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Abstract. This research investigates earth structure beneath the Southwest North 

America landmass, especially between Mexico and California. Models based on 

S wave velocities for this area were obtained by carrying out seismogram fitting 

in time domain and three Cartesian components simultaneously. The data used is 

from an event, coded as C052297B that occurred in the state of Guerrero, 

Mexico and it was fitted to synthetic data computed with the GEMINI program 

at TS network stations.  Earth model IASPEI91 and SPREM were used as input 

to create the synthetic data.  Real and synthetic seismograms were subjected to a 
low-pass filter with a frequency corner of 20 mHz. 

Waveform analysis results show very unsystematic and strong deviations in the 

waveform, arrival times, amount of oscillation and the height of the wave 

amplitude. Discrepancies are met on S, Love, Rayleigh and ScS waves, where 

the stations epicentral distances are below 300. Deviation in analysis waveform 

because of the usage of model 1-D of SPREM and IASPEI91, because the 1-D 

was a kind of average value an elastic property at one particular depth of global 

earth. With the method of waveform analysis we can see how sensitive 

waveform is to structures within the layers of the Earth. 

To explain the discrepancies, a correction to the earth structure is essential. The 

corrections account for the thickness of the crust, speed gradient of h, the 

coefficient for the h and v in the upper mantle for surface wave fitting, a small 
variation of the S speed structure at a layer under the upper mantle above 771 km 

for S wave fitting, and a small variation at the base the mantle layers for ScS 
wave fitting.  At some stations, a correction for S speed structure have yielded P 

wave fitting.  

Results of this research indicate that the 1-D earth model obtained through 

seismogram fitting at every hypocenter-observation station pair is unique. The S-

wave velocity on the upper mantle has strong negative anomalies. This paper 

criticized the previous earth models in the same area, which have been published 

by other seismologists, by analyzing the seismogram of C052297B earthquake in 

the TS seismological network station  
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1 Introduction 

On May 22, 1997 an earthquake with moment magnitude (Mw) 6.5 occurred in 

Guerrero, Mexico, coded as C052297B. Such moderate earthquake put already 
into vibration the whole content of the Earth and as a result sensitive equipment 

on the surface of the planet can measure them. Ground movement is measured 

using a seismometer at a receiver station.  A signal in the form of displacement, 
velocity or acceleration [mm, mm/s or mm/s

2
] becomes Voltage (mV), and 

eventually is recorded as time series data.  The data can be represented as a 

seismogram, which consists of complex wave phases that occur as a result of 
reflections and refractions within the body of the Earth.  This shows the 

existence of a difference in the elastic parameter of the layers on an Earth 

model. Wave propagation from the earthquake source to the station overcomes 

various interfaces, which results in overlapped wave phases on the seismogram. 

Analyzing quantitatively the seismogram is to measure the arrival time of 

especial wave phase, arrival time difference, and polarity of the P wave, the S/P 

ratio amplitude, and the relation between phase/group speeds by 
period/frequency at surface waves, the so-called dispersion analysis. The easiest 

arrival time to note is the onset of the P wave. The arrival time of subsequent 

phases, such as the S wave is not so easy to measure, because the frequency 
content becomes lower and the wave phase overlaps.  

The travel time of certain wave phases can be used by seismologist to derive 

Earth models, like SPREM [1], IASPEI91 [2] and AK135 [3]. These models, 

either global or regional, can tell us something about the earthquake source, 
either the hypocenter or origin time of the earthquake and the earthquake 

mechanism. 

Using one of these models the travel time of various wave phases between 
hypocenter and station can be computed. This arrival time is used as a guide to 

identify the wave phase in seismograms. Using a time curve and the time 

difference between some main phases, the epicentral distance can be 

determined. Using data of observation stations that are around the epicenter, the 
location of the earthquake epicenter can be determined [4, Ch. 4]. 

Data obtained by the hypocenter-station pair and the various wave phases from 

thousands of earthquakes during tens of years can reach the amount of millions 
of data points.  Earth models, like IASPEI91 and SPREM benefit from having 

better resolution by the addition of more data.  As opposed to the P wave travel 
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time data, the S wave data is scarce [1].  Elastic parameters are obtained through 

travel time method of P and S wave velocities. Correctness of P wave speed 

structure is better than structure of those based on S waves, because the record 

keeping of S wave arrival times are more difficult due to the lower frequencies 
of S wave. Other elastic parameters, such as mass density, quality factor of 

damping and anisotropy are obtained by using methods of dispersion analysis of 

surface wave. 

There are various method of computing travel times [5-7] that can be applied to 

obtain the structure of P and S wave velocities in 1, 2 or 3-D Earth model, 

whose earth structure and heterogeneity in the mantle, and the structures of S 

speed near the CMB and core are analyzed through the travel time of SKKS 
waves. Such wave phase can be observed at station with epicentral distances 

greater than 83
0
 [8, 9]. 

Tomography is a dispersion analysis method, where observed data measures the 
relation between phase/group velocities to frequencies/periods. There are 

various methods to measure the dispersion curve, for example Multiple Filtering 

Technique [10], which matches the phases for the insulation of basal mode of 
surface wave [11].  Inversion is carried out with the goals to get the fitting 

between observed and predicted group velocities. From this fitting, a more 

detail 1-D or 3-D model of the Earth can be obtained [12-15]. 

Both methods to obtain the earth models are obtained by evaluating only a little 
information of the seismogram. This research analyzes the waveform in the time 

domain with three components simultaneously, where the all relied information 

in the seismogram is analyzed. It will be shown how sensitive a waveform is to 
structure of an Earth model by covering structures of speed and anisotropy 

within the Earth.  This research also shows at what depth the layers meet the 

vertical isotropy in the Earth model.  The standard Earth model that is often 

raised as a reference by all experts in seismology is IASPEI91 and SPREM (but 
we used the anisotropic version of SPREM, so called as PREMAN) is shown in 

Figure 1. 
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Figure 1 Standard Earth models: The isotropic IASPEI91 and the vertical 

anisotropic SPREM (PREMAN) up to 1000 km depth. 

This study tries to answer the following question: Although the seismogram 

analysis is carried out with a corner frequency of 20 mHz, are standard earth 
models obtained by evaluating a small amount of information on a seismogram 

and yet return a synthetic seismogram with three components similar to the 

observed one? 

We approach the method of exploiting the overall information on the 

seismogram in the time domain and the three Cartesian components 

simultaneously.  This method differs from other tomography methods carried 
out in the same area (Central America, [12]), which have been done based on 

the analysis of P and S wave arrival times [16] and the dispersion analysis, 

which are specifically done at vertical component of Rayleigh [14, 17] and 

Love waves separately [18]. This paper criticized the earth models in the same 
area (Central America), which have been published by other seismologists. The 

used data is the seismogram of C052297B earthquake in the TS (TERRAScope) 

seismological network station. 
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The method of simultaneously analyzing the seismogram in time domain with 

three components is the best approach [4]. On the contrary the other 

seismologists use the data, where they were evaluated only at some points in the 

seismogram (travel time and dispersion data). The synthetic seismogram is 
computed with the GEMINI program [19, 20], where the input is a completely 

elastic Earth model, hypocenter depth, the CMT solution of an event 

C052297B, and the location of the observing stations. In order to compare the 
synthetic and real seismogram in the same units, the file response from the 

observation station was used. Seismogram data was downloaded from the 

Incorporated Research Institutions for Seismology website (IRIS, 

http://www.iris.edu). 

2 Research methodology 

Every earthquake yields ground movement any station can record its three 
Cartesian component (N-S, E-W and vertical Z) known as channels with the 

suffix – E – N & -- Z. The location of the earthquake epicenter is in Guerrero, 

Mexico, with coordinates 18.68
0
 North Latitude and 101.60

0
 West Longitude 

and 55.5 km depth.  To dissociate the component of the ground movement in 
direction of transversal and radial movements, the horizontal area formed by the 

orientation of the local N-S and E-W at the observation station have to be 

rotated, in such a way that the rotating angle is between the local 'North' and the 
direction of a small arc from the station to the epicenter (back-azimuth). 

Rotation on the horizontal plane is needed to dissociate the movement due to 

the wave propagation mode of P-SV and SH wave. 

To obtain the synthetic wave phases, program TTIMES is used to compute the 

travel times calculations. Program TTIMES is based on the article from Buland 

and Chapman [21], which can be obtained from http://orfeus.knmi.nl. 

The calculation of synthetic seismogram is based on the GEMINI method [19, 
20]. This method is equivalent to the method of Mode Summation, except the 

free variable is complex frequency not the real frequency only, but the corner 

frequency can be set to an arbitrary frequency. When running the program, an 
Earth model, either IASPEI91 or SPREM is given as input. The elastic 

parameters of the model contains data that describes the structure, density, 

quality factor,  and , which are essential for computing the propagation of the 
compression and shear waves. 

GEMINI, stands for Green’s function of the Earth by MINor Integration, is a 
program to calculate the minors of the Green functions for an earth model and 

for a certain depth of earthquake source. The green’s functions are expanded 

(integrated) by fulfilling the physical conditions in the returning point of wave 

http://orfeus.knmi.nl/
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(the deepest point in wave propagation), the depth point of source and the 

border conditions in the earth surface. The expansion is written using the 

independent variable as a complex frequency by inserting a trick damping (  + 

i ) to avoid time aliasing. The earthquake tensor moment detailed in the third 
line of the CMT (Centroid Moment Tensor) solution was used to calculate the 

coefficients of Green’s function through the accomplishment of the Cramer rule 

on the Green’s function. The right side of linear equations is the coefficient 
series of the tensor moments. The coordinate of earthquake source was put as 

the North Pole, and the coordinate of the observation station was changed into a 

form of epicentral and azimuth angle. The spherical harmonic function was 
developed with these two angle values. The DISPEC program (belongs to 

Gemini Package) reads the Green’s function that has been outputted by 

GEMINI program and forms a multiplication with the coefficients of expansion 

on the Moment Tensor and the spherical harmonic function and then sums 
them, resulting the synthetic seismogram in the complex frequency domain. The 

GEMINI package has taken into account the earth model, focal mechanism and 

moment of the earthquake. The MONPR program (GEMINI Package) 
transforms the synthetic seismogram from the complex frequency domain into 

the time domain. The measured and synthetic seismograms were subjected to a 

Butterworth low-pass filter. The inverse RESPONSE file from the seismometer 
equipment system on the receiver station was imposed to the measured 

seismogram, i.e. the description about the phase change and the amplification of 

the equipment system while changing the input of the land-movement in 

velocity/acceleration into the output Voltage. The horizontal component of the 
measured seismogram should be rotated with the X axis (East-West canal) was 

directed to the small arch formed by the observation station of the earthquake 

source (back-azimuth), refer to Figure 1. The purpose was to decompose the 
wave movement in 3-D space into the components of P-SV and SH. Therefore 

the synthetic and measured seismograms were compared in the same unit and 

movement direction.  

Elastic parameters in the IASPEI91 earth model are not as complete as those 
contained in the SPREM earth model.  Therefore, the elastic parameters, which 

are not owned by the IASPEI91, are loaned from SPREM model. 

The amount of data in the time domain seismogram comparison with three 
components is on the order of thousands, hence, a change made on the crust, the 

speed of the gradient, and the zeroed order coefficient value in the speed 

polynomial are conducted through a trial and error method. 
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Figure 2 Ray paths from epicenter to stations CALB, CMB, DGR, SBC, VTV 

and SNCC. 

3 Results and Analysis 

This study analyzed the seismic data from the May 22, 1997 Guerrero, Mexico 

earthquake at stations CALB, CMB, DGR, SBC, SNCC and VTV (Figure 2). 

Figure 3 shows a comparison between observed and synthetic seismograms. 
The figure lower portion shows a seismogram comparison between the 

synthetically computed seismogram, computed with SPREM, and the upper set 

is from IASPEI91 earth model. To identify the wave in seismogram, the travel 
time of some wave phases is used, which is calculated by TTIMES program 

from IASPEI91 earth model (expressed as vertical lines in the figure). A set of 

picture consists of three traces; the lowest trace shows the vertical movement in 

z component, the middle is for radial component and uppers is for transverse 
component. The abscissa axes is the time after the Origin Time, the tick marks 

distance is in minutes, while ordinate axes is to express the amplitude 

comparison. 
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     (a)            (b) 

Figure 3 Seismogram comparison in observation station SBC between data and 

synthetics that are from SPREM and IASPEI91. Time window: (a) P wave; (b). 
S, L and R Wave. 

It will be shown, how is the seismogram analysis if carried out with the corner 

frequency of low-pass filter set at 20 mHz. Seismogram Data is property of 

station SBC, where the station's epicentral distance is 22.4
0
. Figure 3 presents 

seismogram comparison between data and synthetics, where lower picture set is 

formed from SPREM and upper is IASPEI91 earth model. Figure 3a shows 

seismogram comparison between data and synthetics at time window of P wave. 

It can be seen, that a P waveform from IASPEI91 arrives 8 seconds early than 
the real P waveform, but the synthetic P repetitive waveform that arrives on 7 

minute, has bigger amplitude than the real P repetitive. Meanwhile that 

synthetic P waveform from SPREM shows 4 s early arrival time than the real P, 
while the synthetic from SPREM in 7 minute arrives much early. There is no 

notation for this wave phase, is not given by program TTIMES, but this phase is 

clearly not the PPP wave, because due small epicentral distance, the arrival time 

this PPP phase arrives not far from PnPn wave arrival. This is also not from the 
earth core reflected PcP wave, because the arrival time starts to come in 8'46". 

Thereby, GEMINI method used to calculate the synthetic seismogram give the 

complete seismogram for all wave phases. Figure 3b shows seismogram 
analysis at time window of S wave until the surface wave. Seismogram analysis 

on the synthetic seismogram from SPREM in z component shows that this 

synthetic arrives earlier than the real S, while the synthetic S from IASPEI91 
arrives much earlier. For a while on t component the synthetic S from SPREM 

shows a relative good arrival time, whereas synthetic SH phase from IASPEI91 

arrives earlier than real SH. Further analysis is done on Love surface wave. It 

can be seen, that waveform from synthetic Love from SPREM approaches well 
the real Love waveform, but the synthetic Love arrives earlier than the real 
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Love, while waveform from IASPEI91 gives a bigger amplitude and longer 

oscillation. Perception is by the waveform comparison at Rayleigh wave, it 

shows that the synthetic from both standard earth models deviates far away 

from the real Rayleigh wave. The arrival time of the main oscillation disagrees 
with the real data till 27 second.  This is big enough, because epicentral distance 

is only 22.4
0
 and this is also bigger than the other arrival time difference. 

After observing some deviations that met by seismogram comparison above, 
research problem has aim to achieve the fitting at surface wave, because this 

wave propagates on shallower earth layers, that is covering the arrival time and 

oscillation amount at Love wave and arrival time of Rayleigh wave. Surface 

wave propagates long as the earth surface tills a depth which its deepness is 
equivalent to the surface wavelength [22]. Therefore the speed structure in 

upper mantle will be altered, in such a way till the fitting between seismogram 

observation and synthetic is achieved. Besides, it will be seen whether 
corrective result at structure of S wave velocity at deeper layers will give the 

fitting at S wave. It will further be investigated, whether the structure of S-wave 

velocity will give the contribution for the repair at P wave, it will be shown at 
following analysis. 

The earth model IASPEI91 is formed only from travel time data so that elastic 

parameters yielded are only speed of P and S wave. It is a surprise, that earth 

model IASPEI91 can give the better fitting than SPREM model on Love wave, 
whether this effect comes only due to difference in earth crust thickness. Beside 

that the earth model IASPEI91 is in the form of isotropic earth, though 

seismogram comparison at surface wave explains self, that anisotropic earth 
model shall to be used to execute the inversion of both surface wave 

simultaneously. Therefore further seismogram comparison are relied on 

seismogram synthetic yielded from an anisotropic earth model SPREM and 

corrected earth model. 

Speed correction is done at upper mantle layers, where changes cover the usage 

of positive gradient for the h and zero order coefficient of polynomial speed 

function for the h and v in upper mantle layer, while speed gradient for the v 
let like initially as SPREM model. Result from this correction can be seen at 

Figure 4a for the time segment of P wave, where synthetic P from the corrected 

earth model has the arrival time which is equal as real P, as well as waveform of 
P repetitive that can be good simulated. Nevertheless is the real wave phase 

which arrives at the minute 7'48", is still difficult to simulate, because 

correction is only done on S-wave velocities only. This is the topic for other 
seismologist to explain this P repetitive wave. 
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         (a)             (b)   

      

         (c)              (d)   

Figure 4 Seismogram fitting in observation station SBC in time window of: (a) 

P; (b) S, L and R; (c) ScS; (d) ScS2 wave. 

Figure 4b shows seismogram comparison at time window of S wave till 

Rayleigh wave. It is interesting that fitting at all of wave phase is achieved, 
starting from wave S, and Love wave till Rayleigh wave and at three Cartesian 

components simultaneously. Fitting to the Rayleigh wave at z and r components 

are done only by altering the zero order coefficients of speed polynomial 

function, the v in upper mantle, while for the Love wave the corrections cover 
the gradient and zero order coefficients. To correct the S wave is a speed change 
on layers till 771 km depth, where the order of corrections is very small, below 

0.5%. But corrections for the h and v requires the differently values, because 
the delay of synthetic SV and SH is differ. This indicates that the anisotropy is 

also met on layers below the upper mantle till 771 km. Figure 4c and 4d show 

seismogram analysis seismogram on ScS and ScS2 wave. It can be seen that 
synthetic ScS waveform from corrected earth model fits well the real ScS 

waveform. To achieve this fitting is a speed correction v and h till CMB also 
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conducted. Corrections on v and h in upper 771 km give small repair on depth 

waves. Therefore corrections are continued on S wave velocity in the base 
mantle. Waveform analysis on the ScS waveform at epicentral distance as so 

small as this, gives new road to investigate the structure of S speed from CMB 

till upper mantle. The ScS and ScS2 waveform analysis gives the better method 
compared to method of differential travel time of SKKS and S-SKKS wave, 

where with this method is the speed structure in the near of CMB investigated, 

that needs the observation stations with big epicentral distance [8, 9]. 

      

         (a)           (b)   

Figure 5 Seismogram fitting in observation station CALB: a. Analysis using 

SBC earth model; b. Analysis using CALB earth model. 

Next will be shown, how is the seismogram analysis at station CALB, First the 

obtained earth model between epicenter and station SBC is input for GEMINI 
program, but then the seismogram analysis is in CALB station carried out. 

Figure 5a gives illustration for the seismogram comparison. It can be seen, if we 

pay attention only on the spheroidal components, that waveform fitting is still 
achieved, where Rayleigh wave in z and r component are nicely fitted, as well 

as the good fitting of Love surface wave. But synthetic SH wave, neither from 

SPREM nor from corrected model, arrives later than the real SH wave. 

Correction is then carried out on the structure of speed h on layer below the 



120 Bagus Jaya Santosa 

upper mantle till depth of 771 km. Figure 5b shows the obtained fitting at SH 

wave. We can see that the arrival time in SH oscillations till Love wave is better 

simulated, but the synthetic amplitude height is lower than the SH real 

waveform. The difference on h speed structure below the upper mantle 
between this two observation stations, SBC And CALB show the indication that 
anisotropy and heterogeneity are not only occurred in upper mantle but on 

deeper layers till depth of 771 km. 

     

 (a)            (b)        (c) 

Figure 6 Seismogram fitting in observation station DGR, time windows of: (a) 
S, Love and Rayleigh wave; (b) ScS wave; (c) ScS2 wave. 

Figure 6 presents seismogram analysis on various wave phases in DGR 

observation station. The earth model from each couple epicenter -- observation 

station is unique; it differs from earth model for the station of SBC and CALB. 
Figure 6a shows very well fitting for time window from S wave till Rayleigh 

wave. It can be seen that the bending of waveform curve in time of 9'28" is 

better simulated, where this is not reached by the synthetic seismogram from 

SPREM model. In the spheroidal components in the time window from the SV 
wave till the Rayleigh wave is also better fitted by corrected seismogram. 

Figures 6b and 6c show seismogram comparison for the wave phase ScS and 

ScS2 in DGR observation. The earth model obtained for the fitting of Love and 
Rayleigh wave and S wave, where the correction is by gradient change in upper 

mantle and zero order coefficients of speed function in each layer till depth of 

771 km achieved. To complete the fitting on these depth phases is a small 

change values in the speed function for the layers in base mantle also carried 
out. The waveform fitting is for these depth phases then achieved, which the 
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method of waveform comparison in domain time has the excellence advantage 

than method of differential travel time [23]. 

    

         (a)              (b)   

Figure 7 Seismogram fitting in observation station VTV, times windows for a. 

S, Love and Rayleigh wave; b. ScS wave. 

Hereinafter we analyze the seismogram recorded by observation station VTV 

for some time windows that is S wave, Love and Rayleigh wave and ScS wave 

as illustrated in Figure 7. Figure 7a shows seismogram fitting for a time window 

from S wave till Rayleigh wave. It can be seen, that the SPREM synthetic Love 
wave has the arrival time, which is earlier than the arrival time of real Love, but 

the waveform of both seismogram deviates far away. The same phenomena can 

we also observe that SV wave from SPREM deviates far from the real data. Let 
we pay attention that resulted fitting between synthetic seismogram from 

corrected earth model and data seismogram is achieved, that this happened from 

SH wave till Love wave as well as from SV wave in both z and r components 
till Rayleigh wave. Figure 7b presents seismogram comparison at ScS wave. It 

is true that ScS synthetic waveform from SPREM has already the correct arrival 

time as the real ScS wave. On corrected earth model it is known that the S speed 

structure on layers till depth of 771 km has to be corrected to obtain the fitting 
on S wave and surface wave. By so such structure to achieve the fitting on ScS 

wave the values in layers of mantle base also have to be altered, in such a way 

till fitting in ScS wave is also obtained. 
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        (a)                     (b)           (c) 

Figure 8 Seismogram fitting in observation station CMB, time windows for a. P 

wave; b. S, Love and Rayleigh wave; c. ScS wave 

The Figure 8 gives illustration about seismogram comparison in observation 

station CMB on time windows of P, S, Love and Rayleigh wave and ScS wave. 
Waveform comparison at phase of S wave let we see in the Figure 8b. Let we 

pay attention on the S wave at three components simultaneous. SH and SV 

waves in z component can excellently be simulated by seismogram from 

corrected earth model, but the fitting on SV wave on r component is not 
simultaneously achieved. By a vertical anisotropy earth model is the S speed 

with two parameters presented that are h and v. These two values are 
insufficient to explain the deviation that occurred in three S components 

simultaneously. The synthetic Rayleigh wave from SPREM earth model arrives 

more early than the real Rayleigh wave, so that correction for the zero order of 
coefficients has to take a negative value in upper mantle. The Figure 8c shows 

waveform analysis for ScS wave phase. Correction on speed structure is needed 

because synthetic ScS wave from earth model SPREM arrives later than the real 
ScS. Mean a while the observation on S wave shows that the synthetic S wave 

from SPREM arrives earlier than the real S wave. These two phenomena are 

contrary, so that the correction value for the layers in upper mantle till depth 
771 km takes negative value and for the layers at base mantle takes a positive 

value. The achieved fitting in ScS wave can we see on this figure. Figure 8a 

shows waveform comparison on P wave. Let us see that the correction on S 

speed structure brings repair for the P wave. 
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The Figure 9 presents seismogram comparison in observation station SNCC. At 

minute 9'40" let we pay attention that the synthetic waveform from SPREM in t 

component has shown a weak/flat waveform bending, as the waveform moves 

from S wave to Love wave. The corrected waveform simulates this bending 
excellently, as illustrated in Figure 9. The entire waveform from S wave till 

Love wave on t component can be better simulated. Meanwhile at z component 

we can see, that the real waveform, from S wave till the end of Rayleigh wave, 
can theirs arrival times better be simulated by the corrected seismogram, but not 

the amplitude height. The wave can be analyzed only till the surface wave, 

because the data quality in later time window is low. 

 

Figure 9 Seismogram fitting in observation station SNCC, time window for S 

wave, Love and Rayleigh wave. 

The Figure 10 shows seismogram analysis and fitting in observation station 
HKT. The epicentral distant this station is 12.4

0
, short enough that there is a big 

possibility to see the clear ScS wave phase. We start first with the analysis on P 

wave (the Figure 10a). It can be seen that the good fitting of P wave in r 
component is achieved, but at z component the synthetic P arrives little later 

than the real P. This is the contribution from structure of S speed S at fitting of 

P wave. To repair the delay in z component of the P wave furthermore, we need 
that the earth model should with an anisotropy model. 

 



124 Bagus Jaya Santosa 

      

             (a)             (b)   

      

         (c)         (d)   

Figure 10  Seismogram fitting in observation station HKT, time windows a. P 

wave; b. S, Love and Rayleigh wave; c. ScS-r wave; d. ScS-t wave. 

The Figure 10b shows seismogram analysis and fitting in time window of S 
wave, Love and Rayleigh surface wave. It can be seen that good waveform 

fitting can only be reached from S wave till the main maximum of the Love 

wave, but the end oscillation of the Love wave cannot be achieved. Good fitting 
on main oscillation of Love wave is reached by change of earth crust thickness 

(Moho Depth), but remain cannot repair the amplitude height on end oscillation 

of Love wave. At the fitting of Rayleigh wave let we pay attention that the 
Rayleigh wave does not react significantly to the change of Moho depth. The 

Figure 10c shows seismogram fitting that occurred on ScS wave in r 

component. To achieve the fitting on the S mantle wave, the S-wave velocity 
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structure in the upper 639 km has corrected. But this correction doesn’t bring 

any repair on the ScS wave phase. So that the fitting is continued by the change 

of S speed on v component in the base mantle, so that this fitting is achievable. 
At this picture can we also see that synthetic wave ScS in t component t arrives 

earlier than real ScS. The Figure 10d shows the correct arrival time of synthetic 

wave ScS in t component. This fitting is obtained by altering the value of v. If 

the value of v as for Figure 10c is defended, change at h in the base mantle 
does not bring the influence at fitting of ScS wave in t component. The 

difference of v and h values in the base mantle shows that the anisotropy is 

also occurred in the base mantle. This is the question for the speed model of  
in the base mantle. 

 

Figure 11     Seismogram fitting in observational station GSC, time window of 

S, Love and Rayleigh wave. 

The Figure 11 presents seismogram analysis and fitting in station GSC. It can 

be seen in minute of 9'55" that the synthetic waveform from SPREM has no 
small bending, while synthetic waveform from corrected gives the bending as 

good as the real waveform. At z and r components we see the good fitting at 

both SV wave. The fitting on both kind of surface wave Love and Rayleigh can 

better be achieved by synthetic waveform from corrected model. 
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From the series of Figures 4 – 11 above we have seen how far the deviation is 

by seismogram comparison between data and the synthetics one from standard 

earth model, if the analysis is carried out in time domain and three Cartesian 

components simultaneously. Although corner frequency of a low pass filter is 
set at 20 mHz, in the reality the waveform comparison give indication that the 

waveform is very sensitive to earth model. The obtained correction to the 1-D 

earth model in every couple of epicenter – observation station is unique. To 
obtain the S speed structure is waveform analysis in time domain gives better 

method than by noting the arrival time of S wave, which the measurement is not 

so easy due lower frequency and in the noisy time series. The method of 

dispersion analysis measures the indirect data from seismogram that is 
dispersion curves for the phase/group velocity to frequency. These kinds of data 

were intensive usable by seismology to determine the earth model.  

Table 1 shows the zero order coefficients of SV and SH velocity functions from 
two stations, SBC and DGR. If we compare the values of SV and SH in earth 

radius from 3480 km (Core Mantle Boundary, CMB) to 6291 km, these two 

stations have different values for the same earth layer. The same values are 
occurred only on the lower and upper crust, but the thickness of earth crust 

below these stations is different. 

Table 1 Zero order coefficients of SV and SH wave velocity of SBC and DGR 

stations. 

SBC DGR 

R SV SH R SV SH 

3480.0  6.9354 6.9254 3480.0  6.9654  6.9754 

3630.0 11.1871 11.1771 3630.0 11.2071 11.1971 

5600.0  22.3659 22.3559  5600.0  22.3859 22.3959 

5701.0 9.9939  9.9939 5701.0 10.0039 10.0039 

5771.0  22.3512 22.3512 5771.0  22.3512 22.3712 

5971.0  8.9496 8.9496 5971.0  8.9496 8.9696 

6151.0 5.6323 5.7632 6151.0 5.6283 5.7502 

6291.0 5.6323 5.7632 6291.0 5.6283 5.7502 

6346.0  4.0000 4.0000 6343.6 4.0000 3.9000 

6356.1  3.3000 3.2000 6356.0 3.3000 3.2000 
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The 6 stations are located quite closely together and the data should reflect the 

differently deep Earth structure.  Any difference in the earth crust below the 

stations are be due to very local differences in the site condition 

4 Conclusion 

Seismogram data from earthquake C052297B, Guerrero, Mexico has been 

analyzed. The seismogram comparison is executed in time domain and three 

components simultaneously, different with other seismological data; travel time 
and dispersion data. Both seismograms were a low-pass filter with corner 

frequency at 20 mHz imposed. In this research the two standard earth models 

are tested through the seismogram comparison using GEMINI program that is a 
program to calculate complete synthetic seismogram. There is unsystematic 

deviation between real and the synthetics waveform from both model of 

standard earth at various phases of surface wave, body waves and depth wave. 

To accomplish the deviation, S speed model in upper mantle is altered to 

positive gradient for S speed and changes in values of zero order coefficients for 

the v and h in the upper mantle and change in earth crust thickness. This 
brings good fitting to surface wave of Love and Rayleigh simultaneously. To 

accomplish the deviation of body wave, the speed model at layers below till 
depth of 771 km is altered in such a way till the fitting at waveform of S wave is 

achieved. To obtain the fitting at depth waves like ScS and ScS2 the speed 

change is till layers in base mantle executed. This method gives new way to 

investigate the S speed structure near CMB using station with small epicentral 
distance. In some station, change of S speed structure S gives the contribution to 

the solving of deviation at P wave. The earth model in this area has strong 

negative anomalies on S wave velocity. Earth models obtained to every couple 
of station – observation station has unique character, from earth crust thickness, 

upper mantle, layers till depth 771 km and layers in the base mantle. This shows 

the heterogeneity and anisotropy of the earth model beneath Southwest of North 
America landmass. 
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