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Abstract. In this paper, we give a generalization of slightly compressible 
modules. We introduce the notion of M-slightly compressible modules, i.e. a right 
R module N is called M-slightly compressible if for every nonzero submodule A of 
N there exists a nonzero R-homomorphism s from M to N such that 𝑠ሺ𝑀ሻ ↪ 𝐴. 
Many examples of M-slightly compressible modules are provided. Some results 
on M-slightly compressible modules are obtained, which are interesting and 
important. 
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1 Introduction and Preliminaries 

Throughout this paper, 𝑅 is an associative ring with identity and Mod-𝑅 is the 
category of unitary right 𝑅-modules. For a right 𝑅-module 𝑀, let 𝑆 ൌ
𝐸𝑛𝑑𝑅ሺ𝑀ሻ be the endomorphism ring of 𝑀. A right 𝑅-module 𝑁 is called  
𝑀-generated if there exists an epimorphism 𝑀ሺூሻ → 𝑁 for some index set 𝐼. If 𝐼 
is finite, then 𝑁 is called finitely 𝑀-generated. In particular, 𝑁 is called 𝑀-
cyclic if it is isomorphic to 𝑀 / 𝐿 for some submodule 𝐿 of 𝑀 or equivalent to 
saying that any 𝑀-cyclic submodule 𝑋 of 𝑀 can be considered the image of an 
endomorphism of 𝑀. Following Wisbauer [1], 𝜎ሾ𝑀ሿ denotes the full 
subcategory of Mod-𝑅 whose objects are submodules of 𝑀-generated modules. 
A right 𝑅-module 𝑀 is called a self-generator if it generates all of its 
submodules. A right 𝑅-module 𝑀 is called a subgenerator if it is a generator of 
ሾ𝑀ሿ. For undefined notation, terminology and all the basic results on rings and 
modules see [1-3]. 

In 1976, Zelmanowitz [4] introduced the notion of compressible modules. A 
right 𝑅-module 𝑀 is called compressible if for each nonzero submodule 𝑁 of 𝑀 
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there exists an 𝑅-module monomorphism from 𝑀 to 𝑁. For example, if 𝑅 is a 
domain, then the right 𝑅-module 𝑅 is compressible. Generalizations of 
compressible modules have been studied in several papers (see [5-7]). Recently, 
P.F. Smith [8] introduced the concept of a slightly compressible module, which 
is a generalization of the compressible module. According to P.F. Smith, a right 
𝑅-module 𝑀 is called slightly compressible if for any nonzero submodule 𝑁 of 
𝑀 there exists a nonzero 𝑅-module homomorphism from 𝑀 to 𝑁. See for 
example [8], Example 1.2: if 𝑆 is a nonzero ring and 𝑅 is the ring of 2𝑥2 upper 
triangular matrices over 𝑆, then the right 𝑆-module 𝑅 is slightly compressible. 

In this paper, the notion of 𝑀-slightly compressible modules where 𝑀 is a right 𝑅-
module is introduced and studied, which is a general form of slightly compressible 
modules. Moreover we provide conditions for any right 𝑅-module to be an 𝑀-
slightly compressible module and an example of 𝑀-slightly compressible modules. 
Some results on slightly compressible modules [8] are extended to 𝑀-slightly 
compressible modules. 

2 𝑴-slightly Compressible Modules 

In this section, we introduce the concept of 𝑀-slightly compressible modules. We 
investigate the basic properties of 𝑀-slightly compressible modules. Some of 
these properties are analogous to the properties of slightly compressible 
modules. First, we give the following definition: 

Definition 2.1  Let 𝑀 and 𝑁 be right 𝑅-modules. 𝑁 is called 𝑀-slightly 
compressible if for every nonzero submodule 𝐴 of 𝑁 there exists a nonzero  
𝑅-homomorphism 𝑠 from 𝑀 to 𝑁 such that 𝑠ሺ𝑀ሻ ↪ 𝐴. In the case that 𝑀 ൌ 𝑁, 
𝑁 is called a slightly compressible module, referring to [8]. 

Example 2.2  

(1) This example is taken from [9]. A right 𝑅-module 𝑁 is called fully-𝑀-
cyclic if for every submodule 𝐴 of 𝑁 there exists 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such 
that 𝐴 ൌ 𝑠ሺ𝑀ሻ. A right 𝑅-module 𝑀 is called quasi-fully-cyclic if it is a 
fully-𝑀-cyclic module. It is clear that every fully-𝑀-cyclic module is an 
𝑀-slightly compressible module. 

(2) Let 𝑀 and 𝑁 be right 𝑅-modules. If 𝑁 is an 𝑀-generated module, then 𝑁 is 
an 𝑀 slightly compressible module (see, [[3], Exercise 2(b) and (d), pp. 
361-362]). 
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(3) Let 𝐹 be a field and 𝑅 ൌ ቀ𝐹 𝐹
0 𝐹

ቁ the ring of all matrices of the form  

ቀ𝑎 𝑏
0 𝑐

ቁ where 𝑎, 𝑏, 𝑐 ∈ 𝐹, 𝑀ோ ൌ ቀ𝐹 𝐹
0 𝐹

ቁ and 𝑁ோ ൌ ቀ0 𝐹
0 0

ቁ. Then, 𝑀ோ 

and 𝑁ோ are 𝑅ோ-slightly compressible modules. 

Theorem 2.3  Let 𝑀 be a Noetherian right 𝑅-module. If 𝑁 is an 𝑀-slightly 
compressible module, then 𝑆𝑜𝑐ሺ𝑀ሻ ≅ 𝑆𝑜𝑐ሺ𝑁ሻ. 

Proof. Assume that 𝑁 is an 𝑀-slightly compressible module. Let 𝐴 be a simple 
submodule of 𝑁. There exists  0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 0 ് 𝑠ሺ𝑀ሻ ↪ 𝐴. 
But 𝐴 is a simple submodule of 𝑁, 𝐴 ൌ 𝑠ሺ𝑀ሻ. Let 0 ് 𝑎 ∈ 𝐴. Then, 𝑎𝑅 ൌ 𝐴 ൌ
𝑠ሺ𝑀ሻ, so 𝑎 ൌ 𝑠ሺ𝑏ሻ for some 𝑏 ∈ 𝑀. In Noetherian module 𝑏𝑅, there exists a 
simple submodule 𝐵 containing 𝑏 such that 𝐴 ≅ 𝐵. Therefore 𝑆𝑜𝑐ሺ𝑀ሻ ≅
𝑆𝑜𝑐ሺ𝑁ሻ. 

Theorem 2.4  Let 𝑀, 𝑀′and 𝑁 be right 𝑅-modules, where 𝑁 is an 𝑀-slightly    
compressible module. 

(1) If 𝑀 is an epimorphism image of 𝑀′, then 𝑁 is an 𝑀′-slightly compressible 
module. 

(2) If 𝑀 is an 𝑀′-slightly compressible module, then 𝑁 is also an 𝑀′-slightly 
compressible module. 

(3) For any submodule 𝐴 of 𝑁, 𝐴 is an essential in 𝑁 if and only if for any  
0 ് 𝑡 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ, 𝑡ሺ𝑀ሻ ∩ 𝐴 ് 0. 

(4) For any submodule 𝐴 of 𝑁, 𝐴 is an uniform submodule of 𝑁 if and only if 
for any 0 ് 𝑡 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝐴ሻ, 𝑡ሺ𝑀ሻ is an essential in 𝐴. 

Proof. 

(1) Assume that 𝑀 is an epimorphism image of 𝑀′. There exists an 
epimorphism 𝛼 from 𝑀′ to 𝑀, so 𝛼ሺ𝑀ᇱሻ ൌ 𝑀. Let 0 ് 𝐴 ↪ 𝑁. Since 𝑁 is 
an M-slightly compressible, there exists 0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 
𝑠ሺ𝑀ሻ ↪ 𝐴. Thus 𝑠𝛼ሺ𝑀′ሻ ↪ 𝐴. Therefore 𝑁 is an 𝑀′-slightly compressible 
module. 

(2) Assume that 𝑀 is an 𝑀′-slightly compressible module. Let 0 ് 𝐴 ↪ 𝑁. 
Since 𝑁 is an 𝑀-slightly compressible module, there exists  0 ് 𝑠 ∈
𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 𝑠ሺ𝑀ሻ ↪ 𝐴. Because 𝑀 is an 𝑀′-slightly 
compressible module, there exists 0 ് 𝑡 ∈ 𝐻𝑜𝑚ோሺ𝑀′, 𝑀ሻ such that 
𝑡ሺ𝑀ᇱሻ ↪ 𝑀. Then, 𝑠𝑡ሺ𝑀ᇱሻ ↪ 𝑠ሺ𝑀ሻ ↪ 𝐴. Thus 𝑁 is an 𝑀′-slightly 
compressible module. 

(3) ሺ⇒ሻ It is obvious. 
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ሺ⇐ሻ Assume that any 0 ് 𝑡 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ, 𝑡ሺ𝑀ሻ ∩ 𝐴 ് 0 holds. Let 
0 ് 𝐵 ↪ 𝑁. Since 𝑁 is an 𝑀-slightly compressible module, there exists 
0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 𝑠ሺ𝑀ሻ ↪ 𝐵. Thus 𝑠ሺ𝑀ሻ ∩ 𝐴 ് 0 and we 
have 𝐵 ∩ 𝐴 ് 0. Therefore 𝐴 is an essential in 𝑁. 

ሺ4ሻ ሺ⇒ሻ  It is clear. 
ሺ⇐ሻ Assume that for any 0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝐴ሻ such that 𝑡ሺ𝑀ሻ is an 
essential in 𝐴. Let 𝐵 and 𝐶 be nonzero submodules of 𝐴. Since 𝑁 is an 𝑀-
slightly compressible module, there exists 𝑢, 𝑣 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 
0 ് 𝑢ሺ𝑀ሻ ↪ 𝐵 and 0 ് 𝑣ሺ𝑀ሻ ↪ 𝐶. By assumption we have 𝑢ሺ𝑀ሻ and 
𝑣ሺ𝑀ሻ are essential in 𝐴. Then, 𝑢ሺ𝑀ሻ ∩ 𝑣ሺ𝑀ሻ ് 0 and we have 𝐵 ∩ 𝐶 ് 0. 
Therefore 𝐴 is uniform. 

Proposition 2.5 Let 𝑀 and 𝑁 be right 𝑅-modules such that 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ ് 0. 
Then, 𝑁 is a simple module if and only if 𝑁 is an 𝑁-slightly compressible 
module with every nonzero R-homomorphism from 𝑀 to 𝑁 is an epimorphism. 

Proof. 

ሺ⇒ሻ It is obvious. 

ሺ⇐ሻ Assume that 𝑁 is an 𝑀-slightly compressible module with every nonzero 
R-homomorphism from 𝑀 to 𝑁 is an epimorphism. Let 0 ് 𝐴 ↪ 𝑁. There 
exists 0 ് 𝑠 ∈ 𝑆 ൌ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 0 ് 𝑠ሺ𝑀ሻ ↪ 𝐴. By assumption we 
have 𝑁 ൌ 𝑠ሺ𝑀ሻ and hence 𝑁 ൌ 𝐴. Therefore 𝑁 is a simple module. 

Corollary 2.6 ([10], Proposition 3.5) Let 𝑀 be a right 𝑅-module. Then, 𝑀 is a 
simple module if and only if 𝑀 is a slightly compressible module with every 
nonzero endomorphism of 𝑀 is an epimorphism. 

Proposition 2.7 Let 𝑁 be an 𝑀-slightly compressible module. Then, 

(1) 𝐴 is an 𝑀-slightly compressible module for all 𝐴 ↪  𝑁. 
(2) 𝑁 is an 𝑃-slightly compressible module for every right 𝑅-module 𝑃 with 

𝑘𝑒𝑟ሺ𝑠ሻ ് 𝑃 ↪ 𝑀 for all 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ. 

Proof. 

(1) Let 𝐴 ↪ 𝑁. If 𝐴 ൌ 0, it is clear. We can suppose that 𝐴 ് 0. Let  0 ് 𝐵 ↪
𝐴, Then, 𝐵 ↪ 𝑁 and there exists 0 ്  𝑠 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 𝑠ሺ𝑀ሻ ↪
𝐵. Thus, 0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝐴ሻ. Hence, 𝐴 is an 𝑀-slightly compressible. 

(2) Let 𝑃 ↪ 𝑀 such that 𝑘𝑒𝑟 ሺ𝑠ሻ ് 𝑃 for all 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ. Let 𝐴 ് 0 ↪ 𝑁. 
Since 𝑁 is an 𝑀-slightly compressible module, there exists 0 ് 𝑠 ∈
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𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 𝑠ሺ𝑀ሻ ↪ 𝐴 and 𝑘𝑒𝑟 ሺ𝑠ሻ ് 𝑃. Then, 0 ് 𝑠|௣ ∈
𝐻𝑜𝑚ோሺ𝑃, 𝑁ሻ such that, 𝑠|௣ሺ𝑃ሻ ↪ 𝐴, where 𝑠|௣ is an 𝑅-homomorphism 
with respect to 𝑃. Therefore 𝑁 is an 𝑃-slightly compressible. 

Proposition 2.8 Let 𝑀 and 𝑁 be right 𝑅-modules. If every nonzero submodule 
𝐴 of 𝑁 containing nonzero submodule 𝐵 such that 𝐵 ≅ 𝐶 where 𝐶 is a direct 
summand of 𝑀, then 𝑁 is an 𝑀-slightly compressible module. 

Proof. Assume that every nonzero submodule 𝐴 of 𝑁 containing nonzero 
submodule 𝐵 such that 𝐵 ≅ 𝐶 where 𝐶 is a direct summand of 𝑀. Let 0 ് 𝐴 ↪
𝑁. By assumption there exists a nonzero submodule 𝐵 such that 𝐵 ≅ 𝐶 where 𝐶 
is a direct summand of 𝑀. Since 𝐵 ≅ 𝐶 there exists a  that is an isomorphism 
from 𝐶 to 𝐵. Let 𝜋஼  be the canonical projection map from 𝑀 to 𝐶. Thus, 
𝛼𝜋஼: 𝑀 𝐵 is an 𝑅-homomorphism and 𝛼𝜋஼ሺ𝑀ሻ ↪ 𝐴. Therefore 𝑁 is an 𝑀-
slightly compressible module. 

Recall that 𝑃 ∈ 𝜎ሾ𝑀ሿ is called hereditary in 𝜎ሾ𝑀ሿ if every submodule of 𝑃 is a 
projective in 𝜎ሾ𝑀ሿ. We say that a ring 𝑅 is right (left) hereditary if  𝑅ோሺோ𝑅) is a 
hereditary in Mod-𝑅. 

Theorem 2.9 Let 𝑅 be a right hereditary ring and 𝑀 an injective right  
𝑅-module. If 𝑁 is an 𝑀-slightly compressible module, then every nonzero 
submodule 𝐴 of 𝑁 contains a direct summand of 𝑁. 

Proof. Assume that 𝑁 is an 𝑀-slightly compressible module. Let 0 ് 𝐴 ↪ 𝑁. 
By assumption there exists 0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 𝑠ሺ𝑀ሻ ↪ 𝐴. Since 𝑀 
is an injective module, 𝑅 is a hereditary ring and Theorem 3.22 in [11], 𝑀|୩ୣ୰ ሺ௦ሻ 
is an injective. But 𝑀|୩ୣ୰ ሺ௦ሻ ≅ 𝑠ሺ𝑀ሻ, 𝑠ሺ𝑀ሻ is an injective. Therefore 𝑠ሺ𝑀ሻ is a 
direct summand of 𝑁. 

Proposition 2.10 Let 𝑀 and 𝑁 be right 𝑅-modules such that 𝑁 is an 𝑀-slightly 
compressible module. If every 𝑀-cyclic submodule of 𝑁 is an injective module, 
then 𝑁 is an 𝑀-generated module. 

Proof. Assume that every 𝑀-cyclic submodule of 𝑁 is an injective. Let 
0 ് 𝐴 ↪ 𝑁. There exists 0 ് 𝑠 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 0 ് 𝑠ሺ𝑀ሻ ↪ 𝐴. By 
assumption 𝑠ሺ𝑀ሻ is an injective and we have 𝑠ሺ𝑀ሻ is a direct summand of 𝐴. 
There exists 𝐵 ↪ 𝐴 such that 𝑠ሺ𝑀ሻ ⊕ 𝐵 ൌ 𝐴. If 𝐵 ൌ 0, we are done. If 
0 ് 𝐵 ↪ 𝑁, there exists 0 ് 𝑡 ∈ 𝐻𝑜𝑚ோሺ𝑀, 𝑁ሻ such that 0 ് 𝑡ሺ𝑀ሻ ↪ 𝐵. By 
assumption, 𝑡ሺ𝑀ሻ is an injective and we have 𝑡ሺ𝑀ሻ is a direct summand of 𝐵. 
Thus, there exists 𝐶 ↪ 𝐵 such that 𝑡ሺ𝑀ሻ ⊕ 𝐶 ൌ 𝐵. Continuous in this process 
we have 𝐴 ൌ ∑ 𝑠ሺ𝑀ሻ𝐴௦∈ு௢௠ೃሺெ,ேሻ . Therefore 𝑁 is an 𝑀-generated module. 
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Corollary 2.11 Let 𝑀 be a slightly compressible module. If every 𝑀-cyclic 
submodule of 𝑀 is an injective then 𝑀 is a self-generator. 
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