 ≥ 0, 𝐼𝑑 ≥ 0, 𝑅(0) ≥ 0, 𝑈(0) > 0, 𝑉(0)
≥ 0. 

(2) 

The following theorem guarantees that System (1) always has a unique solution 

and each solution is always non-negative as long as the initial condition is also 

non-negative. 

Theorem 1. For any initial condition as in (2), System (1) has a unique solution 

for all time 𝑡 ≥ 0. 

Proof. The following inequality always holds:  

𝑑𝑆

𝑑𝑡
> −(𝛽𝑟1𝑉 + 𝜇𝑟)𝑆. 

With the method of factor of integration, choosing exp(∫ (𝛽𝑟1𝑉(𝜏) + 𝜇𝑟)𝑑𝜏)
𝑡

0
 as 

the integration factor, and implementation into above equation, we have: 

𝑆(𝑡) > 𝑆(0)exp(−∫ (𝛽𝑟1𝑉(𝜏)𝑑𝜏 + 𝜇𝑟𝑡) > 0
𝑡

0
 

for all 𝑡 > 0. From the above expression, we can see that 
𝑑𝑆

𝑑𝑡
 has a unique positive 

solution for a non-negative initial condition 𝑆(0). The existence and non-

negativity of all other variables in System (1) can be shown in the same way. 

Hence, we can conclude that all solutions 𝑆, 𝐸, 𝐼𝑢, 𝐼𝑑 , 𝑅, 𝑈 and 𝑉 are always non-

negative for all time 𝑡 > 0. Hence, the proof is completed. 

In addition, we define the following feasible region of System (1): 

𝛤 = 𝛤𝑟 × 𝛤𝑓 , 

where 

𝛤𝑟 = {(𝑆, 𝐸, 𝐼𝑢, 𝐼𝑑 , 𝑅) ∈ ℝ+
5 : 𝑁𝑟 ≤

𝛬𝑟
𝜇𝑟 
} 

for the rhino population and  
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𝛤𝑓 = {(𝑈, 𝑉) ∈ ℝ+
2 : 𝑁𝑓 ≤

𝛬𝑓

𝜇𝑓 + 𝑢2
} 

for the fly population. Using the same approach as in [23,24], we can show that 

Γ is positively invariant. 

3 Existence and Stability of Equilibrium Points 

3.1 The AAT-free Equilibrium and the Basic Reproduction  

Number 

The ATT-free equilibrium point of System (1) is given by  

ℰ1 = (𝑆
†, 𝐸†, 𝐼𝑢

†, 𝐼𝑑
†, 𝑅†, 𝑈†, 𝑉†) = (

𝛬𝑟
𝜇𝑟
, 0,0,0,0,

𝛬𝑓

𝜇𝑓 + 𝑢2
, 0). (3) 

From the expression of  𝑆†, we can see that the total population of rhinos in an 

AAT-free equilibrium only depends on the ratio between the recruitment rate and 

the natural death rate. On the other hand, the total population of flies depends not 

only on the recruitment rate and the natural death rate but also on ground 

spraying. Increasing ground spraying will reduce the number of flies in the 

equilibrium.  

Next, we calculate the basic reproduction number of our model. The basic 

reproduction number (denoted by ℛ0) defines the expected number of new cases 

caused by one primary case in a completely susceptible population during its 

infection period [25]. In many epidemiological models, the basic reproduction 

number determines the existence or disappearance of the disease. In several 

epidemiological models [26-30], the disease has a chance to die out from the 

population if the basic reproduction number is less than one and always exists if 

the basic reproduction number is larger than one. Using the next-generation 

method [31], the basic reproduction number of System (1) will be calculated as 

follows. The transmission (𝑻) matrix and transition (Σ) matrix of the infected 

sub-compartment of System (1), which are evaluated at ℰ1, are given by 

𝑻 =

[
 
 
 
 
 
 0 0 0

𝛽𝑟1𝛬𝑟
𝜇𝑟

0 0 0 0
0 0 0 0

0
𝛽𝑓𝛬𝑓

𝜇𝑓 + 𝑢2

𝛽𝑓𝛬𝑓

𝜇𝑓 + 𝑢2
0

]
 
 
 
 
 
 

, 
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and  

𝛴 =

[
 
 
 
−𝑝𝑎 − (1 − 𝑝)𝛼 − 𝜇𝑟 0 0 0

𝑝𝛼 −𝑢1 − 𝛾𝑢 − 𝜇𝑟 0 0
(1 − 𝑝)𝛼 𝑢1 −𝛾𝑑 − 𝜇𝑟 0

0 0 0 −𝜇𝑓 − 𝑢2]
 
 
 
, 

respectively. Since 𝑻 has a zero row, the next-generation matrix of System (1) 

can be calculated using the following formula: 

𝑲 = −𝐸𝑡𝑻𝛴−1𝐸, 

where 𝐸 = [

1 0
0 0
0 0
0 1

], and 𝐸𝑡 is the transpose f 𝐸. Hence, the next generation matrix 

of System (1) is given by: 

𝑲 =

[
 
 
 
 0 −

𝛽𝑟1Λ𝑟

𝜇𝑟(𝜇𝑓 + 𝑢2)

−
𝛽𝑓𝚲𝒇𝒑𝜶

(𝜶 + 𝝁𝒓)(𝒖𝟏 + 𝜸𝒖 + 𝝁𝒓)(𝝁𝒇 + 𝒖𝟐)
+

𝜷𝒇𝚲𝒇(𝒑𝜸𝒖 + 𝒑𝝁𝒓 −𝒖𝟏 − 𝜸𝒖 − 𝝁𝒓)𝜶

(𝜶 + 𝝁𝒓)(𝒖𝟏 + 𝜸𝒖 + 𝝁𝒓)(𝜸𝒅 + 𝝁𝒓)(𝝁𝒇 + 𝒖𝟐)
𝟎

]
 
 
 
 

. 

 

The controlled basic reproduction number of System (1) is taken from the spectral 

radius of 𝑲, i.e., 

ℛ0 = √
𝛽𝑟1𝛬𝑟𝛽𝑓𝛬𝑓𝛼(𝑝𝛾𝑑 + (1 − 𝑝)𝛾𝑢 + 𝑢1 + 𝜇𝑟)

𝜇𝑟(𝜇𝑓 + 𝑢2)
2
(𝛼 + 𝜇𝑟)(𝑢1 + 𝛾𝑢 + 𝜇𝑟)(𝛾𝑑 + 𝜇𝑟) 

. 
(4) 

Following the results on Theorem 2 in [32], we have the following theorem: 

Theorem 2. The AAT-free equilibrium of System (1) is always locally 

asymptotically stable if ℛ0 < 1 and unstable if ℛ0 > 1. 

The basic reproduction number ℛ0 in the context of our problem indicates the 

possibility of whether AAT will spread in the population or not. The consequence 

of Theorem 2 from an epidemiological point of view is that AAT has a possibility 

to be controlled and disappeared from the population as long as the value of ℛ0 

is less than one. In many epidemiological models involving species interaction, 

basic reproduction plays an essential role in determining the existence of the 

disease. Keeping the basic reproduction number below one is enough to guarantee 
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that the disease dies out. However, in some conditions, a basic reproduction 

number below one does not ensure the disappearance of the disease. We will 

discuss this in the following section. 

The expression of ℛ0
2 from (4) can be rewritten as follows:  

ℛ0
2 = {

𝛽𝑟1
𝛼 + 𝜇𝑟

Λ𝑟
𝜇𝑟
}

⏟      
 𝒦1

× {
𝛽𝑓

𝜇𝑓 + 𝑢2

Λ𝑓

𝜇𝑓 + 𝑢2
 }

⏟            
𝒦2

× {𝛼 (
𝑝𝛾𝑑 + (1 − 𝑝)𝛾𝑢 + 𝑢1 + 𝜇𝑟
(𝑢1 + 𝛾𝑢 + 𝜇𝑟)(𝛾𝑑 + 𝜇𝑟)

)}
⏟                      

𝒦3

, 

where  𝒦1 represents the total of expected new infected rhinos per fly, 𝒦2 

represents the total of expected new infected flies per rhino, and 𝒦3 represents 

the effect of infection detection 𝑢1 and treatment for detected infected white 

rhinos 𝛾𝑑. Hence, we can see that to reduce ℛ0, we have to pay attention to these 

three components, because each of them represents a path of infection as well as 

the impact of intervention. For example, we can reduce ℛ0 by reducing the 

number of expected infected rhinos in terms of reducing the number of flies by 

ground spraying. We can also increase the infection detection rate and recovery 

rate of detected infected white rhinos in order to reduce ℛ0. Further discussion 

on the impact of each parameter in determining the size of ℛ0 will be discussed 

in Section 5. 

3.2 AAT-endemic Equilibrium  

In this section, we analyze the criteria for the existence of a nontrivial equilibrium 

point in System (1), namely the AAT-endemic equilibrium point ℰ2. The AAT-

endemic equilibrium point represents a condition where all infected individuals 

are in equilibrium, which is given by: 

ℰ2 = (𝑆
∗, 𝐸∗, 𝐼𝑢

∗ , 𝐼𝑑
∗ , 𝑅∗, 𝑈∗, 𝑉∗), 

(5) 

where  

𝑆∗ =
𝛬𝑟

𝑉∗𝛽𝑟1 + 𝜇𝑟
, 𝐸∗ =

𝛽𝑟1𝛬𝑟𝑉
∗

(𝑉∗𝛽𝑟1 + 𝜇𝑟)(𝑉
∗𝛽𝑟2 + 𝛼 + 𝜇𝑟)

, 
 

𝐼𝑢
∗ =

𝛽𝑟1𝛬𝑟𝑉
∗(𝑉∗𝑞𝛽𝑟2 + 𝑎𝑝)

𝑚0
, 𝐼𝑑
∗ =

𝛽𝑟1𝛬𝑟𝑉
∗𝑚1

(𝛾𝑑 + 𝜇𝑟)𝑚0
, 

(6) 

𝑅∗ =
𝛽𝑟1𝛬𝑟𝑉

∗𝑚2
(𝛾𝑑 + 𝜇𝑟)𝜇𝑟𝑚0

, 𝑈∗ =
(𝜇𝑓 + 𝑢2)(𝛾𝑑 + 𝜇𝑟)𝑚0

𝛬𝑟𝛽𝑓𝛽𝑟1𝑉
∗𝑚3 +𝑚4

, 

 

and 
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𝑚0 = (𝛾𝑢 + 𝑢1 + 𝜇𝑟)( 𝑉𝛽𝑟1 + 𝜇𝑟)(𝑉𝛽𝑟2 + 𝛼 + 𝜇𝑟), 

𝑚1 = −((𝑞 − 1)𝛾𝑢 + (𝑞 − 1)𝜇𝑟 − 𝑢1)𝑉𝛽𝑟2 − 𝛼(( 𝑝 − 1)𝛾𝑢 + ( 𝑝 − 1)𝜇𝑟
− 𝑢1, 

𝑚2 = ((−𝑉( 𝑞 − 1)𝛽𝑟2 − 𝛼(𝑝 − 1)𝜇𝑟 + ( 𝑢1 + 𝛾𝑢)(𝑉𝛽9𝑟2) + 𝛼))𝛾𝑑
+ 𝜇𝑟𝛾𝑢(𝑉𝑞𝛽𝑟2 + 𝛼 𝑝) 

𝑚3 = 𝛽𝑟2 ( 𝛾𝑑𝑞 − 𝑞𝛾𝑢 + 𝛾𝑢 + 𝜇𝑟 + 𝑢1) , 

𝑚4 = 𝛽𝑓 ( 𝛼, 𝑝𝛾𝑑 − 𝛼, 𝑝𝛾𝑢 + 𝛼𝛾𝑢 + 𝛼𝜇𝑟 + 𝛼𝑢1)𝛬𝑟 𝛽𝑟1 

Note that 𝑉∗ is taken from the positive roots of the following second-degree 

polynomial: 

 𝐹(𝑉) =  𝑑2𝑉
2 + 𝑑1𝑉 + 𝑑0 = 0, 

where  

𝑑2 = 𝛽𝑟1𝛽𝑟2( 𝜇𝑓 + 𝑢2)𝑑2
∗  , 

𝑑1 = 𝛽𝑟1𝑑1
∗  + 𝛽𝑟2𝜇𝑟( 𝜇𝑓 + 𝑢2 )

2
( 𝛾_{{𝑢}} + 𝑢_{{1}} + 𝜇𝑟)( 𝛾𝑑 + 𝜇𝑟  ), 

𝑑0 = {𝜇𝑟( 𝜇𝑓 + 𝑢2)
2
 ( 𝛼 + 𝜇𝑟)( 𝑢1 + 𝛾𝑢 + 𝜇𝑟)( 𝛾𝑑 + 𝜇𝑟)(1 − ℛ0

2), 

𝑑2
∗ =  𝑞𝛾𝑑𝛬𝑟𝛽𝑓 + (1 − 𝑞)𝛾𝑢𝛬𝑟𝛽𝑓 + 𝛬𝑟𝛽𝑓𝛾𝑢 + 𝛬𝑟𝛽𝑓𝜇𝑟 + 𝛬𝑟𝛽𝑓𝑢1 + 𝛾𝑑𝛾𝑢𝜇𝑓

+ 𝛾𝑑𝛾𝑢𝑢2 + 𝛾𝑑𝜇𝑓𝜇𝑟 + 𝛾𝑑𝜇𝑓𝑢1 + 𝛾𝑑𝜇𝑟𝑢2 + 𝛾𝑑𝑢1𝑢2 + 𝛾𝑢𝜇𝑓𝜇𝑟
+ 𝛾𝑢𝜇𝑟𝑢2 + 𝜇𝑓𝜇𝑟

2 + 𝜇𝑓𝜇𝑟𝑢1 + 𝜇𝑟
2𝑢2 + 𝜇𝑟𝑢1𝑢2, 

𝑑1
∗ = ( 𝜇𝑓 + 𝑢2)

2
𝜇𝑟
3 + (𝜇𝑓 + 𝑢2)

2
(𝛾𝑑 + 𝛾𝑢 + 𝛼 + 𝑢1)𝜇𝑟

2

+ (((𝛾𝑢 + 𝛼 + 𝑢1)𝛾𝑑 + 𝛼(𝑢1 + 𝛾𝑢))𝜇𝑓
2

+ (((2𝛾𝑢 + 2𝛼 + 2 𝑢1)𝛾𝑑 + 2𝛼(𝑢1 + 𝛾𝑢))𝑢2 + 𝛬𝑟𝛼𝛽𝑓)𝜇𝑓

+ (( 𝛾𝑢 + 𝛼 + 𝑢1𝛾𝑑 + 𝛼( 𝑢1 + 𝛾𝑢))𝑢2
2 + 𝛬𝑟𝛼 𝛽𝑓𝑢2

− 𝛽𝑟2𝛬𝑓𝛬𝑟𝛽𝑓) 𝜇𝑟 + 𝛾𝑑𝛼( 𝑢1 + 𝛾𝑢)𝜇𝑓
2

+ 𝛼( 2𝛾𝑑( 𝑢1 + 𝛾𝑢)𝑢2 + ( 𝑝𝛾𝑑 + ( −𝑝 + 1 )𝛾𝑢 + 𝑢1)𝛽𝑓𝛬𝑟)𝜇𝑓
+ 𝛾𝑑𝛼( 𝑢1 + 𝛾𝑢)𝑢2

2 + ( 𝑝𝛾𝑑 + ( −𝑝 + 1)𝛾𝑢  + 𝑢1)𝛽𝑓𝛬𝑟𝛼 𝑢2
− 𝛬𝑓( 𝑞𝛾𝑑 + ( −𝑞 + 1)𝛾𝑢 + 𝑢1)𝛽𝑟2𝛽𝑓𝛬𝑟. 
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From the expressions of 𝑑2 and 𝑑0, we can easily see that 𝑑2 is always positive, 

while 𝑑0 is negative if ℛ0 > 1 . Therefore, we know that the multiplication of the 

root of 𝐹(𝑉) will be negative if ℛ0 > 1. Hence, 𝐹(𝑉) can always have exactly 

one positive root if ℛ0 > 1. We state this result regarding the existence of the 

AAT-endemic equilibrium in the following theorem: 

Theorem 3. System (1) always has a unique AAT-endemic equilibrium if ℛ0 >
1. 

Since 𝐹(𝑉) is a second-degree polynomial, and Theorem 3 only guarantees the 

existence of ℰ2 when ℛ0 > 1 (not the opposite), it is possible that we may have 

another equilibrium when ℛ0 < 1. Furthermore, it is also possible that we have 

two AAT-endemic equilibriums for System (1). To analyze this, we use gradient 

analysis of 𝑉 with respect to ℛ0 at ℛ0 = 1 and 𝑉 = 0. Note that the condition of 

ℛ0 = 1 is qualitatively equivalent with ℛ0
2 = 1. Hence, for simplification 

purposes, instead of calculating 
𝜕𝑉

𝜕ℛ0
 at ℛ0 = 1, we will calculate 

𝜕𝑉

𝜕ℛ0
2. An 

illustration of this gradient analysis can be seen in Figure 2. 

 
Figure 2 Illustration of 

𝜕𝑉

𝜕ℛ0
2 < 0 (left) and 

𝜕𝑉

𝜕ℛ0
2 > 0 (right). The left figure shows 

the existence of a positive root of 𝐹(𝑉) when ℛ0 < 1. The right figure shows the 

existence of a positive root of 𝐹(𝑉) when ℛ0 > 1 

To do this analysis, we should rewrite 𝑑2 and 𝑑1 in (7) as a function of ℛ0
2

. Hence, 

since 

ℛ0
2
=

𝛽𝑟1𝛬𝑟𝛽𝑓𝛬𝑓𝛼(𝑝𝛾𝑑 + (1 − 𝑝)𝛾𝑢 + 𝑢1 + 𝜇𝑟)

𝜇𝑟 (𝜇𝑓+𝑢2)
2
(𝛼+ 𝜇𝑟)(𝑢2+𝛾𝑢+𝜇𝑟)(𝛾𝑑+𝜇𝑟)

. (8) 
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we can make 𝛽𝑟1 a function of  ℛ0
2 as follows: 

𝛽𝑟1 = ℛ0
2
𝜇𝑟(𝜇𝑓 + 𝑢2)

2
(𝛼 + 𝜇𝑟)(𝑢1 + 𝛾𝑢 + 𝜇𝑟)(𝛾𝑑 + 𝜇𝑟)

𝛬𝑟𝛽𝑓𝛬𝑓𝛼(𝑝𝛾𝑑 −  𝑝𝛾𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟)
. 

(9) 

Substituting 𝛽𝑟1
∗  into 𝐹(𝑉) in (7) and calculating the implicit differentiation of 𝑉 

with respect to ℛ0
2 yields: 

𝜕𝑑2

𝜕ℛ0
2 𝑉

2 + 2𝑉𝑑2(ℛ0
2)
𝜕𝑉

𝜕ℛ0
2 +

𝜕𝑑1

𝜕ℛ0
2 𝑉 +

𝜕𝑉

𝜕ℛ0
2 𝑑1(ℛ0

2) +
𝜕𝑑0

𝜕ℛ0
2 = 0.  

(10) 

Substituting ℛ0 = 1 and 𝑉 = 0 to (10), and solving it with respect to 
𝜕𝑉

𝜕ℛ0
2, we 

obtain: 

𝜕𝑉

𝜕ℛ0
2 = −

𝜕𝑑0

𝜕ℛ0
2

1

𝑑1ℛ0
, (11) 

= 2𝜇𝑟( 𝜇𝑓 + 𝑢2)
2
 (𝑢1 + 𝛾𝑢 + 𝜇𝑟  )( 𝛾𝑑 + 𝜇𝑟)( 𝛼 + 𝜇𝑟)

1

𝑑1ℛ0
2, (12) 

where  

          𝑑1(ℛ0
2 = 1) =  𝑐0 − 𝑐1 𝛽𝑟2, (13) 

and 

𝑐1 = ( 𝜇𝑟
2 + ( ( 1 − 𝑞 )𝛾𝑢 + 𝑞𝛾𝑑 + 𝑢1)𝜇𝑟 + 𝛼( 𝛾𝑑 − 𝛾𝑢)( 𝑞 − 𝑝)𝛽𝑓𝛬𝑟𝛬𝑓 

𝑐0 = ( 𝜇𝑓 + 𝑢2)(𝛼 + 𝜇𝑟)(𝛼𝑝𝛬𝑟𝛽𝑓𝛾𝑑(𝛾𝑑 − 𝛾𝑢) + 𝛼𝛬𝑟𝛽𝑓𝛾𝑢 + 𝛼𝛬𝑟𝛽𝑓𝜇𝑟
+ 𝛼𝛬𝑟𝛽𝑓𝑢1 + 𝛼𝛾𝑑𝛾𝑢𝜇𝑓 + 𝛼𝛾𝑑𝛾𝑢𝑢2 + 𝛼𝛾𝑑𝜇𝑓𝜇𝑟 + 𝛼𝛾𝑑𝜇𝑓𝑢1
+ 𝛼𝛾𝑑𝜇𝑟𝑢2 + 𝛼𝛾𝑑𝑢1𝑢2 + 𝛼𝛾𝑢𝜇𝑓𝜇𝑟 + 𝛼𝛾𝑢𝜇𝑟𝑢2 + 𝛼𝜇𝑓𝜇𝑟

2

+ 𝛼𝜇𝑓𝜇𝑟𝑢1 + 𝛼𝜇𝑟
2𝑢2 + 𝛼𝜇𝑟𝑢1𝑢2 + 𝛾𝑑𝛾𝑢𝜇𝑓𝜇𝑟 + 𝛾𝑑𝛾𝑢𝜇𝑟𝑢2

+ 𝛾𝑑𝜇𝑓𝜇𝑟
2 + 𝛾𝑑𝜇𝑓𝜇𝑟𝑢1 + 𝛾𝑑𝜇𝑟

2𝑢2 + 𝛾𝑑𝜇𝑟𝑢1𝑢2 + 𝛾𝑢𝜇𝑓𝜇𝑟
2

+ 𝛾𝑢𝜇𝑟
2𝑢2 + 𝜇𝑓𝜇𝑟

3 + 𝜇𝑓𝜇𝑟
2𝑢1 + 𝜇𝑟

3𝑢2 + 𝜇𝑟
2𝑢1𝑢2. 
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Let 𝑞 > 𝑝, then we have 
𝜕𝑉

𝜕ℛ0
2 
|ℛ0=1,𝑉=0 < 0  if 𝛽𝑟2 > 𝛽

‡, where 𝛽‡ =
𝑐0

𝑐1
. Based 

on the above analysis, we have the following theorem: 

Theorem 4. System (1) has: 

1. at least one positive AAT-endemic equilibrium for some ℛ0 < 1 if 𝛽𝑟2 > 𝛽
‡ 

2. no AAT-endemic equilibrium for all ℛ0 > 1 if 𝛽𝑟2 < 𝛽
‡. 

 

Based on Theorems 3-4 and using the concept of determinant of second-degree 

polynomials, we have the following corollary: 

 

Corollary 1. Let ℛ1 =
𝑑1
2

4𝑑2𝑑0
 with 𝑑0, 𝑑1, and 𝑑2 is taken from the polynomial in 

Equation (7). Based on the condition of ℛ1, ℛ0, and 𝛽𝑟2, System (1) has: 

1. a unique AAT-endemic equilibrium if ℛ0 > 1 

2. no AAT-endemic equilibrium when  ℛ0 < 1 and 𝛽𝑟2 > 𝛽
‡ 

3. no AAT-endemic equilibrium when ℛ0 < ℛ1 < 1 and 𝛽𝑟2 > 𝛽
‡ 

4. two AAT-endemic equilibriums when ℛ1 ≤ ℛ0 < 1 and 𝛽𝑟2 > 𝛽
‡. 

See [33] for another approach of determining a condition for the existence of non-

trivial equilibrium points for a second-degree polynomial equation. Based on the 

analysis in this section, it appears that the existence of a basic reproduction 

number that is smaller than one as an indicator of the disappearance of AAT can 

no longer always be guaranteed. This is because there is still a chance of the 

existence of AAT endemic equilibrium points even though the value of the basic 

reproduction number is smaller than one. In fact, it is possible to have two 

endemic equilibriums when the basic reproduction number is below one. This 

indicates the possibility of backward bifurcation in our model, which will be 

discussed in the following section. In our model, we can see that the possibility 

of backward bifurcation is triggered by secondary bites from flies to exposed 

rhinos (𝛽𝑟2). Increasing the value of 𝛽𝑟2 will increase the chance of the 

occurrence of backward bifurcation in our model. In the absence of secondary 

bites (𝛽𝑟2 = 0), we have 𝑑1 = 𝑐0 > 0, which leads to the condition that 
𝜕𝑉

𝜕ℛ0
2 is 

always positive. Hence, we have the following theorem: 

Theorem 5. In the absence of secondary bites from flies to exposed rhinos (𝛽𝑟2 =
0), the AAT transmission model (1) has no AAT-endemic equilibrium when ℛ0 ≤
1 and always has a unique AAT-endemic equilibrium when ℛ0 > 1 . 
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4 Backward bifurcation analysis 

From the previous section, we see in Theorem 5 the possibility of the existence 

of two AAT-endemic equilibriums for some value of ℛ0 < 1. For many classical 

disease transmission models [34-36], the condition of a basic reproduction 

number less than one is enough to guarantee the disappearance of the disease. 

However, this condition is not always sufficient in the case of backward 

bifurcation, since the endemic equilibrium may co-exist with a disease-free 

equilibrium for some interval when the basic reproduction number is less than 

one. See [37-40] for some epidemiological models where backward bifurcation 

appears. Based on the above description, we conclude that backward bifurcation 

has significant implications for the success of interventions to control the spread 

of AAT. 

In order to analyze the existence of backward bifurcation in our proposed AAT 

model in (1), we will use the well-known Castillo-Song theorem [21], which is 

based on the Center Manifold theory [41]. 

To apply the Castillo-Song Theorem to our model in (1), we make the following 

simplification. Let vector 𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7) and 𝑆 =  𝑥1, 𝐸 =
 𝑥2, 𝐼𝑢 = 𝑥3, 𝐼𝑑 = 𝑥4, 𝑅 =  𝑥5, 𝑈 = 𝑥6, 𝑉 = 𝑥7. Substituting these into System 

(1) yields: 

𝑔1 ≔
𝑑𝑥1
𝑑𝑡

= Λ𝑟 − 𝛽𝑟1𝑥1𝑥7 − 𝜇𝑟𝑥1, 

𝑔2 ≔
𝑑𝑥2
𝑑𝑡

= 𝛽𝑟1𝑥1𝑥7 − 𝛼𝑥2 − 𝛽𝑟2𝑥2𝑥7 − 𝜇𝑟𝑥2, 

𝑔3 ≔
𝑑𝑥3
𝑑𝑡

= 𝑝𝛼𝑥2 + 𝑞𝛽𝑟2𝑥2𝑥7 − 𝑢1𝑥3 − 𝛾𝑢𝑥3 − 𝜇𝑟𝑥3,   

𝑔4 ≔
𝑑𝑥4
𝑑𝑡

= (1 − 𝑝)𝛼𝑥2 + (1 − 𝑞)𝛽𝑟2𝑥2𝑥7 − 𝑢1𝑥3 − 𝛾𝑑𝑥4  − 𝜇𝑟𝑥4,   

𝑔5 ≔
𝑑𝑥5
𝑑𝑡

= 𝛾𝑢𝑥3 + 𝛾𝑑𝑥4 − 𝜇𝑟𝑥5, 

𝑔6 ≔
𝑑𝑥6
𝑑𝑡

= Λ𝑓 − 𝛽𝑓𝑥6(𝑥3 + 𝑥4) − (𝜇𝑓 + 𝑢2)𝑥6, 

𝑔7 ≔
𝑑𝑥7

𝑑𝑡
= 𝛽𝑓𝑥6(𝑥3 + 𝑥4) − (𝜇𝑓 + 𝑢2)𝑥7.  

Now, let us choose 𝛽𝑟1 as the bifurcation parameter. Hence, by solving ℛ0
2 = 1 

with respect to 𝛽𝑟1 gives us (the same argument as in the previous section is 

used in this section for ℛ0
2 = 1  instead of ℛ0 = 1):  
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𝛽𝑟1
∗ =

𝜇𝑟(𝜇𝑓 + 𝑢2)
2
(𝛼 + 𝜇𝑟)(𝑢1 + 𝛾𝑢 + 𝜇𝑟)(𝛾𝑑 + 𝜇𝑟)

Λ𝑟β𝑓Λ𝑓𝛼(𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟)
                     (15) 

Evaluating the eigenvalues of the Jacobian matrix of System (14) at AAT-free 

equilibrium gives us a simple zero eigenvalue, while the other six are negative. 

Due to its complex form, we do not explicitly show these six eigenvalues.  Next, 

we need to determine the right and left eigenvectors of the Jacobian matrix that 

correspond to zero eigenvalue. We denote 𝒗 = [𝑣1  𝑣2  𝑣3  𝑣4  𝑣5  𝑣6  𝑣7] as the 

left eigenvector and 𝒘 = [𝑤1  𝑤2  𝑤3  𝑤4  𝑤5  𝑤6  𝑤7]  
𝒕 as the right eigenvector. 

Then, we get:  

𝑣1 = 0, 

𝑣2 = 𝛼, 

𝑣3 =
(𝑢1 + 𝜇𝑟 + γ𝑑)(𝛼 + 𝜇𝑟)

𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟
, 

𝑣4 =
(𝑢1 + 𝜇𝑟 + γ𝑢)(𝛼 + 𝜇𝑟)

𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟
,                                                             (16) 

𝑣5 = 0, 

𝑣6 = 0, 

𝑣7 =
(γ𝑑 + 𝜇𝑟)(𝜇𝑓 + 𝑢2)(𝛼 + 𝜇𝑟)(𝑢1 + 𝜇𝑟 + γ𝑢)

Λ𝑓β𝑓(𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟)
, 

and 

𝑤1 =
(𝜇𝑓 + 𝑢2)

2(γ𝑑 + 𝜇𝑟)(𝛼 + 𝜇𝑟)(𝑢1 + 𝜇𝑟 + γ𝑢)

(−𝑝γ𝑑 − 𝜇𝑟 + (𝑝 − 1)γ𝑢 − 𝑢1)𝜇𝑟𝛼
, 

𝑤2 =
(𝜇𝑓 + 𝑢2)

2(γ𝑑 + 𝜇𝑟)(𝑢1 + 𝜇𝑟 + γ𝑢)

(𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟)𝛼
, 

𝑤3 =
𝑝(𝜇𝑓 + 𝑢2)

2(γ𝑑 + 𝜇𝑟)

(γ𝑑 − γ𝑢)𝑝 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟
, 

𝑤4 = −
((𝑝 − 1)γ𝑢 + 𝑝𝜇𝑟 − 𝑢1 − 𝜇𝑟)𝜇𝑟𝛼(𝜇𝑓 + 𝑢2)

2

(1 − 𝑝)γ𝑢 + 𝑝𝛾𝑑 + 𝑢1 + 𝜇𝑟
,                     (17) 

𝑤5 = −
(𝜇𝑓 + 𝑢2)

2
(((𝑝 − 1)𝜇𝑟 − 𝑢1 − γ𝑢)𝛾𝑑 − 𝑝𝜇𝑟γ𝑢)

((1 − 𝑝)γ𝑢 + 𝑝𝛾𝑑 + 𝑢1 + 𝜇𝑟)𝜇𝑟
, 

𝑤6 = −Λ𝑓β𝑓, 



Backward Bifurcation Emerging from a Mathematical Model  167 

 

𝑤7 = Λ𝑓β𝑓 . 

To determine the type of bifurcation of our Model (1) at ℛ0 = 1, we have to 

calculate 𝒜 and ℬ with the following formula: 

𝒜 = ∑ 𝑣𝑘𝑤𝑖𝑤𝑗
𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

(0,0),

7

𝑘,𝑖,𝑗=1

 

ℬ = ∑ 𝑣𝑘𝑤𝑖
𝜕2𝑔𝑘
𝜕𝑥𝑖𝜕𝛽𝑟1

(0,0).

7

𝑘,𝑖,𝑗=1

       

To calculate 𝒜 and ℬ, we calculate the associated non-zero partial derivatives of 

𝑔𝑘 , evaluated at ℰ1. The calculation is as follows: 

𝜕2𝑔2
𝜕𝑥7𝜕𝑥2

=
𝜕2𝑔2
𝜕𝑥2𝜕𝑥7

= −1,
𝜕2𝑔3
𝜕𝑥7𝜕𝑥2

=
𝜕2𝑔3
𝜕𝑥7𝜕𝑥2

= 𝑞𝛽𝑟2, 

𝜕2𝑔4
𝜕𝑥7𝜕𝑥2

=
𝜕2𝑔7
𝜕𝑥2𝜕𝑥7

= (1 − 𝑞)𝛽𝑟2,
𝜕2𝑔2
𝜕𝑥7𝜕𝑥1

=
𝜕2𝑔2
𝜕𝑥1𝜕𝑥2

= 𝛽𝑟1, 

𝜕2𝑔7
𝜕𝑥6𝜕𝑥3

=
𝜕2𝑔7
𝜕𝑥6𝜕𝑥4

=
𝜕2𝑔7
𝜕𝑥3𝜕𝑥6

=
𝜕2𝑔7
𝜕𝑥4𝜕𝑥6

= 𝛽𝑓 . 

 
Calculation of 𝓐 and 𝓑. Using Eq. (18), we have: 

𝒜 = −
2𝛽𝑓(𝜇𝑓 + 𝑢2)

2
(γ𝑑 + 𝜇𝑟)(𝑢1 + 𝜇𝑟 + γ𝑢)𝑎

∗

(𝑝γ𝑑 − 𝑝γ𝑢 + 𝑢1 + 𝛾𝑢 + 𝜇𝑟)
2𝜇𝑟𝛼

,                           (19) 

 
where 𝑎∗ is a positive expression, which is too long to be shown in this article.  

On the other hand, the result for the calculation of ℬ is given by: 

ℬ =
𝛼𝛽𝑓Λ𝑓Λ𝑟

𝜇𝑟
> 0.                                                                                       (20) 

From the above calculation, we can see that ℬ is always positive. On the other 

hand, 𝒜 can be positive or negative. After some algebraic calculations, we find 

that 𝒜 will be positive if 𝛽𝑟2 > 𝛽
‡, where 𝛽‡ is given the same critical parameter 

used in Theorem 4 and 5. With this result, we have the following theorem: 

(18) 
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Theorem 6. The AAT model in (1) exhibits bifurcation at ℛ0 = 1 when 𝛽𝑟2 >
𝛽‡, and exhibits forward bifurcation if 𝛽𝑟2 > 𝛽

‡. 

 

(a) Forward bifurcation               (b) Backward bifurcation 

Figure 3 Two types of possible bifurcation of AAT in Model (1). The red figure 

is the plot of 𝑉∗ in ℰ2 from polynomial (7), the blue figure is 𝑉‡ in ℰ1, and the 

green figure is the plot of ℛ0 as a function of 𝛽𝑟1. The dot and solid curve present 

unstable and stable equilibrium, respectively. 

 

Figure 3 shows a numerical interpretation of Theorem 6. To conduct this 

numerical experiment we used the following parameter values: 

Λ𝑟 =
1000

50 × 365
, Λ𝑓 =

1000

30
, μ𝑟 =

1

50 × 365
, μ𝑓 =

1

30
, 𝑝 = 0.2 

β𝑟1 =
0.028

1000
, β𝑓 =

0.028

1000
, 𝑞 = 0.5, 𝛼 =

1

51
, γ𝑢 =

1

126
, γ𝑑 =

1

63
, 

 u1 = 0.01, u2 = 0.01                                                                                 (21)  

while β𝑟2 varies depending on the condition of 𝛽‡. Using the above parameters, 

we have 𝛽‡ = 0.085. Hence, using Theorem 6, we choose β𝑟2 = 0.08 < 𝛽
‡ to 

produce forward bifurcation at ℛ0 = 1 (Figure 3a), and β𝑟2 = 0.8 < 𝛽
‡ to 

produce backward bifurcation at ℛ0 = 1 (Figure 3b). Note that we have  multiple 

endemic equilibriums when ℛ0 < 1 in Figure 3b for 

β𝑟1 𝜖 [0.000027949, 0.000029529], which is equivalent to ℛ0 𝜖 [0.97287, 1]. 
It can be seen that when forward bifurcation appears, then AAT always 

disappears whenever ℛ0 < 1, and starts to exist when ℛ0 < 1. On the other hand, 

we can see that when backward bifurcation appears, there still exists the 
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possibility of a stable AAT-endemic equilibrium for some values of ℛ0 < 1. 

Hence, when backward bifurcation arises, controlling AAT not only relies on 

reducing ℛ0 to be smaller than one, but we should also consider the value of 

reinfection parameter β𝑟2. 

5 Sensitivity Analysis and Autonomous Simulation 

In this section, we analyze the sensitivity of ℛ0 and our model to parameter 

change in System (1). Sensitivity analysis is essential to determine the qualitative 

behavior of ℛ0 toward each parameter and knowing which parameter is the most 

influential on our model. Several types of sensitivity analysis can be done 

regarding this, such as the Latin hypercube-partial rank correlation coefficient 

[42], the heat map method [43], and normalized forward sensitivity indices [44].  

In this study, we used normalized forward sensitivity analysis to analyze the 

elasticity of ℛ0 with respect to each parameter in ATT model (1), using the 

following formula [44]: 

 ℰℛ0
𝑃 =

𝜕ℛ0

𝜕𝑃
×

𝑃

ℛ0
,                                                                                           (22) 

where 𝑃 is any parameter in AAT model (1). If ℰℛ0
𝑃 > 0, then ℛ0 increases 

whenever 𝑃 increases. On the other hand, we have ℛ0 decreases for an increase 

of 𝑃 whenever ℰℛ0
𝑃 . Using the expression of ℛ0 in (4) and the formula in (22), 

we have: 

ℰℛ0
𝛽𝑟1 =

1

2
  

Then, increasing 𝛽𝑟1 by 1% will increase ℛ0 for 0.5%. In addition, we also have: 

ℰℛ0
𝑢1 =

(γ𝑑 − γ𝑢)𝑝𝑢1
2(𝑝γ𝑑(1 − 𝑝)γ𝑢 + 𝑢1 + 𝜇𝑟)(γ𝑢 + 𝑢1 + 𝜇𝑟)

, 

 
which, when evaluated using the parameter values in (21), give us -0.023. On the 

other hand, 

ℰℛ0
𝑢2 = −

𝑢2
𝑢2 + 𝜇𝑓

, 

 
which is equivalent to -0.231 when we use the parameter values in (21). Based 

on this result, we conclude that both interventions (infection detection and ground 
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spraying) have potential to reduce ℛ0. However, since |ℰℛ0
𝑢1| > |ℰℛ0

𝑢2|, we can say 

that using the parameter values in (21), the ground spraying intervention is more 

effective in reducing AAT spread compared to infection detection. Using the 

same formula and parameter values, the elasticity of ℛ0 with respect to all 

parameters in System (1) is given in Table 2. 

Table 2 Elasticity of ℛ0 with respect to the parameters in System (1) 

ℰℛ0
Λ𝑟 ℰℛ0

Λ𝑓
 ℰℛ0

𝛽𝑟1 ℰℛ0
𝛽𝑟2 ℰℛ0

𝛽𝑓
 ℰℛ0

𝛼  ℰℛ0
𝜇𝑟  

0.5 0.5 0.5 0 0.5 0.0014 -0.503 

ℰℛ0
𝑃  ℰℛ0

𝑞
 ℰℛ0

𝑢1  ℰℛ0
𝑢2  ℰℛ0

𝛾𝑢  ℰℛ0
𝛾𝑑  ℰℛ0

𝜇𝑓
 

0.041 0 -0.022 -0.241 -0.058 -0.0417 -0.769 

From Table 2, we can see clearly that 𝑢1, 𝑢2, γ𝑑 , γ𝑢, 𝜇𝑟 , and 𝜇𝑓 are inversely 

proportional to the change of ℛ0, while the other parameters are directly 

proportional to the change of ℛ0. Increasing 𝑢1, 𝑢2, γ𝑑 , γ𝑢, 𝜇𝑟 , and 𝜇𝑓 will reduce 

ℛ0. However, only the values of 𝑢1, 𝑢2, and γ𝑑 can be manipulated in the field to 

control the spread of AAT. Furthermore, we can see that the most influential 

parameter is 𝜇𝑓, which indicates the potential of ground spraying or even genetic 

mutation to shorten the life expectancy of tsetse flies in order to reduce the spread 

of AAT through controlling the value of ℛ0. By substituting all parameter values 

in (21) (except 𝑢1 and 𝑢2) into ℛ0, the contour plot of ℛ0 with respect to infection 

detection and ground spraying is given in Figure 4. We can see that increasing 

both interventions (infection detection and ground spraying) could reduce the 

magnitude of ℛ0. It was also confirmed that ground spraying is much more 

sensitive to ℛ0 than infection detection. 
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Figure 4 Level set of ℛ0 with respect to 𝑢1 and 𝑢2. 

Based on the results of the elasticity analysis using the normalized forward 

elasticity analysis method, we next show the dynamic of solution of System (1) 

for the total infected rhino and infected fly populations for variations in the values 

of  𝑢1 and 𝑢2. The result can be seen in Figure 5. In Figure 5a, it can be seen that 

by increasing the value of infection detection interference 𝑢1, the dynamics of the 

infected rhino and fly populations decreased compared to when no infection 

detection intervention was given. However, it can be seen that a change in 

dynamic in both infected rhinos and flies for a value of 𝑢 𝜖 [0.0.1] did not provide 

a significant result. This is in line with the results of the elasticity calculation in 

Table 2, which shows that the elasticity of ℛ0 toward parameter 𝑢1 is relatively 

small, namely 0.022.  

The autonomous simulation results regarding the total number of infected rhinos 

and flies in System (1) for various values of ground spraying intervention are 

given in Figure 5b. It can clearly be seen that ground spraying was much more 

effective in reducing the number of infected rhinos and flies than infection 

detection. This is in line with the elasticity analysis of the ground spraying 

intervention, which gave a relatively greater elasticity than the infection detection 

intervention, which was 0.231. In addition, it can also be seen that ground 

spraying at a sufficiently large intensity was able to prevent outbreaks of the 

number of infections in the rhino and fly populations. 
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(a) Effect of 𝑢1 

 

(b) Effect of 𝑢2 

Figure 5 Effect of infection detection (a) and ground spraying (b) on the dynamic 

of total number of infected rhinos (left) and flies (right). 

Based on Theorem 6, the AAT model in System (1) indicates that when ℛ0 < 1, 

there is a probability of AAT disappearing from the environment, and conversely 

the disease is always present in the environment when ℛ0 > 1. This result is 

illustrated by the autonomous simulation of System (1) for several different initial 

values of ℛ0 < 1 and ℛ0 > 1. The results can be seen in Figure 6. It shows that 

when ℛ0 < 1 and backward bifurcation does not occur, all initial values will go 

to the AAT-free equilibrium point. On the other hand, all solutions for all initial 

values will go to the AAT endemic equilibrium when ℛ0 > 1. 
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(a) 

 

(b) 

 

Figure 6 Simulations of System (1) for various initial conditions show a 

convergence of solutions of System (1) (total number of infected rhinos (left) and 

flies (right) to (a) an AAT-free equilibrium when ℛ0 > 1 and (b) an AAT-endemic 

equilibrium when ℛ0 < 1. 

6 Optimal Control Problem 

In the previous section, it was found that AAT disease in white rhino populations 

can be minimized (or even eliminated) if we can reach an ℛ0 < 1 condition. From 

the results of the sensitivity analysis of ℛ0, it can be seen that early detection and 

ground spraying have the potential to reduce the spread of AAT disease. The 

greater the intervention, the greater the reduction in the value of ℛ0 achieved. 

However, the high intensity of the intervention has the consequence of a high cost 

of implementation in the field. Therefore, it is deemed necessary that the 

interventions given are proportionate to the need. In this case, the infection 

detection and ground spraying should be treated as time-dependent variables. 

Based on this, the reconstruction of the model in System (1) to an optimal control 

model will be discussed in this section. 
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6.1 Characterization of the Optimal Control Problem 

In order to construct our optimal control problem, we treat our constant 

intervention in System (1) as a time-dependent variable, i.e., 𝑢1 = 𝑢1(𝑡), 𝑢2 =
𝑢2(𝑡). Hence, System (1) now reads as follows: 

𝑑𝑠

𝑑𝑡
= Λ𝑟 − 𝛽𝑟1𝑆𝑉 − 𝜇𝑟𝑆, 

𝑑𝐸

𝑑𝑡
= 𝛽𝑟1𝑆𝑉 − 𝑝𝛼𝐸 − (1 − 𝑝)𝛼𝐸 − 𝑞𝛽𝑟2𝐸𝑉 − (1 − 𝑞)𝛽𝑟2𝐸𝑉 − 𝜇𝑟𝐸, 

𝑑𝐼𝑢
𝑑𝑡

= 𝑝𝛼𝐸 + 𝑞𝛽𝑟2𝐸𝑉 − 𝑢1(𝑡)𝐼𝑢 − 𝛾𝑢𝐼𝑢 − 𝜇𝑟𝐼𝑢, 

𝑑𝐼𝑑
𝑑𝑡

= (1 − 𝑝)𝛼𝐸 + (1 − 𝑞)𝛽𝑟2𝐸𝑉 − 𝑢1(𝑡)𝐼𝑢 − 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝐼𝑑 ,          (23) 

𝑑𝑅

𝑑𝑡
= 𝛾𝑢𝐼𝑢 + 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝑅, 

𝑑𝑈

𝑑𝑡
=  Λ𝑓 − 𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2(𝑡))𝑈, 

𝑑𝑉

𝑑𝑡
= 𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2(𝑡)) 𝑉. 

  

Let us define the set of state variables as: 

 𝑋 = (𝑆, 𝐸, 𝐼𝑢, 𝐼𝑑 , 𝑅, 𝑈, 𝑉).
   

Our aim is to minimize the number of infected white rhinos and flies with 

intervention as low as possible. Hence, we define our objective function as 

follows: 

𝒥(𝑋, 𝑢1, 𝑢2) = ∫ (𝜔1𝐸 + 𝜔2𝐼𝑢 +𝜔3𝐼𝑑 +𝜔4𝑉 + 𝜑1𝑢1
2 + 𝜑𝑢2

2)𝑑𝑡,
𝑇

0

          (24) 

where 𝑇 is the final time of simulation, 𝜔𝑖 for 𝑖 = 1,2,3,4 is the weight parameter 

for state variables 𝐸, 𝐼𝑢, 𝐼𝑑 and 𝑉, respectively, and 𝜔𝑗 for 𝑗 = 1,2 is the weight 

parameter for the control variables 𝑢1 and 𝑢2, respectively. Note that  

∫ (𝜔1𝐸 + 𝜔2𝐼𝑢 +𝜔3𝐼𝑑 + 𝜔4𝑉)𝑑𝑡
𝑇

0
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represents the total cost that is needed as a consequence of a high number of 

infected white rhinos and tsetse flies (except the cost for interventions). On the 

other hand,  

∫ (𝜑1𝑢1
2 + 𝜑𝑢2

2)𝑑𝑡
𝑇

0

 

represents the total cost of infection detection and ground spraying. For our model 

we choose a quadratic cost function in our objective function, which is common 

in epidemiological models [45-48]. 

Our optimal control problem is to seek a couple of controls 𝑢1
∗ and 𝑢2

∗  

corresponding to state variable 𝑋∗ on the interval [0, 𝑇]. In our case, the problem 

is to find the 𝑢1
∗ and 𝑢2

∗  that minimize the cost function (24) corresponding to 

state variable 𝑋∗. Therefore, we want to find the minimum 𝒥,  i.e., 

(𝑋∗, 𝑢1
∗ , 𝑢2

∗) = lim
Γ
 𝒥(𝑋, 𝑢1, 𝑢2), 

where  

Γ = {(𝑢1, 𝑢2)|𝑢1 and 𝑢2 are Lebesgue integrable, with 0 ≤ 𝑢𝑖 ≤ 1, for 𝑖 = 1,2} 

as the admissible control set.  

We derive the necessary condition for our optimal control problem using the well-

known maximum principle of Pontryagin [22,49]. First, we define the 

Hamiltonian as follows: 

 ℋ = 𝜔1𝐸 + 𝜔2𝐼𝑢 +𝜔3𝐼𝑑 + 𝜔4𝑉 + 𝜑1𝑢1
2 + 𝜑2𝑢2

∗  

    + 𝜆1(Λ𝑟 − 𝛽𝑟1𝑆𝑉 − 𝜇𝑟𝑆) 

    +  𝜆2(𝛽𝑟1𝑆𝑉 − 𝑝𝛼𝐸 − (1 − 𝑝)𝛼𝐸 − 𝑞𝛽𝑟2𝐸𝑉 − (1 − 𝑞)𝛽𝑟2𝐸𝑉 − 𝜇𝑟𝐸) 

    + 𝜆3(𝑝𝛼𝐸 + 𝑞𝛽𝑟2𝐸𝑉 − 𝑢1(𝑡)𝐼𝑢 − 𝛾𝑢𝐼𝑢 − 𝜇𝑟𝐼𝑑)  

    + 𝜆4((1 − 𝑝)𝛼𝐸 + (1 − 𝑞)𝛽𝑟2𝐸𝑉 + 𝑢1(𝑡)𝐼𝑢 − 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝐼𝑑)       (25) 

    + 𝜆5(𝛾𝑢𝐼𝑢 + 𝛾𝑑𝐼𝑑 − 𝜇𝑟𝑅  

    + 𝜆6(Λ𝑓 − 𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2(𝑡))𝑈)  

    + 𝜆7 (𝛽𝑓𝑈(𝐼𝑢 + 𝐼𝑑) − (𝜇𝑓 + 𝑢2(𝑡))𝑉),  
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where 𝜆𝑖 for 𝑖 = 1,2,… ,7 are the adjoint variables. We have the following 

theorem as a consequence of Pontryagin’s maximum principle: 

Theorem 7. Given optimal control variables 𝑢1
∗ and 𝑢2

∗  that correspond to the 

optimal state variables 𝑋∗ = (𝑆∗, 𝐸∗, 𝐼𝑢
∗ , 𝐼𝑑

∗ , 𝑅∗, 𝑈∗, 𝑉∗), which minimize the cost 

function in (24), there exist adjoint variables that satisfy: 

𝑑𝜆1
𝑑𝑡

= 𝛽𝑟1𝑉(𝜆1 − 𝜆2) + 𝜇𝑟𝜆1, 

𝑑𝜆2
𝑑𝑡

= −𝜔1 + (𝑝𝛼 + 𝑞𝛽𝑟2𝑉)(𝜆2 − 𝜆3) + ((1 − 𝑝)𝛼 + (1 − 𝑞)𝛽𝑟2𝑉) (𝜆2 − 𝜆4) 

            +𝜇𝑟𝜆2, 

𝑑𝜆3
𝑑𝑡

= −𝜔2 + 𝑢1(𝜆3 − 𝜆4) + 𝛾𝑢(𝜆3 − 𝜆5) + 𝛽𝑓𝑈(𝜆6 − 𝜆7) + 𝜇𝑟𝜆3, 

𝑑𝜆4
𝑑𝑡

= −𝜔3 + 𝛾𝑑(𝜆4 − 𝜆5) + 𝛽𝑓𝑈(𝜆6 − 𝜆7) + 𝜇𝑟𝜆4,                                        (26) 

𝑑𝜆5
𝑑𝑡

= 𝜇𝑟𝜆5, 

𝑑𝜆6
𝑑𝑡

= 𝛽𝑓(𝐼𝑑 + 𝐼𝑢)(𝜆6 − 𝜆7) + (𝜇𝑓 + 𝑢2)𝜆6, 

𝑑𝜆7
𝑑𝑡

= −𝜔4 + 𝛽𝑟1𝑆(𝜆1 − 𝜆2) + 𝑞𝛽𝑟2𝐸(𝜆2 − 𝜆3) + (1 − 𝑞)𝛽𝑟2𝐸(𝜆2 − 𝜆4) 

            +(𝜇𝑓 + 𝑢2)𝜆7. 

 

with a transversality condition 𝜆𝑖(𝑇) = 0 for 𝑖 = 1,2,… ,7. Furthermore, the 

following functions characterize our optimal controls: 

𝑢1
∗ = max{0,min{1,

𝐼𝑑(𝜆3 − 𝜆4)

2𝜑1
}},                                                     (27) 

𝑢2
∗ = max {0,min {1,

𝜆6𝑈 + 𝜆7𝑉

2𝜑2
}}. 

Proof. The result of this theorem is a direct consequence of Pontryagin’s 

maximum principle [22,49]. Taking the negative of the partial derivative of the 

Hamiltonian function (25) with respect to each state variable gives us: 
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𝑑𝜆1
𝑑𝑡

= −
𝜕ℋ

𝜕𝑆
,
𝑑𝜆2
𝑑𝑡

= −
𝜕ℋ

𝜕𝐸
,
𝑑𝜆3
𝑑𝑡

= −
𝜕ℋ

𝜕𝐼𝑢
,
𝑑𝜆4
𝑑𝑡

= −
𝜕ℋ

𝜕𝐼𝑑
, 

𝑑𝜆5
𝑑𝑡

= −
𝜕ℋ

𝜕𝑅
,
𝑑𝜆6
𝑑𝑡

= −
𝜕ℋ

𝜕𝑈
,
𝑑𝜆7
𝑑𝑡

= −
𝜕ℋ

𝜕𝑉
,                                           (28) 

with the transversality condition 𝜆𝑖(𝑇) = 0 for 𝑖 = 1,2,… ,7. Taking the partial 

derivative of ℋ with respect to each control variable yields: 

𝜕ℋ

𝜕𝑢1
= 2𝜑1𝑢1 − 𝐼𝑑(𝜆4 − 𝜆3), 

𝜕ℋ

𝜕𝑢2
= 2𝜑2𝑢2 − 𝜆6𝑈 − 𝜆7𝑉. 

   

Solving 
𝜕ℋ

𝜕𝑢1
= 0 and 

𝜕ℋ

𝜕𝑢2
= 0 with respect to 𝑢1 and 𝑢2, respectively, we have:  

𝑢1
 † =

𝐼𝑑(𝜆3 − 𝜆4)

2𝜑1
,     𝑢2

 † =
𝜆6𝑈 + 𝜆7𝑉

2𝜑2
.  

Due to the limited capability to implement the control variables, we chose that 

each control variables should be in the interval of [0, 1]. Therefor we have: 

𝑢1
∗ = max {0,min {1,

𝐼𝑑(𝜆3 − 𝜆4)

2𝜑1
}},                                                                   (29) 

𝑢2
∗ = max {0,min {1,

𝜆6𝑈 + 𝜆7𝑉

2𝜑2
}}. 

This completes the proof. 

To sum up, our optimal control problem consists of the state system (23) with a 

non-negative initial condition (2), adjoint system (26) with a transversality 

condition 𝜆𝑖(𝑇) = 0 for 𝑖 = 1,2,… ,7, cost function (24), and the optimal control 

conditions (27). 

6.2 Numerical Experiments 

In this subsection, we solve our optimal control problem using a forward-

backward iterative method [49]. Several authors have used this method in 

different types of epidemiological models [50-52]. First, using an initial guess for 

the control variables, we solve the state system (23) forward in time numerically. 
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With this result, we sole our adjoint system (26) backward in time with the 

transversality condition given. We update our control variables using the formula 

in (27). The iterative process continues until a convergence criterion is satisfied. 

To conduct our simulation, we use the same parameter values as in (21), while 

the weight parameters are 𝜔1 = 𝜔2 = 𝜔3 = 1,𝜔4 = 0.01,  𝜑1 = 𝜑2 = 10
4. 

6.2.1 Endemic prevention vs endemic reduction scenarios 

The first numerical experiment was conducted based on a different initial 

condition of System (23). Based on this assumption, we had two scenarios, 

namely an endemic prevention scenario and an endemic reduction scenario. In 

the endemic prevention scenario, the initial condition of infected white rhinos and 

tsetse flies was relatively small compared to the total populations. For our case, 

we chose the following initial condition for the endemic reduction scenario: 

IC1 = [𝑆(0), 𝐸(0), 𝐼𝑢(0), 𝐼𝑑(0), 𝑅(0), 𝑈(0), 𝑉(0)] = [950,20,30,0,0,960,0]. 

The result of optimal control for the endemic prevention scenario is given in 

Figure 7. From the numerical experiments in Figure 7, it can be seen that the 

success of the time-dependent interventions of infection detection and ground 

spraying prevents the number of infected rhinos in compartment 𝐸 and 𝐼𝑢, and 

infected flies 𝑉 from increasing. The number of infected rhinos in 𝐼𝑑 increases 

not because of failure of the controls, but because of the infection detection 

intervention, which brings the rhinos in 𝐼𝑢 to 𝐼𝑑. We can see that the infection 

detection intervention is monotonically increasing at the beginning of the 

simulation period, massively reducing the number of undetected infected rhinos. 

After reaching its peak, it will decrease to zero until the end of the simulation. 

Unlike the infection detection intervention, the ground spraying intervention 

produced a higher rate at the beginning of the simulation period. It decreased 

rapidly in the early period and decreased slower when the number of infected flies 

was already small. The cost of intervention for this scenario was 10,721.3. 

The next simulation was the endemic reduction scenario, which is characterized 

by a high number of infected rhinos and flies at 𝑡 = 0. The following initial 

condition is given: 

IC2= [𝑆(0), 𝐸(0), 𝐼𝑢(0), 𝐼𝑑(0), 𝑅(0), 𝑈(0), 𝑉(0)] = [800,20,180,0,0,800,200]. 
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Figure 7 White rhinos, tsetse flies, and control trajectories under the endemic 

prevention scenario. 

The optimal control results are given in Figure 8. Although the profile of controls 

in the endemic reduction scenario was somewhat similar in the endemic 

prevention scenario (high at the beginning and monotonically decreasing after the 

infected population decreased), it is clear that a higher intensity of intervention 

should be given in the endemic reduction scenario. This should be done to reduce 

the number of infected rhinos and flies as soon as possible. As a consequence, the 

cost of endemic reduction was much higher than in the endemic prevention 

scenario, i.e., 35,942.4 (more than three times larger). 

Based on the numerical experiments in this section, it can be concluded that 

preventing the spread of AAT from the outset is easier, because it requires lower 

intervention costs. If the number of infections is already high at the start of a new 

intervention, then the intensity of the intervention must be relatively high from 

the start. This results in high intervention costs for endemic reduction cases. 
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Figure 8 White rhinos, tsetse flies, and control trajectories under the endemic 

reduction scenario. 

6.2.2 Different combinations of interventions 

Unlike in the previous subsection, numerical scenarios will be carried out based 

on the type of combination of interventions used in this subsection. The scenarios 

are divided into three, namely when both interventions are given (first scenario), 

when infection detection is a single intervention (second scenario), and when 

ground spraying is a single intervention (third scenario). To conduct the 

simulation in this section, we used initial condition IC1 for all scenarios. 

Figure 7 shows the numerical result for the first scenario. As already explained 

in the previous subsection, both interventions succeed in suppressing the number 

of infected rhinos and flies almost during the whole simulation, except for the 

number of detected infected rhinos. This glitch occurred due to the high intensity 

of early detection at the beginning of the simulation.  

The result for the second strategy is given in Figure 9. It can be seen that when 

the policymakers only rely on infection detection to prevent the spread of AAT, 

the result is not as good as in the first scenario. It can be seen that the reduced 
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number of infected rhinos and flies was not as high as in the first scenario. 

However, the cost of intervention for the second scenario was much lower than 

for the first scenario, i.e., only 5,781.9, almost twice smaller than in the first 

scenario.  

 

Figure 9 White rhinos, flies and control trajectories under the intervention 

strategy of the second scenario (𝑢1(𝑡) ≥ 0, 𝑢2(𝑡) = 0). 

In the last simulation, which involved the third scenario, ground spraying was the 

only intervention implemented. The results are given in Figure 10. It can be seen 

that the control trajectories of 𝑢2 in the third scenario were somewhat similar with 

the first scenario, i.e., high intensity should be implemented at the beginning and 

decrease when the number of infected flies starts decreasing. As a result, the 

number of infected rhinos and flies decreased much more compared to the second 

scenario, but not as much as in the first scenario. The cost of intervention for the 

third scenario was 6,320.1.  
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Figure 10 White rhinos, tsetse flies and control trajectories under the intervention 

strategy of the third scenario (𝑢1(𝑡) = 0, 𝑢2(𝑡) ≥ 0). 

Cost-effectiveness analysis.   From the numerical experiments with all of the 

above scenarios, it can be seen that all scenarios provided a reduced number of 

infected rhinos and flies. However, a good result comes with high intervention 

costs. Hence, we have to determine which is the best strategy compared to the 

other in terms of cost-effectiveness. To do this, we used two types of cost-

effectiveness measures, namely the Average Cost-Effectiveness Ratio (ACER) 

and the Incremental Cost-Effectiveness Ratio (ICER).  

The ACER method aims to determine which strategy produces the lowest average 

cost for each reduction of one infected individual. The formula for calculating the 

ACER value is as follows: 

𝐴𝐶𝐸𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 𝑓𝑜𝑟 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑡𝑒𝑑
                                (30) 

A lower ACER value indicates a better result. A low ACER value means that the 

average cost for each infected rhino averted is also small. The result of the ACER 

analysis is given in Figure 11. From Figure 11, we can see that intervention of 
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ground spraying as a single intervention was more cost-effective compared to the 

others, followed by the first and the second scenario, respectively.  

 

Figure 11 The result of ACER analysis. 

The second method used to analyze the cost-effectiveness of the above strategies 

was the Incremental Cost-Effectiveness Ratio (ICER) method. This method aims 

to find the best strategy from two compared strategies. The following equation 

expresses the formula: 

𝐼𝐶𝐸𝑅𝑖−𝑗 =
𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑐𝑜𝑠𝑡 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦−𝑖 𝑎𝑛𝑑 𝑗

𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 # 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑣𝑒𝑟𝑡𝑒𝑑 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦−𝑖 𝑎𝑛𝑑 𝑗
        (31) 

   

First, we rank our strategies from the smallest number of infected rhinos averted 

to the highest number of infected rhinos averted for each strategy. The result is 

given in Table 3.   
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Table 3 All scenario in increasing order based on the number of rhino 

infections averted. 

Strategy 
Total infections 

averted 
Total cost ICER 

2nd scenario 32 210.2 5 781.9 0.1795 

3rd scenario 115 489.7 6 320.1 0.00646 

1st scenario 131 833.9 10 721.3 0.269 

Since ICER-2 > ICER-3, we eliminate the second scenario for the next 

calculation. Hence, we can conclude that the second scenario was the least cost-

effective strategy based on the ICER analysis. For the next calculation, we 

compare the third with the first scenario. The result is given in Table 4. Since 

ICER-1 > ICER-3, we can conclude that the third strategy, i.e., the 

implementation of ground spraying as a single intervention, is the best strategy. 

This result is in line with our previous analysis using the ACER method. 

Table 4 Comparison between third and first scenarios 

Strategy Total infection averted Total cost ICER 

3rd scenario 115 489.7 6 320.1 0.05 

1st scenario 131 833.9 10 721.3 0.269 

7 Conclusion 

A large number of reports have noted the emergence of African Animal 

Trypanosomiasis (AAT) in the Nearly Threatened white rhino population. Thus, 

qualitative research related to efforts to minimize the spread of AAT is important, 

requiring serious attention from various parties, including mathematicians. 

Therefore, this article introduced a mathematical model for AAT, involving 

populations of white rhinos and tsetse flies, and two interventions, namely 

infection detection and ground spraying. Mathematical model analysis showed 

how the AAT-free equilibrium point is always locally asymptotically stable when 

the basic reproduction number is less than one. On the other hand, it is possible 

to have multiple AAT-endemic equilibriums when the basic reproduction number 

is less than one. A unique AAT-endemic equilibrium always exists when the 

basic reproduction number is larger than one. Bifurcation analysis using the 

Castillo-Song theorem [21], showed the possibility of backward bifurcation 

emerging from our model. Hence, there is a situation when the basic reproduction 

number being less than one is not enough to guarantee the disappearance of AAT 

from the population [37-40]. Sensitivity analysis of the basic reproduction 

number showed that infection detection and ground spraying both have potential 

to suppress the spread of AAT. However, we found that ground spraying is more 
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effective in influencing the basic reproduction number’s size than infection 

detection. 

From numerical simulations of the optimal control problem, it was found that 

time-dependent interventions successfully reduced the spread of AAT in the 

white rhino and tsetse fly populations. The cost-effectiveness analysis found that 

ground spraying as a single intervention is a better strategy than infection 

detection as a single intervention or a combination between infection detection 

and ground spraying. In addition, we also found that preventive interventions are 

more advisable to save on intervention costs rather than waiting for a high number 

of infections and then implementing interventions. 

This research showed that AAT can significantly influence the dynamics of white 

rhino populations. To suppress the spread of AAT, ground spraying is highly 

recommended as a single intervention to prevent possible endemics. 
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