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Abstract. Cashew Fusarium wilt disease transmitted by Fusarium oxysporum is 

dangerous and destroys many cashew plants in Tanzania. The effect of this disease 

leads households and the government to experience a decrease in overall cashew 

production and income due to this disease’s capacity to harm cashew plants. This 

study aimed to ascertain the role of Fusarium wilt-decayed disease-induced dead 

plants in spreading the disease among cashew plants. A mathematical model was 

created based on the dynamics of the disease and a stability analysis was conducted 

using theories of ordinary differential equations. Data from two regions in 

Tanzania, Lindi, and Mtwara, were used in model fitting and parameter estimation. 

Additionally, the parameters were estimated using maximum likelihood 

estimation (MLE). The outcome suggests that the disease’s prevalence and spread 

increase during an outbreak as decomposed diseased-induced dead plants 

contribute to the saturation of chlamydospores in the soil.  

Keywords: cashew plants; Fusarium wilt; Fusarium oxysporum; disease-induced death; 

parameter estimation. 

1 Introduction 

The consumption of cashew nuts in the world market is growing yearly because 

of their widely appreciated taste and high nutrient content [1]-[3]. Frequent 

consumption of cashew nuts minimizes cholesterol, hypertension, coronary heart 

disease, and diabetes [4],[5]. Furthermore, the cashew nut is a cash product in 

most countries where it is grown, increasing the foreign exchange earnings for 

the nation and as a source of income for most families [6].  

The cashew nut is cultivated worldwide. Africa contributes about 40% of 

worldwide production, while Tanzania generates roughly 20% of all African 

production [7]. More than 80% of the total output in Tanzania comes from the 

Lindi and Mtwara regions [8]. Cashew nuts are the main cash crop for many 

families in the southern regions and contribute up to 10% of the total value of 

earnings in foreign currencies [9].  
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Despite the significant contribution to the nation and the continent, cashew nut 

production has been impacted by numerous issues, such as diseases, declining 

soil fertility, drought, and insect pests [10],[11]. Cashew Fusarium wilt disease 

destroys many cashew plants in Tanzania, which is where the disease was first 

discovered [12]. The disease is caused by a soil-borne fungus called Fusarium 

oxysporum [12]-[14]. As a result of this disease’s ability to damage cashew 

plants, households and the nation’s overall cashew production and income are 

reduced [12],[15]. 

Fusarium wilt disease outbreaks have been experienced in the south-eastern part 

of Tanzania, including the Mtwara Rural, Newala, Masasi and Tandahimba 

districts in the Mtwara region and Liwale, Nachingwea and Ruangwa districts in 

the Lindi region [15]. The main transmission of Fusarium wilt disease is through 

root contact [16]. Dead infected cashew plants contribute to disease transmission 

[17]. The fungus in diseased-induced dead cashew plants invades the plant tissue 

and produces macroconidia. After the host tissue has degraded, chlamydospores 

are produced and end up in the soil when the tissue collapses [18]. This is possible 

when disease-induced dead plants are left to decompose in the field. Farmers 

usually leave the dead plants to deteriorate in the field, as indicated in Figure 1. 

 

 

Figure 1 Photograph of disease-induced dead cashew plant. Source: Field data, 

2020. 

Mathematical modelling is essential for understanding disease dynamics and 

suggesting appropriate control methods for minimizing infectious diseases [19]-

[24]. Plant disease dynamics can be modelled mathematically, as has been shown 

in different studies. For example, Burie et al. [25] investigated vineyard fungal 

disease through a mathematical model and devised short and long-term solutions. 

Anggriani [26] analyzed plant-fungal epidemics and ended up with remedial 
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factors against infection. Nisar et al. [27] modelled the Gemini virus in capsicum 

annuum and developed the best strategy for eliminating the disease at an 

affordable cost. 

Additionally, mathematical modelling assists decision-makers in deciding on the 

most effective control strategies by using the information from a sensitivity 

analysis that identifies the parameters that contribute to the spread of the disease 

[28]-[32].  

This study applied mathematical theories in modelling the role of decomposed 

disease-induced dead cashew plants in disease transmission and persistence 

during an outbreak. The findings can help to develop strategies for disease 

management and understanding how the disease develops and spreads over time.  

2 Model Formulation 

This section deals with the model formulation whereby cashew plants are divided 

into five subpopulations. The susceptible plant ( )P  is a cashew plant that is 

disease-free yet prone to infection when the fungus comes into contact with it. 

The plants become exposed ( )E  after touching diseased plants or contaminated 

soil through its wounds or roots [14],[33]-[36]. After two to six months, the 

exposed population becomes infectious ( )W . The infectious population can 

either be treated and join the treated population ( )T  or die due to disease and join 

the dead class ( )D  [15]. Also, there are two subgroups of the fungal population, 

i.e., macroconidia spores ( )M  and chlamydospores ( )H . Macroconidia spores 

occur on the exterior of disease-induced dead plants. Macroconidia spores on the 

surface of disease-induced dead plants produce chlamydospores and fall to the 

ground [13],[37]. 

The model was developed assuming that the population growth of cashew plants 

follows a logistic behavior, where r  is the growth rate and 1k  is the carrying 

capacity. The contact rate between fungus and plants is modelled by   with the 

infection rate expressed as follows: 

 1

2

H
W

d H


 

 
= + 

+ 
.                                                 (1) 

The parameter 1  represents the contact rate between vulnerable cashew plants 

and chlamydospores, while 2 is the contact rate between susceptible cashew 
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plants and diseased plants [14]. The parameter d  denotes the ground-level 

chlamydospore saturation constant rate. The parameter   represents the 

progression rate of the exposed population to the infected population within two 

to six months [18]. Cashew plants that are not seriously infected may regain 

health after treatment at rate   and develop susceptibility with rate   [15]. 

Cashew plants that are more seriously impacted have a lower survival rate and 

perish at a rate of  , or die naturally at a rate of  [15]. Usually, farmers remove 

some dead plants from the field for other uses while some dead plants remain to 

decompose in the field, denoted by  . Microconidia spores attack the tissue of 

dying plants to produce macroconidia spores from the sporodochia [37]-[42]. The 

parameter   defines the rate at which exposed, infected, and disease-induced 

dead plants produce macroconidia spores. The following equation represents this 

parameter:  

 E W D   = + + .                                                                (2) 

Macroconidia produce chlamydospores at rate   [43]-[45]. Chlamydospores are 

thick-walled, which helps them to survive in an unfavorable environment for a 

long time [46]. Chlamydospores leave the living class due to deterioration at rate 

  [13].  

2.1 Parameter Descriptions 

Based on the description of the dynamics of Fusarium wilt disease and the 

assumptions, the compartmental diagram in Figure 2 captures the constructed 

interaction between cashew plants and Fusarium oxysporum fungus. 

 

Figure 2 Compartment flow diagram. 
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The model parameters used are summarized in Table 1. 

Table 1 Parameters and their description for Fusarium wilt disease 

Symbol Description 

r  Cashew plant’s growth rate 

1  Contact rate between susceptible cashew plants and chlamydospores 

2  Contact rate between susceptible and infected cashew plants 

1k  Carrying capacity of cashew plants 

d  Chlamydospores saturation in the soil  

  Rate of progression from exposed population to infected population 

  Rate of natural death  

  Disease-related mortality rate  

  Disease-induced dead plants left to decompose in the field 

  Rate at which recovered plants return to the susceptible class 

  Production rate of macroconidia from dead exposed plants 
  Production rate of macroconidia from dead infected plants 

  Production rate of macroconidia from disease-induced dead plants 

  Production rate of chlamydospores 

  Decay rate of chlamydospores 

 

2.2 Mathematical Equations 

Considering the flow diagram, we developed mathematical equations that show 

the transmission dynamics of the Fusarium wilt disease using the ordinary 

differential equation: 

1

2

1

1
HdP P

rP T W P
dt k d H


 

   
= − + − +   

+  
 

( )1

2

HdE
W P E

dt d H


  

 
= + − + 

+ 
 

( )
dW

E W
dt

   = − + +                                                               (3)

  

( )
dT

W T
dt

  = − +      
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dD
W D

dt
 = −       

dM
E W D M

dt
   = + + −  

dH
M H

dt
 = −  

 

3 Qualitative Analysis  

A qualitative analysis of the model was conducted to gain insight into the 

dynamical characteristics of model (3) and to better comprehend the effects of 

the presence of decomposed plants.  

3.1 Non-negativity of the Solution 

It must be demonstrated that all system solutions with positive initial values 

remain positive for model system (3) to be epidemiologically significant and 

adequately posed. The following theorem will prove this.  

Theorem 3.1 

Assume that (0) 0,P   (0) 0,E   (0) 0W  , (0) 0,T   (0) 0,D   (0) 0M   

and (0) 0H  . Then, the solutions ( ),P t  ( ),E t  ( ),W t  ( ),T t  ( ),D t  ( ),M t

( )H t  of model (3) are positive 0t  . 

Proof. Consider the first equation in model (3) that forms the following 

inequality: 

2

1

( )( )
( )

( ) ( )

H tdP t
W t dt

P t d H t




 
 − + 

+ 
. 

Solving for 𝑡 and ( ) (0)P t P= , we get: 

2
1

0

( )
( )

( )
( ) (0)

t
H t

W t dt
d H t

P t P e




 
− + 

+ 


 . 

As t → , the value of 

2
1

0

( )
( )

( )
( ) (0) 0

t
H t

W t dt
d H t

P t P e




 
− + 

+ 


  , since  
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2

1

( )
( ) 0

( )

H t
W t

d H t


+ 

+
. 

A similar proof can be established for the remaining equation in the 
7

+ region 

and the system can be used to research cashew disease since it is meaningful.  

3.2 Existence and Uniqueness of the Solution 

Considering the general form of ordinary first-order differential equations, 

 
( , )

dy
f t y

dt
=

 (4) 

where the initial value 
0t  with respect to the function can be written as 

0 0( )y t y= .        

  

The following theorem shows the existence of a unique solution of the Fusarium 

wilt disease model. 

Theorem 3. 2 

Assume there exists a domain D  such that: 

 0 0 ,t t p y y q−  − 
  (5) 

and if ( , )g t y  satisfies the Lipschitz condition such that: 

 
1 2 1 2( , ) ( , )G t y G t y b y y−  −

           (6) 

where G  is a function and at any time point 
1( , )t y D  and 

2( , )t y D , the 

parameter b represents a positive constant. Then, there is a constant 0  such 

that   is a continuous solution ( )y t  of system (1) such that 
0t t −  . The 

system should also satisfy the following condition: 

 

, , 1, 2,3,...i

j

G
i j n

y


=


 (7) 

It is bounded and continuous within the domain D . 
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Lemma 3. 1 If ( , )G t y  is a continuous partial derivative i

j

G

y




 on a bounded and 

closed convex domain D that satisfies the Lipschitz condition. Hence, we need 

to find a fixed solution to the following form: 

 0 D        (8) 

Theorem 3.3 Assume that the domain D  satisfies conditions (6) and (7) in 

theorem 3.2. Then a mathematical solution to model (3) is bounded in domain 

D . 

 

Proof. The proof of theorem 3.3 is obtained by considering lemma 3.1. Consider 

the following equations: 

1

1 2

1

1
HP

G rP T W P
k d H


 

   
= − + − +   

+  

( )1

2 2

H
G W P E

d H


  

 
= + − + 

+ 
    

 ( )3G E W   = − + +                                                                 (9) 

( )4G W T  = − +         

5G W D = −     

6G E W D M   = + + −                                           

7G M H = −       

  

We need to show that , 1, 2,....7i

j

G
j

y


=


 are bounded and continuous. The 

following are the partial derivatives of model (9) for a unique equation. 

Considering the first equation in model (9), we have: 

1

1 2

1

1
HP

G rP T W P
k d H


 

   
= − + − +   

+  
. 

 

The partial derivative of function 
1G  with respect to class P  is: 

1 1

2

1

1
G HP

r W
P k d H




 
= − − − 

 + 
. 
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Take the absolute value of both sides by considering condition (8), we get: 

1 1

2

1

1
G HP

r W
P k d H




 
= − − −   

 + 
. 

 

Then finding the partial derivative of function
1G  with respect to class W  gives: 

1

2

G
P

W



= −


 thus 1

2

G
P

W



= −  


. 

 

Also, the partial derivative of function 
1G  with respect to class T  gives: 

1G

T



=


, then 1G

T



=  


. 

 

Lastly, find the partial derivative of function 
1G  with respect to class H  gives: 

( )
1 1 1

2

G H
S

H d Hd H

  
 = − − +
  ++ 

. 

 

With condition (6), we have: 

( )
1 1 1

2

G H
P

H d Hd H

  
 = − − +  
  ++ 

. 

 

Then, consider the second equation in model system (8). We have:  

( )1

2 2

H
G W P E

d H


  

 
= + − + 

+ 
. 

 

Its partial derivative with respect to class P  is as follows: 

2 1

2

G H
W

P d H





= +

 +
, thus 2 1

2

G H
W

P d H





= +  

 +
. 

 

The partial derivative of function 
2G  with respect to class E  is as follows: 

2G

E
 


= − −


. 

 

By considering condition (7), we get: 
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2G

E
 


= − −  


. 

 

Again, the partial derivative of function 
2G  with respect to class W  is as follows: 

2

2

G
P

W



=


 

 

Taking the absolute value, we get: 

2

2

G
P

W



=  


.  

 

The remaining equations in model system (9) should be solved using a similar 

methodology. This demonstrates that every partial derivative is continuous and 

bounded. Hence, this proves the existence and uniqueness of the solution of 

system (3) in region D . 

3.3  Fusarium Wilt Equilibria 

The Fusarium wilt disease-free equilibrium point 0( )E  is given by:  

  
0 1( ,0,0,0,0,0,0)E k=  

 

And the endemic equilibrium points *( )E  are: 

 
( ) *

*

*1

2

W
P

W
d

  


 

+
=
 

+ 
 

, 
*

* W
E




= , 

*
* W

T


 
=

+
, 

*
* W

D



= , 

*
* M

H



=  

and 
* *M W

 


 



 
+ + 

 
= . 

3.4 Reproduction Number Analysis 

The basic reproduction number 0  was used to investigate the local and global 

stability of model system (3). The calculation of 0  was done by using the next-

generation operation method in [47]. 
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1

2

0

0

0

0

H
W P

d H

F




  
+  

+  
 

=  
 
 
 
  

and 

( )

( )

E

E W

V W D

E W D M

M H

 

   

 

   

 

 + 
 

− + + 
 = −
 

+ + − 
 − 

                  (10) 

Assume matrix ( )F x  is the Jacobian matrix from F and ( )V x  is the Jacobian 

matrix from V. The matrices ( )F x  and ( )V x  at disease-free equilibrium

0 1( ,0,0,0,0,0,0)E k=  obtained are: 

1 1 1 20 0 0

0 0 0 0 0

( ) 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k k

F x

  
 
 
 =
 
 
      (11)

0 0 0 0

0 0 0

( ) 0 0 0

0

0 0 0

V x

 

   

 

   

 

+ 
 
− + +

 
 = −
 
− − − 

 −     
       (12) 

The next-generation matrix obtained is:  

( )( )

( ) ( )( )
( )( )

( )( )
( )( )

( )( )

( )( )
1 2 1 1 11 1 1 2 1 2 1 2

1 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k k kk k k k

d d d d d

FV

                     

                         

−

 + + + + + + +
+ + 

+ + + + + + + + + + + + 
 
 =
 
 
 
  

      (13) 

 

( )( )

( ) ( )( )
( )( )

( )( )
( )( )

( )( )

( )( )
1 2 1 1 11 1 1 2 1 2 1 2

1 0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

k k kk k k k

d d d d d

I FV

                     


                         










−

 + + + + + + +
− + + 

+ + + + + + + + + + + + 
 
 − =
 
 
 
  

      (14) 
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The eigenvalues obtained are: 

( )( )

( ) ( )( )
( )( )

1 21 1

1 2 3 4 50, 0, 0, 0,
kk

d

       
    

          

+ + + +
= = = = = +

+ + + + + +

               

 

The reproductive number is the absolute largest eigenvalue obtained, which is:   

( )( )

( ) ( )( )
( )( )

1 21 1

0

kk

d

       

          

+ + + +
 = +

+ + + + + +
.          (15)  

 

The basic reproduction number represents the projected number of each plant 

infected by the initially diseased plants for their whole infectious period. It serves 

as a predictor of the ability of infectious and parasitic organisms to spread.  

3.5 Local Stability 

A stability study of the disease-free equilibrium point of model system (3) was 

conducted using the Routh-Hurwitz criterion [48]. Consider Theorem 3.4 below.  

Theorem 3.4 

The Fusarium wilt disease-free equilibrium point is locally asymptotically stable 

if and only if the major diagonal of the Jacobian matrix is positive. 

 Proof. Assume that each equation in the system is differentiated, considering its 

state variable at 0E . The Jacobian matrix at 0E  is as follows: 

 

( )
0

1 1

1 2

1 1

1 2

0 0 0

0 ( ) 0 0 0

0 0 0 0 0

0 0 ( ) 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0 0

E

k
r k

d

k
k

d

J


 


  

   

  

 

   

 

− 
− 
 
 − +
 
 

− + +=  
 − +
 

− 
 −
 

−  

    (16) 

 

Computing the eigenvalues of the Jacobian matrix 
0EJ , we obtain r−  and

( ) − + . Then the remaining eigenvalues will be obtained from matrix H below.   
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 ( )

1 1

1 2( ) 0 0

0 0 0

0 0 0

0

0 0 0

ij

k
k

d

H A


  

   

 

   

 

 
− + 
 

− + + 
 = =    −

 
− 

 − 

             (17) 

 

To obtain the remaining eigenvalues, we consider the polynomial roots 

0H − =  that give the characteristic equation (18): 

5 4 3 2

1 2 3 4 5 0c c c c c    + + + + + = .                                         (18) 

where: 

1 2c       = + + + + + +  

( ) ( ) ( )

( ) ( ) ( )

2

2

1 2

2c

k

           

               

= + + + + + + + + +

+ + + + + + + + + + −
 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

3

1 2 1 1

2

21

d d d

d d d
c

d d d d d

d d k k

           

              

             

         

 + + + + + + + +
 

+ + + + + + + + + + 
=  

+ + + + + + + + + 
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( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( )

2

4

1 1

1 2 1 1

2

1

d d d

d d d
c
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( ) ( ) ( )

( )

1 1

5

1 1 1 2 1 1 1 1

1 d d k
c

d k k d k k

            

           

+ + + + + + + + − 
=  

 − + + + + 

 

 

The positivity of the principal leading diagonal of matrix nH  makes the disease-

free equilibrium point locally stable. In light of this, the disease-free equilibrium 

point is only locally stable when 
1H , 

2H ,… 
5 0H  . Then,  

1 0H   since 

we have  
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2 0      + + + + + +   

 

Then, for 
2 0H  , if and only if 1 2 3c c c , 

3 0H  , if 

2

1 2 3 3 1 4 5c c c c c c c+  + ,
4 0H   if 

2 2 2 2 2

1 2 3 4 2 3 5 5 2 5 1 4 3 4c c c c c c c c c c c c c c+ +  + + , and lastly  

5 0H   if 
2 2 2 2 2

1 2 3 4 5 1 4 5 1 4 5 1 2 5c c c c c c c c c c c c c c+ +  .  

 

Since the principal leading diagonal of the Jacobean matrix is all positive, the 

disease-free equilibrium point 
0E  is locally asymptotically stable. 

3.6 Global Stability  

The following theorem is presented to comprehend the disease-free equilibrium’s 

global stability. 

 

Theorem 3.5. If 0 1  , the disease-free equilibrium is globally asymptotically 

stable, and unstable otherwise. 

Proof. Apply the comparison theorem [49] to ascertain global stability while 

accounting for the derivatives of the diseased compartments in model system (3).   

( )

1 1

1 20 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

dE

dt
kdW E Ek
ddt W W

dD
F V D D

dt
M M

dM
H H

dt

dH

dt




 
 
 

 
      
      
      
     = − −  
      
                  
 
 
 

                        (19)                     
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 
 
   
   
   
    −
   
   

  
  

 
 
 

                                                    (20) 

 

The matrices F  and V  presented in equations (19) and (20) are the following 

Jacobian matrices:  

1 1

1 20 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

k
k

d

F




 
 
 
 

=  
 
 
 
 

                                  (21)

              

 and       

0 0 0 0

0 0 0

0 0 0

0

0 0 0

V

 

   

 

   

 

+ 
 
− + + 

 = −
 

− − − 
 −  . (22) 

Since the eigenvalues of matrix ( )F V−  have a negative real part, model (3) is 

stable at any time 0 1  . Then ( ) ( )0, , , , , , ,0,0,0,0,0,0,P E W T D M H P→  

and 0P P→  as t → . Considering the comparison theorem, we have 

( ) 0, , , , , ,P E W T D M H E→ as t → . Therefore, the disease-free 

equilibrium is globally asymptotically stable. 
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4 Data Presentation and Parameter Estimation 

Ward extension staff, the district agriculture offices, and the Naliendele 

Agriculture Research Institution in Mtwara participated in the survey for data 

collection. The maximum likelihood method was used to fit and estimate the 

model parameters. The data for model fitting was obtained in the Lindi and 

Mtwara regions specifically.  

4.1 Data Presentation 

The most crucial components of modelling are model fitting and parameter 

estimation. After developing a mathematical model and collecting data for the 

desired class, one is well-positioned to fit the data into the model and determine 

its parameters [50]. The collected data based on cashew plant death due to 

Fusarium wilt disease came from seven districts in the Lindi and Mtwara regions 

in Tanzania. The districts where research was conducted included Tandahimba, 

Masasi, Newala and Mtwara Rural in the Mtwara region, while in the Lindi 

region, Liwale, Ruangwa and Lindi Rural were involved. The collected data was 

used in model parameter estimation. A summary of the data is presented in 

Table 1. 

Table 2 Infected dead cashew plants from the year 2018 to 2020. 

Village 

Serial 

number 

Village 

Number of 

disease-induced 

dead plants 

Village 

serial 

number 

Village 

Number of 

disease-

induced 

dead plants 

1 Kitandi 15 15 Kitangali 50 

2 Chinongwe 45 16 Chikunja 30 

3 Ruhokwe 46 17 Msikisi 16 

4 Simana 23 16 Makululu 15 

5 Tuungane B 56 19 Mnavila 17 

6 Tuungane A 11 20 
Makong’on

da 
41 

7 
Ungongolo 

Sokoni 
24 21 Lukuledi 48 

8 Majimaji 40 22 Mchauru 7 

9 
Legeza 

mwendo 
15 23 Mpindimbi 9 

10 Itete 50 24 Namyomyo 51 

11 Dihimba 39 25 Nangoo 190 

12 Tandika 31 26 Nanganga 204 

13 Mwera Sokoni 13    

14 Nakayaka 33    

Source: Field data 2020 
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4.2 Estimation of Parameters And Model Fitting  

The Matlab program was used to conduct a numerical simulation of model (1). 

The proposed model’s parameter estimation and model fitting were done using 

maximum likelihood estimation (MLE), as described in [51]. Model fitting is 

essential since it determines the parameter values for a specific model system 

based on the data [26]. The initial parameter values, shown in Table 2, were 

generated from various publications, such as cashew plant carrying capacity 1k

[52], the force of infection between chlamydospores fungus and susceptible 

plants 
1  [53], the force of infection between infected plants and susceptible 

plants 2 [54], the saturation rate of fungus in the soil d  [25], progression rate 

  [18]. However, we assumed other parameter values based on epidemiological 

implications. 

A graph of the model solution using data and values from the literature against 

time is shown in Table 1. The high deviation between the model solution and the 

data shown in Figure 3a indicates the necessity of parameter estimation. In 

comparison to Figure 3a, Figure 3b displays better results, and the solution of the 

model with the estimated parameters tends to follow the trend of the data. Table 

2 shows the numerical values for each estimated parameter. 

  
 

Figure 3     (a) Model solution with values from the literature that seems to diverge 

from the field data. (b) Fitting of the model solution with estimated values and 

field data that show convergence. 
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Table 3 Parameter values estimated and values from the literature. 

Parameter 
Literature 

value 

Estimated 

value 
Parameter 

Literature 

value 
Estimated 

r  0.05 0.0605   0.3 0.3757 

1k  69 hector-1 74 

hector-1 
  0.5 0.4784 

1  0.06 0.0608   0.05 0.0655 

2  0.0018 0.0016   0.05 0.0587 

d  
40 m-2 colony 

site density 
45.4016   0.3 0.3081 

  0.5 year 0.4   0.05 0.0481 

  0.005 0.00038   0.2 0.1968 

  0.8 0.093   0.4 0.4125 

 

5 Numerical Analysis 

5.1 Local Sensitivity Analysis 

This analysis gives indices that help determine how important each parameter is 

for Fusarium wilt disease transmission and incidence [55]. The local sensitivity 

analysis examines what happens to 
0  when some parameters vary, employing 

the formula proposed by Arriola and Hyman [56]. Using sensitivity indices, we 

may evaluate how the state variable has changed relative to a parameter change. 

The normalized forward sensitivity index of a variable to a parameter measures 

how much the variable changes with a parameter [57]. The normalized forward 

sensitivity index is acquired when 0  is differentiable with respect to a given 

parameter, let’s say q , and can be computed as:  

0 0

0

q

q

q

 
 = 

 
. 

The result is presented in Figure 4.  

 

The output in Figure 4 indicates that the transmission rate of infection from 

the soil to vulnerable plants 
1  and the decomposed disease-induced death 

rate  strongly influence disease transmission. Furthermore, if the 

treatment rate   and fungus decay rate   have negative indices, the 

increase in   and   will decrease disease transmission. 
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Figure 4   Local sensitivity analysis. 

5.2 Global Sensitivity Analysis 

The analysis was examined when all parameters were simultaneously varied 

across the entire range of each parameter. The results of this analysis, which was 

conducted using the partial rank correlation coefficient (PRCC) method, are 

shown in Figure 5. The results show that the decomposed disease-induced death 

rate   and fungus saturation in the soil d increase the transmission of the 

disease. This means disease transmission increases as the values of the mentioned 

parameters decrease. Furthermore, disease transmission will decrease when the 

fungus decay rate  , the number of dead plants remaining in the field  , and 

the disease-induced death rate   increase. 

 

Figure 5 Global sensitivity analysis was conducted using the PRCC technique. 
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5.3 Effect of Decomposed Disease-Induced Dead Plants on 

Disease Transmission 

Figures 6a, 6b and 6c show the contribution of decomposed disease-induced 

dead, infected, and exposed dead plants in producing macroconidia. Sporodochia 

from the dead infected plants produce macroconidia. Macroconidia spores are a 

saprophytic fungus that plays an important role in decomposition as it performs 

the initial steps [58],[59]. The growth rate of macroconidia increased in the first 

four months, as shown in Figures 6 a, b and c, due to the availability of food (dead 

plants). The growth rate from five to twenty months decreased as the 

decomposition rate increased. The increase in the macroconidia population led to 

a rise in disease transmission due to the increase in the chlamydospore population 

in the soil. Therefore, the presence of dead plants during an outbreak should be 

considered in planning and selecting a disease control method. 

 

 

Figures 6     (a) Macroconidia spores population increases due to decomposition 

of diseased-induced dead plants. (b) Macroconidia spores population increases due 

to the decay of infected dead plants. (c) Macroconidia spores population increases 

due to the deterioration of exposed dead plants. 
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5.4 Effect of Decomposed Disease-Induced Dead Plants on 

Chlamydospores Growth 

Figure 7 illustrates the impact of chlamydospore growth in the soil due to an 

increase of the amount of decomposed disease-induced plants. Decomposed 

disease-induced plants produce macroconidia spores. Macroconidia spores 

produce chlamydospores after the decomposition of dead plants since the 

environment is not conducive to the survival of macroconidia. Chlamydospores 

have thick walls, enabling them to survive in the dry season and increase disease 

transmission in a conducive environment. Chlamydospore saturation in the 

ground causes disease outbreak, which reduces the number of susceptible plants 

in the field. The number of susceptible plants decreases after the disease 

progresses to exposed plants. Initially, the number of exposed plants increases up 

to a certain level before reducing due to the transformation of infected plants. The 

macroconidia population decreases due to the production of chlamydospores.  

  

Figure 7  (a) Susceptible plant populations decline as more plants are exposed to 

the disease. (b) More plants become exposed because the interaction rate increases 

(c) An infected plants increase due to the rise of chlamydospores in the ground. 

(d) An increase in chlamydospores in the soil leads to a decrease in macroconidia 

spores. 
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6 Conclusion  

This study addressed the role of decomposed disease-induced dead plants in the 

spread of cashew Fusarium wilt disease. Significant financial losses are caused 

by the disease, particularly for people or communities that depend on the cashew 

industry. Sensitivity analysis was conducted to consider the expected uncertainty 

in parameter values. It was discovered through local and global sensitivity 

analyses that various factors contribute to the disease’s persistence and 

transmission. A critical factor during outbreaks are decayed disease-induced dead 

plants. The numerical solution determined the production of macroconidia from 

decayed disease-induced dead plants that contribute to the production of 

chlamydospores. The decomposition plays a vital role in ecosystems for nutrient 

redistribution in the soil. However, since it consists of disease-induced dead 

plants, this process increases chlamydospore saturation in the ground and hence 

disease prevalence and spread during an outbreak. Therefore, the presence of 

decomposed disease-induced dead plants should be considered when developing 

efficient methods of managing the infection rate during an outbreak. 
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