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Abstract. We propose a model for predicting the fluctuation of electron states in 
thin films as a function of film thickness. The model is derived based on the 
assumption of the existence of potential barrier fluctuation on the film surface. 
Since the wave functions of electrons in the film are determined by the boundary 
conditions of the potential on the film surface, the potential fluctuation on the 
film surface implies fluctuation of the electron states in the film. The model was 
extended to predict the effect of size on the lattice constant of thin films or 
nanoparticles. 
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1  Introduction 

The motion of electrons in small structures such as thin films is confined in the 
direction normal to the film and results in quantization of energy [1]. The 
eigenstates of the electrons in thin films are generally solved with the 
assumption that the electrons are in a one-dimensional potential well. The 
potential inside the well is assumed to be zero and the potential outside the well 
is assumed to be a very large constant. A further simplification that is 
commonly used is that the potential well is infinitely high. With these 
assumptions, the boundary conditions of the wave functions are zero in the 
potential well and the resulting solutions are sinusoidal functions (standing 
waves) [2]. 

The assumption that the potential well has an infinite height is merely an 
idealization that is commonly adopted to introduce elementary quantum theory 
to students. A more realistic assumption is actually a finite potential well [3]. 
With such finite potential barrier, the electrons can still jump out of the film 
surface and give rise to a number of phenomena such as the photoelectric effect, 
thermal emission, electric field induced electron emission, and so on. 
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Since the film surface is always in contact with another material, such as air, 
there is an interaction between the atoms on the film surface and the atoms of 
the surrounding material. Such interaction is expected to cause a fluctuation of 
the atomic states on the film surface, especially when the states of the atoms 
outside the film also fluctuate (for example, air atoms or molecules), which in 
turn causes fluctuation in the height of the potential well. Because the 
eigenstates of the electrons inside the potential well depend on the boundary 
conditions of the potential on the well, fluctuation in the potential barrier causes 
fluctuation in the electron eigenfunctions inside the well. If the film is very 
thick or the material is in bulk state, the effect of fluctuation in the surface 
potential is negligible so that the fluctuation in the potential barrier does not 
affect the eigenstates of the electrons inside the well. Conversely, if the film is 
very thin, the surface effect becomes preeminent such that fluctuation in the 
potential barrier affects the eigenstates of the electrons inside the well. 

There are actually a large number of observations as well as explanations 
regarding the change of lattice constant or lattice parameter when the size of a 
material is reduced to nanometer scale. The transition from bulk crystals to 
nanoparticles is accompanied by a change of interatomic distances and unit cell 
parameters. When either expansion or contraction is observed, some materials 
show only contraction or expansion, and some materials show both expansion 
and contraction, measured relative to the corresponding parameters in the bulk 
state. Expansion of the lattice parameter is generally observed in oxides such as 
CeO2 [4-6], Fe2O3 [7], MgO [8], TiO2 (rutile) [9], ZrO2 [10], BaTiO3 [11], cubic 
PbTiO3 [12], and BiFeO3 [13]. In contrast, contraction in the lattice parameter, 
is observed in most metals, such as Au [14-16], Ag [17-20], Sn [21], Bi [21,22], 
Pt [15,23], Si [24], Cu [25], Ni [25], Pd [26,27], ZnS and CdSe [28,29]. 
Shrinkage of the Cu-Cu distance up to 9% for very small sizes has been 
reported by Apai, et al. in [25]. 

Many mechanisms that could be responsible for the lattice parameter change 
when the size of the material is reduced have been proposed, but final 
conclusions have never been achieved. Tsunekawa, et al. in [5,6,30] proposed 
that the lattice parameter expansion in CeO2 is caused by the presence of 
surface stable Ce3+ anion vacancy sites within the surface layer at low 
nanoparticle dimensions. Shin, et al. in [31] have proposed that the lattice 
dilatation in Sn nanowire is caused by strong anisotropy on the surface stress. In 
spherical nanoparticles, the effect that is assumed to be responsible for lattice 
compression is the increase of the surface curvature [32-35]. However, in 
different structures, such as nanowires or nanolayers, lattice expansion is 
observed instead of lattice contraction, which is assumed to be caused by lattice 
imperfection [36,37]. There is also an assumption that the lattice expansion is 
caused by the grain boundary effect [37]. Differently, Ayyub, et al. in [7] 
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proposed that an increase in unit cell volume when the material size is reduced 
can be attributed to covalent oxides. Internal stress relaxation during 
nanocluster growth has also been proposed to affect the lattice parameter [38]. 
An interesting phenomenon has been observed in anatase TiO2. In some cases, 
contraction of the lattice parameter when reducing the particle size has been 
observed [39-43], which is similar to the behavior of metals. In other cases the 
antithetical phenomenon was investigated, where expansion of the lattice 
parameter was observed when reducing the material size [44]. 

Although several models as well as empirical equations have been proposed to 
explain the contraction of the lattice parameter when reducing particle size, to 
the best of our knowledge a fundamental explanation has not been proposed yet. 
With a fundamental explanation we mean a formulation based on the formalism 
of quantum mechanics. The objective of this work is to formulate a model for 
predicting the effect of film thickness on the fluctuation of eigenstates of the 
electrons in thin films. Further, we examine its implications for predicting the 
variation of the lattice constant when the film thickness changes. 

Assessment of our proposed model was conducted by analyzing our results and 
comparing them with experimental data from various research publications, i.e. 
concerning platinum (Pt) [15,45], gold (Au) [15], ceria (CeO2) [46], tantalum 
(Ta) [47], and titania (TiO2) [48]. Using scanning high-energy electron 
diffraction, Soliard and Flüeli in [15] observed that small particles of Au and Pt 
(size 39-500 Å) experienced a lattice constant reduction when the particle size 
decreased. This phenomenon was observed for all measurement temperatures 
from about 100 K to 600 K. Leontyev, et al. in [45] have disclosed that the unit 
cell parameters of synthesized C supported Pt (Pt/C) nanoparticles with 
diameters ranging from 2 to 28 nm are always lower than the value of bulk Pt. It 
is compelling to study this phenomenon since in fact Pt/C is one of the most 
promising catalysts for low temperature fuel cells. Moreover, the decrease of 
the interatomic Pt–Pt distance is eminently known as one of the reasons for a 
positive influence on the catalytic activity in oxygen reduction reactions. On the 
other hand, Chen, et al. in [46] have reported that changes in the lattice 
parameter of CeO2 can occur in crystallites with size 2-500 nm, which also has 
notable application in catalysis. 

2 Modelling 

2.1 Fluctuation of Electron States  

We model the thin film as a one-dimensional potential well of width L (Figure 
1). The potential inside the well is taken to be zero while the potential outside 
the well is V and finite. The potential outside the well is the surface potential of 
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the film and assumed to be slightly fluctuating. We determine the solutions of 
the Schrödinger equation while ignoring the potential barrier fluctuation at first. 
We consider the height of the potential well to be constant so that the 
eigensolutions can be obtained easily. After obtaining the solutions, we consider 
the effect of potential barrier fluctuation. 

 
Figure 1 (a) Thin film and (b) model of thin film as a one-dimensional potential 
well of width L. The potential inside the well is 0 and V outside of the well. The 
potential is divided into regions I, II, and III. In regions I and III, E < V whereas 
in region II, E > V. 

The Schrödinger equations for the electrons in regions I, II, and III (as 

illustrated in Figure 1) are: 
2
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Since the fluctuation in the potential barrier is not taken into consideration,  is 
a constant. Considering that the wave functions must be finite in regions I, II, 
and III, the general solutions to the wave functions are:  

 ( ) x
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 ( ) x
III x Fe    (5) 

with A, C, D, and F are constants, which in general are complex numbers. 

The boundary conditions that must be met are (0) (0)I II   and 

( ) ( )II IIIL L   so the wave function is continuous and also (0) (0)' 'I II   

and ( ) ( )' 'II IIIL L   to ensure that the wave function varies smoothly. Such 

boundary conditions yield the following equation set: 

 A C D   (6) 

 i L i L LCe De Fe      (7) 

 ( )A i C D    (8) 

  i L i L Li Ce De Fe        (9) 

From Eqs. (6)-(9) we get the following relationship: 

 
2

2i Li
e

i
 

 
 

  
 (10) 

Let us write 2 2 ii e        , where tan /   . By this definition, Eq. 

(10) can be written as exp[ 4 ] exp[ 2 ]i L    . The solution to this equation is 
4 2 2L n       or / 2 / 2L n    , which can be expressed as: 

 tan tan
2 2

L
n

     
 

  

or 

 tan
2 2

L
n

  


   
 

 (11) 

where n is an integer. By substituting Eq. (1) and (2) into Eq. (11) we obtain 

 ( ) / tan / 2 / 2V E E L n    , which produces: 

 2cos
2 2

L
E V n

    
 

 (12) 

Taking into account the definition of  in Eq. (2) and noticing that the electron 
energy here becomes discrete with quantum number n, Eq. (12) can be rewritten 
as follows: 



230 Nadya Amalia, et al. 

  

 2 1/2
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 (13) 

or 

 1/2 1/2 1/2
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cos

2 2n n

L m
E V E n
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It appears from Eq. (13) or (14) that if V  , the right-hand side of the 
equation approaches infinity, while the left-hand side remains finite. To ensure 
that both sides remain consistent, i.e. the right-hand side also stays finite, the 
following condition must be fulfilled: 
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which causes 2 1/2( / 2) 2 / / 2 / 2nL m E n    or: 
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Eq. (15) is the standard solution for electron energies inside a potential well of 
infinite height [2]. Thus, we can conclude that Eqs. (13) or (14) are the general 
solutions for electron energies in a potential well of arbitrary height and satisfies 
V > E. 

Let us write Eq. (14) as follows: 

 1/2
cos

2

x
x n

V

   
 

 (16) 

where 1/2
nx E  and 2( / 2) 2 /L m   . Parameter  is the wave number that 

is proportional to the film thickness. We can determine the solution of Eq. (16) 

by plotting the curves of 1/2/x V  and cos( / 2)x n   simultaneously. The 

intersection of both curves is the solution for x. Figure 2 shows the curves of 
these two functions as a function of x. We plot two curves of 1/2/x V  at two 

different V and plot two curves of  cos / 2x n   at two different . A wider 

 cos / 2x n   curve is produced using a smaller . Since   L, a wider 

curve belongs to a thinner film. 



       Thickness Effect on Fluctuation of Electron States 231 
 

Let us examine what happens if the potential barrier height fluctuates. The 
straight-line curve will change its gradient. As a result, the solution for x also 
fluctuates. Let us examine the span in fluctuation in x due to the potential 
fluctuation. The distance between the intersection points of two straight lines 
and the curved curve obtained using a large  (large L) is smaller than the 
distance between the intersection points of two straight lines and the curved 
curve obtained using a small  (small L). From these results we can conclude 
that the same fluctuation in the potential barrier produces greater energy 
fluctuation on a thinner film. In other words, the fluctuation of energy in the 
film is greater if the film is thinner. 

 

Figure 2 Curves of ݔ/ܸଵ/ଶ and |cos	ሺݔߛ െ
௡గ

ଶ
ሻ| as the function of x. Two curves 

of ݔ/ܸଵ/ଶ are plotted using two different V. The intersection of the two curves is 
the solution for x. 

Now we will look for more quantitative-fluctuation expressions. We start from 
Eq. (13). Suppose a fluctuation of the potential barrier of V causes an energy 
fluctuation of En. Thus we can write: 
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which gives the following equation: 
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where we have already assumed that En/En
1/2 << 1. We factorize the right-

hand side of Eq. (17) with the following trigonometry identities: 
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Rearranging Eq. (18) yields: 
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Based on Eq. (13) we can write 2 1/2cos ( / 2) /n nE n E V   , and 
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Furthermore, we approximate En in the equation above with En for a potential 
well of infinite height as appeared in Eq. (15) to obtain more explicit form of 
energy fluctuation as follows: 
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It appears from Eq. (20) that greater energy fluctuation occurs if the film gets 
thinner. If we assume that the potential well is high enough so that the discrete 
energies inside the well are quite small compared to the potential height, or 

nE V  and the potential fluctuation on the well is very small compared with 

V , we can make the following approximation: 
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It is clear that fluctuation in the energies changes according to the inverse 
square of the film thickness. Also shown by Eq. (21), the fluctuation in the 
energies is proportional to the relative fluctuation in the potential barrier. The 
greater this ratio, the smaller the energy fluctuation. 

2.2 Effects on Lattice Constant 

Fluctuation in the energy states is a manifestation of fluctuation in the electron 

wave functions inside the well. The electron density inside the well is 
2

N  , 

where N is the concentration of electrons. Accordingly, the fluctuation of the 
electron density inside the well is: 
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with f(n) is a function of index n. The root mean square fluctuation of the 
electron density is: 
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If 0  is the average density of the electrons inside the well, the electron density 
fluctuation can be written as: 
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The ions that compose the material are unified by the force of attraction 
between the positively charged ions and the electrons. The magnitude of the 
attractive force is roughly proportional to the electron density. In the presence 
of fluctuation in the electron density, the force between the ions and the 
electrons also fluctuates. The change in force experienced by the ions is: 
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with F0 is the force when fluctuation is absent. The force produces a lattice 
constant change that can be predicted by the formula for Young’s modulus (Y  
(F/a2)/(a/a)). It appears that the change in the lattice constant is proportional to 

the change in the force. Thus, the lattice constant change satisfies 2/a L   , 

where  is a parameter that may be different for different materials. Because the 
fluctuation can increase or decrease the potential, the  parameter can be a 
positive or negative number. Thus the fluctuation of electron states can cause 
the distance between atoms to expand or shrink. 

Eq. (20) or (21) has been derived for thin films. The energy states of electrons 
in a thin film are inversely proportional to the square of the film thickness. The 
resulting change in the lattice constant is inversely proportional to the square of 
the film thickness. For a particle (sphere), the energy states are inversely 
proportional to the diameter [49]. With these properties, it is expected that the 
lattice constant change in the particle is inversely proportional to the square of 

the diameter of the particle, or 2/ Da   . As a result, we get equations 
describing the variation in the lattice constant of thin films or nanoparticles as: 

 0 0 2
( )a a

L


    (25)  

 0 0 2
( )a a

D


    (26) 

By X-ray diffraction, Leontyev, et al. in [15] have observed dependence of the 
lattice constant of Pt/C with a particle size between 2 and 28 nm. They obtained 
a fitting equation a = a0 + b/D with a0 = 3.9230  0.0017 Å and b = –0.0555  
0.0067 nm-1 (D in nm). For comparison of the size dependence of the lattice 
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parameter, Tsunekawa, et al. in [4] reported the change of lattice parameter a in 
CeO2 as a = 0.0234D – 1.06, while Ahmad and Bhattacharya in [50] have 
reported a variation according to a = 0.0234D – 1.08. For Ni nanoparticles, 
Wei, et al. in [51] reported the change of the lattice parameter as a  –1/D. A 
size-dependent lattice structure studied by X-ray absorption spectroscopy, as 
reported by Lin, et al. in [52], showed a change in the lattice parameter as a 
function of particle size for both Pd and Au that satisfies a  1/D. Koska, et al. 
in [53] have reported the change of the lattice parameter of Au thin film 
sputtered on glass and showed that the lattice parameter changes with the layer 
thickness, L, according to a  1/L with  > 1. 

3 Confirmation with Experimental Data 

Now we will compare our results with some reported data. For example, the 
symbols in Figure 3 indicate the measurement results of the lattice constant in 
platinum (Pt) nanoparticles in the (220) and (422) orientations as reported by 
Soliard and Flueli in [15].  

 
Figure 3 The symbols indicate the lattice constants of platinum (Pt) 
nanoparticles at a temperature of 300 K in the (220) and (422) orientations as 
reported by Soliard and Flueli in [15]. The curve is obtained using Eq. (26). 

The presented data are the measured results at 300 K. Measurement of the 
diameters of the (220) and (422) diffraction rings indicates for Pt a decrease in 
the lattice occurs proportional to the reciprocal of the particle size. The curve in 
the figure is obtained using Eq. (26). The fitting equations that give the smallest 
error are (a0 = 3.926 – 0.0473/D2 Å,  = 0.00142) and (a0 = 3.917 – 0.0568/D2 

Å,  = 0.00119) for (220) and (422) orientations, respectively, and  is the 
variance. Further, Soliard and Flueli in [15] have reported that the lattice 
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constant depends on the inverse of the diameter. For comparison, we also 
determine the fitting curve that varies with the inverse of the diameter as 
proposed by Soliard and Fueli [15]. The fitting equations that give the smallest 
error are (a0 = 3.9323 – 0.0364/D Å,  = 0.00104) and (a0 = 3.9247 – 
0.0426/DÅ,  =0.00078) for the (220) and (422) orientations, respectively. 
From these results it appears that fitting with a function that is inversely 
proportional to the radius or inversely proportional to the square of the radius is 
acceptable because they both give a very small variance and are almost equal. 
Based on the experimental data reported by Soliard and Flueli in [15], the lattice 
constants of gold (Au) nanoparticles in the (220) and (422) orientations are 
shown in Figure 4. 

 
Figure 4 The symbols indicate the lattice constants of gold (Au) nanoparticles 
at a temperature of 300 K in the (220) and (422) orientations as reported by 
Soliard and Flueli in [15]. The curve is obtained using Eq. (26). 

The presented data are the results measured at 300 K. The curve is obtained 
using Eq. (26). The fitting equations with the smallest error are (a0 = 4.0717 – 
0.0714/D2 Å,  = 0.00207) and (a0 = 4.0682 – 0.0673/D2 Å,  = 0.00284) for 
the (220) and (422) orientations, respectively. Likewise for Pt, Soliard and 
Flueli in [15] have reported that the lattice constant depends on the inverse of 
the diameter. For comparison, we also determine the fitting curve that varies 
with the inverse of the diameter. The fitting equations with the smallest error are 
(a0 = 4.0792 – 0.05126/D Å,  = 0.00192) and (a0 = 4.0755 – 0.04902/D Å,  = 
0.00226) for the (220) and (422) orientations, respectively. From these results, 
we can conclude that fitting with the function that is inversely proportional to 
the radius or inversely proportional to the square of the radius is acceptable. 
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In Figure 5, the result of the measurement of the lattice parameters for the C 
supported Pt (Pt/C) nanoparticles as reported by Leontyev, et al. [45] is 
presented. The smallest error is achieved when the fitting equation is (a0 = 
3.9173 – 0.1170/D2 Å,  = 0.0040). In their report, Leontyev, et al. in [45] also 
mentioned that the lattice constant depends on the inverse of the diameter. 
Hence, we determine the fitting curve that varies with the inverse of the 
diameter as proposed by Leontyev, et al. [45] and obtained (a0 = 3.9247 – 
0.06866/D Å,  = 0.0212) as the fitting equation with the smallest error. It can 
be seen that the result of fitting a function that varies with the inverse of the 
square diameter as given by Eq. (26) gives a smaller standard deviation. In other 
words, the result of fitting using Eq. (26) is more accurate than the result of 
fitting using the equation that varies with the inverse of the diameter. 

 
Figure 5 The symbols indicate the lattice constants of carbon-supported 
platinum (Pt/C) nanoparticles as reported by Leontyev, et al. in [45]. The curve 
is obtained using Eq. (26). 

The symbols in Figure 6 indicate the measurement results of the lattice 
parameters for ceria (CeO2) nanoparticles, as reported by Chen, et al. in [46], 
who in their paper show that observation of a CeO2 lattice expansion is highly 
dependent on the preparation. The square symbols indicate the data for 
nanocrystals synthesized with the micelle template method, while the circle 
symbols are the data for nanoparticles synthesized with a simple reverse 
precipitation method. The fitting curve that gives the smallest error for micelle 
template particles is (a0 = 5.4168 – 0.1066/D2 Å,  = 0.00071), while for simple 
precipitated particles it is (a0 = 5.4085 – 0.2284/D2 Å,  = 0.00146). It can also 
clearly be seen here that the standard deviations obtained for both fittings are 
very small, which proves that the proposed model is reasonably good in 
explaining the experimental data. 
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Figure 6 The symbols indicate the results of the measurement of the lattice 
parameters for ceria (CeO2) nanoparticles as reported by Chen, et al. in [46]. The 
square symbols are the data for nanocrystals synthesized with the micelle 
template method, while the circle symbols indicate the data for nanoparticles 
synthesized with a simple reverse precipitation method. The curves are obtained 
using Eq. (26). 

In Table 1 we summarize the results of the measurements of the lattice 
parameters from the aforementioned experimental data using Eq. (26). It is clear 
that parameter 0 ( )a   refers to the lattice constant of a bulk material and, as we 

have mentioned,   is a parameter that may be different for different materials. 

Based on the discussions above we can deduce that the value of   actually 
depends on the material, structure and lattice orientation. 

Table 1 Results of Measurement of Lattice Parameters using the Proposed Model. 

Material 0 ( )a  (Å)  (nm) 

Pt (220) [15] 3,9260 0,0473 
Pt (422) [15] 3,9170 0,0568 
Au (220) [15] 4,0717 0,0714 
Au (422) [15] 4,0682 0,0673 

Pt/C [45] 3,9173 0,1170 
CeO2 (micelle template) [46] 5,4168 0,1066 

CeO2 (simple precipitated) [46] 5,4085 0,2284 

4 Conclusion 

We have successfully developed a model for predicting the fluctuation of 
eigenstates of electrons in thin films. The equation that describe the effect of 
film thickness or particle diameter on lattice constant variation has also been 
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successfully established. The obtained equation can adequately explain several 
experimental data expressing the variation of the lattice constant when the 
particle size changes. 
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