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Polyurethane is a synthetic polymer used in various applications because it has 
the advantage of synthesizing with different polymer materials that have diverse 
mechanical and physical properties due to various polyol and di-isocyanate 
compounds that can be used in synthesis. It is possible to prepare polyurethane 
in different shapes, such as film or hydrogel, with different structures and 
properties, such as water permeability, biocompatibility, and biodegradability, 
according to types of reactants, component ratio, and reaction conditions [3]. 
Generally, polyurethane is a macromolecule containing functional groups of 
urethane (-NHCOO-) in the backbone chain. This functional group is formed by 
condensation polymerization of compounds containing isocyanate and hydroxyl 
groups or between di-isocyanate compounds with polymers containing hydroxyl 
groups on the end side chain, which are called polyol compounds [4-6]. Some 
types of polyol compounds used as a prepolymer to prepare polyurethane are 
polyethers, such as poly(tetra-methylene glycol), poly(propylene glycol), 
poly(ethylene glycol), and polyesters containing terminal hydroxyl groups such 
as poly(ethylene adipate) and poly(propylene adipate), and glycerol adipate 
[7,8]. Di-isocyanate compounds mostly used to prepare polyurethane are 
hexamethylene-1,6-di-isocyanate (HMDI), 4,4-methylen-bis phenyl isocyanate 
(MDI), and toluenil-2,4-di-isocyanate (TDI). Polyurethane prepared by 
polymerization of aromatic di-isocyanate, such as MDI and TDI, has a hard and 
stiff molecule structure and high thermal and mechanical properties [5,6]. 

Polyurethane is now widely used in various applications, for example, as raw 
material for foam, paints, coatings, elastomers, as a packaging material, as well 
as for biomedical and automotive uses. One of the raw materials in the 
manufacture of polyurethanes is vegetable oil. Among the various types of 
vegetable oils, palm oil has great potential to be further developed for raw 
materials of biodegradable polymers because Indonesia is currently the world’s 
largest producer of CPO (crude palm oil) in the world and has the largest land 
area for palm oil cultivation in the world [9,10]. In addition, palm oil is a source 
of renewable raw materials, which has more value than exhaustible raw 
materials like those derived from petroleum (fossil). Moreover, from the side of 
the resulting product, modification of palm oil produces a polymer with various 
applications that can give additional value to agricultural production. 

The long-term goal of this research is to get a plastic material that is easily 
decomposed by microorganisms in nature, either by chemical synthesis or by 
modification of existing polymers, as well as to examine the relationship 
between the chemical structure and the polymer properties, including their 
biodegradability. For this purpose, the present research was focused on the 
preparation of biodegradable polyurethanes as a plastic material for wide use in 
daily life by using palm oil as a source of polyols. This study was carried out in 
two stages. The first stage focused on the synthesis of a prepolymer or polyol 
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through modification and purification of palm oil on various parameters. The 
second stage consisted of the synthesis of poly(urethane) through polymerizing 
polyol and di-isocyanate with or without addition of a chain extender. 

In this study, 9-ethoxy-1,10-octadecanediol as the diol compound obtained by 
modification and purification of oleic acid of palm oil, poly(urethane) and 
poly(urethane-urea) obtained by polymerizing polyol and di-isocyanate with 
ethylene diamine used as chain extender, were characterized. All compounds 
were characterized by chemical structure analysis (FTIR and 1H NMR), 
supported by analysis of iodine number, acid number, and hydroxyl number 
determined by titration, and analysis of thermal properties and intrinsic 
viscosity especially for poly(urethane) and poly(urethane-urea). 

2 Experimental 

2.1 Materials 
Oleic acid, acetic acid, formic acid, and hydrogen peroxide, aluminum tri-
chloride (AlCl3) were obtained commercially from E-Merck Chem.Co. Sodium 
boron tetra-hydride (NaBH4) and 4,4-methylen-bis phenyl isocyanate (MDI) 
were obtained commercially from Aldrich Chem. Co. All above mentioned 
chemicals were used as received without further purification. 

2.2 Modification of Oleic Acid 

2.2.1 Epoxydation of Oleic Acid 
A mixture of oleic acid (0.175 mole) and acetic acid (0.2 mole) in 2.5 g toluene 
as solvent was heated at a temperature of 55 °C. Another solution was prepared 
by mixture of 0.2 mole H2O2 and 0.05 mL concentrated sulfuric acid. This 
solution was added drop-wise to a solution containing oleic acid and then stirred 
for 12 hours at a temperature of 55 °C to produce phase separation between the 
organic and aqueous phase, after which the aqueous phase was separated by 
sedimentation. To neutralize the residual of sulfuric acid, the mixture was 
washed with distilled water, until it had a neutral pH, and decanted to remove 
water. The compound produced by epoxidation of oleic acid was dried in a 
vacuum oven to remove the residual water [11,12]. 

2.2.2 Ring-opening of Epoxide Oleic Acid 
A mixture of ethanol (3.0 mole), p-toluene sulfonate (5% w/w of epoxide oleic) 
as catalyst in 5.0 g toluene was stirred for 15 minutes at 60 °C, and then the 
epoxide oleic (1.0 mole) was added to this solution and stirred for three hours. 
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The mixture was neutralized with distilled water and the residual water was 
removed by decantation and dried in a vacuum oven to produce an ester of oleic 
acid [11,13].  

2.2.3 Reduction of Ester Oleic Acid 
In a separate glass, 0.225 mole NaBH4 and 0.084 mole AlCl3 were dissolved in 
diethyl glycol-dimethyl ether (diglyme) and stirred with a magnetic stirrer. The 
solution of NaBH4 was heated at a temperature of 50 °C, and then 0.4 mole 
ester that had been prepared previously was added into the NaBH4 solution. The 
AlCl3 solution was then added drop-wise to the solution and stirred continually 
for three hours. After the reaction was complete, the mixture was cooled to 
room temperature, and the diol compound formed was separated and dried in a 
vacuum oven [14]. 

2.3 Preparation of Poly(urethane-urea) 
The preparation of poly(urethane) was carried out with various ratios of –NCO 
functional groups of MDI to -OH functional groups of diol compound without 
catalyst [15]. In a separate glass, monomer of 4,4’-methylene-bis (phenyl 
isocyanate) (MDI) and the prepared diol compound was dissolved in N,N-
dimethyl formamide (DMF) and heated at 85 °C. The diol compound solution 
was poured into a glass three-neck, after which the solution of MDI was added 
under continually stirring for 15 minutes. In the last stage, ethylene diamine was 
added to the reaction mixture as chain extender and stirred for one hour at 85 
°C. After reaction was complete, the mixture was cooled to room temperature 
and precipitated in a mixture of water/ethanol (80/20 v/v). The precipitate 
obtained was washed with ethanol and dried in a vacuum oven at 60 °C for 2-3 
days and then compression-molded with a hot press at 150 °C for 5 minutes to 
form a thin film. 

2.4 Characterization of Polymers 
FTIR (Shimadzu 5800) was used to characterize the chemical structure of the 
polymers. The sample used in FTIR was in KBr pellet form. The 1H NMR 
measurement was recorded at 500 MHz on a JOEL JNM-FX 400 spectrometer. 
The sample concentration used in this measurement was typically 0.1% wt/vol. 
The NMR spectrum of the polymers was recorded at 25-30 °C with CDCl3 as 
solvent. Tetramethylsilane (TMS) was used as a reference. A differential 
thermal calorimeter (DTA/TGA) (General Du Pont 2000) was used to determine 
the thermal behavior of the polymers. All scans were carried out from room 
temperature to 550 °C at a heating rate of 10°C min-1. The molecular weights of 
the polymers were determined by viscometer. 
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The oxirane oxygen number of the compounds was determined by titration 
according to AOCS method Cd 9-57. A sample of 0.3-0.5 g was added to a 
solution of 10 mL glacial acetic acid or chlorobenzene (for epoxy resin) and 0.5 
ml violet indicator was added. The solution was then titrated with 0.1 M 
hydrogen bromide (HBr) to form a blue-green solution. The oxirane oxygen 
number can be determined by Eq. (1): 

 
1.60

Oxirane oxygen number (%)  (in g sample)
BxMx

m
=   (1) 

where B = HBr volume required in sample solution titration (mL), M = HBr 
concentration used in titration (M), and m = mass of sample used in titration (g). 

The acid number of the samples was determined by titration according to the 
standard method (ISO 660). A sample of 10-20 g was added to a solution of 50 
mL neutral alcohol 95% (neutralized with NaOH and checked by 
phenolphthalein indicator). This solution was heated for 10 minutes, after which 
3 drops of phenolphthalein indicator were added. The solution was then titrated 
with 0.1 M potassium hydroxide (KOH) to form a pink solution. The hydroxyl 
number can be determined by Eq. (2): 

 
56.1

Acid number
AxMx

m
=   (2) 

where A = KOH volume required in sample solution titration (mL), M = KOH 
concentration used in titration (M), and m = mass of sample used in titration (g). 

The hydroxyl number of the copolymers was determined by titration according 
to AOAC Official Method 965.32. A sample of 0.5 g was added to a solution of 
4 mL acetic anhydride in pyridine, which was prepared in a mixture of 127 mL 
acetic anhydride and 1000 mL pyridine. This solution was heated at 98 °C for 2 
hours, after which 6 mL distillated water and 3 drops of phenolphthalein 
indicator were added. The solution was then titrated with 0.1 M potassium 
hydroxide (KOH). The hydroxyl number can be determined by Eq. (3): 

 
( ) 56.1

Hydroxy number
B A xMx

m

−
=   (3) 

where B = KOH volume required in standard solution titration (mL), A = KOH 
volume required in sample solution titration (mL), M = KOH concentration 
used in titration (M), and m = mass of sample used in titration (g). 

The iodine number is the amount of iodine bound by 100 g of fat and indicates 
the number of double bonds or unsaturated bonds. The iodine value of the 
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sample was determined by titration according to AOAC Official Method 
920.158. A sample of 0.1-0.5 g was dissolved in chloroform or 
tetrachloromethane, 25 mL iodine was added, after which it was placed in a 
dark room. 10 mL solution of KI 15%, 100 mL distillated water, and starch 
indicator were added to this solution, after which it was titrated with a solution 
of Na2S2O3 0.1N until the color of the solution changed from blue to clear. The 
same method was performed for a blank solution. The iodine value can be 
determined by Eq. (4): 

 
( ) 12.69

Iodine value
B A xNx

m

−
=  (4) 

where B = Na2S2O3 volume required in blank solution titration (mL), A = 
Na2S2O3 volume required in sample solution titration (mL), N = normality of 
Na2S2O3 used in titration (N), and m = mass of sample used in titration (g). 

3 Results and Discussion 
Polyol of 9-ethoxy-1,10-octadecanediol obtained by modification of palm oil 
was prepared in three stages namely: epoxidation of oleic acid using 
peroxyacetic acid and sulfuric acid as catalyst to produce an epoxide of oleic 
acid; ring-opening of epoxide on oleic acid using ethanol to yield a 9 or 10 
ethoxy ester of oleic acid; and subsequently reduction of the ethoxy oleic acid 
ester with sodium boron-hydride as reductor and hydrogen chloride as catalyst 
to yield a diol compound of the bio-substrate.  

 

Figure 1 Epoxidation reaction of oleic acid. 

Epoxidation of the oleic acid or palm oil was done by using peroxyacetic acid 
and sulfuric acid as catalyst at 55 °C for 12 hours to form an epoxide of oleic 
acid (3-octyl oxirane octanoic acid) with a maximum yield of 93% (0.175 mole 
in 2.5 g toluene as solvent, 0.2 mole acetic acid, 0.2 mole H2O2 35%, 0.05 mL 
sulfuric acid) (Figure 1). 

The resulting epoxide of oleic acid was analyzed through the change in iodine 
number, oxygen-oxirane number, and retention time (GC), functional groups 
(FTIR), and chemical shift (1H NMR). 
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Figure 2 FTIR spectra of (a) oleic acid and (b) oleic acid epoxide. 

To prove the presence of oxirane ring of oleic acid epoxide, a comparison 
between the FTIR spectra of the oleic acid and the epoxide oleic acid is shown 
in Figure 2 while the 1H NMR spectra are shown in Figure 3. Chemical shifts 
(δ, ppm) 1H-NMR of oleic acid (500 MHz, CDCl3): δ 0.9(3H, -CH3), 1.3(20H, -
CH2-), 1.6(2H, -CH2CH2COO2H), 2.0(4H, -CH2CH=CHCH2-), 2.3(2H, -
CH2COO2H), 5.4(2H, -CH=CH-), and 7.3(1H, -OH). 1H-NMR of epoxide oleic 
acid (500 MHz, CDCl3): 

1H-NMR (500 MHz, CDCl3): ∼δ (ppm) 0.9(3H, -CH3), 
1.2-1.5(20H, -CH2- and 4H, -CH2CHOCCH2-), 1.7(2H, -CH2COO2H), 2.3(2H, 
-CH2COOH), 3.6(2H, -CHOCH-), and 7.4(1H, -OH).  

The FTIR peaks of the epoxide oleic acid indicate the appearance of an 
absorption peak at 694 cm-1, which belongs to the oxirane ring. The intensity of 
the absorption peaks at wavenumber 939 cm-1 for =CH2 groups of oleic acid 
decreased significantly after epoxidation, but the intensity of the absorption 
peaks at wave number around 3250-3600 cm-1 indicating epoxy groups 
increased and widened, and also the presence of chemical shifts of -CH=CH- 
protons and –CH2–CH=CH–CH2- groups in the oleic acid at 5.33-5.34 ppm and 
2.00 ppm (Figure 3a) became 3.47-3.57 ppm and 1.47 ppm after epoxidation, 
i.e.-CH-O-CH- protons and –CH2–CHOCH–CH2- groups, respectively (Figure 
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Figure 4 Ring-opening reaction of oleic acid epoxide. 

 
Figure 5 1H NMR spectrum of 9-ethoxy-10-hydroxy-octadecanoic ethyl ester 
(oleic acid ester). 

This interpretation was supported by the chemical shift analysis by 1H NMR 
(Figure 5). Chemical shifts (δ, ppm) 1H-NMR of 9(10)-ethoxy-10(9)-hydroxy-
octadecanoic ethyl ester (500 MHz, CDCl3): ∼δ (ppm) 0.9(9H, -CH3), 1.3(20H, 
-CH2-), 1.4(2H, -CH2CHOCH2CH3), 1.5(2H, -CH2CHOH), 1.6(2H,-
CH2CH2CO2CH2CH3), 2.3(2H, -CH2CO2CH2CH3), 2.8(1H, -CHO CH2CH3), 
3.7(2H, -OCH2CH3), 4.1(H, -OH), 4.3(H, -CHOH), and 4.5(2H, -CO2CH2CH3) 
[17]. The appearance of new peaks in the 9-ethoxy-10-hydroxy-octadecanoic 
ethyl ester at a chemical shift of 0.80-1.00 ppm (multiplet) can be seen as three 
triplet peaks of -CH3, derived from two methyl protons in the ethoxy group and 
protons in the methyl group (-OCH2CH3 and -CH3), 4.35 ppm from ethyl 
protons in the ester group (-COOCH2CH3), and 3.62-3.64 ppm from ethyl 
protons in the ether group (-COCH2CH3). 

Reduction of oleic acid ester was done by using sodium boron-hydride 
(NaBH4), aluminum chloride (AlCl3), and hydrogen chloride as catalyst at 50 
°C for 3 hours because hydrogen chloride is easier to handle and is not reactive 
to water (0.225 mole NaBH4 and 0.084 mole AlCl3 in ethylene glycol-dimethyl 
ether as solvent, in a separate glass, respectively, and 0.4 mole oleic acid ester) 
(Figure 6). 
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The FTIR spectra of 9-ethoxy-1,10-octadecanediol exhibit peak intensity of 
hydroxy groups at 3450 cm-1 (Figure 7b) and a new absorption peak appeared 
around 3228.6 cm-1, which is a typical absorption peak of asymmetric stretching 
of the -OH group (Figure 7b), whereas new absorption peaks disappeared 
around 2673 cm-1 and 1708.9 cm-1, which are typical absorption peaks of the –
COOH or the –COOCH- group and stretching vibration of the –C=O group, 
respectively. These results indicate the change of 9-ethoxy-10-hydroxy-
octadecanoic ethyl ester to produce 9-ethoxy-1,10-octadecanediol. This result 
was supported by analysis of the hydroxyl numbers before and after reduction of 
oleic acid ester determined by titration. The hydroxyl number for 9-ethoxy-10-
hydroxy-octadecanoic ethyl ester is 145.6 mg KOH/g, and after reduction by 
using NaBH4/AlCl3, and HCl produces 9-ethoxy-1,10-octadecanediol, which has 
a hydroxyl number of 322.0 mg KOH/g.  

3.1 Poly(urethane) and Poly(urethane-urea) 
Poly(urethane) as a prepolymer was obtained through polymerization of 9-
ethoxy-1,10-octadecanediol and 4,4-methylen-bis phenyl isocyanate (MDI) 
under nitrogen atmosphere with a mole ratio of –NCO functional group of MDI 
to -OH functional group of the diol compound 1.3/1(mole/mole) in the absence 
of a catalyst at 85°C for 15 minutes, whereas poly(urethane-urea) was prepared 
by addition of ethylene diamine (EDA) as chain extender to poly(urethane) with 
a mole ratio of –NCO/-OH/EDA = 1.3/1.0/1.0. The mechanism of polymerizing 
polyol and 4,4-methylen-bis phenyl isocyanate with ethylene diamine used as 
chain extender to produce poly(urethane-urea) is shown in Figure 8.  
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Figure 8 Mechanism of polymerizing 9-ethoxy-1,10-octadecanediol and 4,4-
methylen-bis phenyl isocyanate with ethylene diamine used as chain extender. 
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between 401-525 °C with the remaining carbon at 7.9%. The above results 
show that the thermal stability of poly(urethane-urea) is higher than that of 
poly(urethane) because poly(urethane-urea) has a longer chain than 
poly(urethane), which allows interaction between molecules in the form of 
higher hydrogen bonds. 

The analysis of the chemical shift in 1H NMR spectra can be confirmed by the 
chemical structure of polymers analyzed by FTIR spectroscopy. Based on 
Figure 10 the proton signals associated with chemical shift values (δ) of PU and 
PUU can be seen, and most proton signals of both polymers have almost the 
same chemical shift because both polymer molecules were synthesized from the 
same materials, such as 9-ethoxy-1,10-octadecanediol as a polyol compound 
and 4,4-methylen-bis phenyl isocyanate (MDI) as a di-isocyanate compound. 
The difference between both polymers lies in the existence of several signal 
peaks that appear in the 1H NMR spectrum of PUU, which are not visible in the 
1H NMR spectrum of PU. In the 1H NMR spectrum, PUU peaks at the chemical 
shift were observed at around 5.9 ppm, which are attributed to a ––
C(O)NH(CH2)2NH(C(O)– proton and the chemical shift around 2.7 ppm is 
associated with a –C(O)NH(CH2)2NH(C(O)– proton. The existence of two 
signal peaks appearing in the 1H NMR spectrum of PUU indicates the formation 
of urea bonds in the PUU, which were formed by interaction between the PU 
with ethylene diamine as chain extender. 

 
Figure 10   1H NMR spectra of PU and PUU. 
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Based on the analysis of intrinsic viscosity, poly(urethane-urea) has an intrinsic 
viscosity of 6.44 mL/g, which is higher than that of poly(urethane) (2.19 mL/g). 
This result indicates that the addition of ethylene diamine as chain extender in 
poly(urethane) can improve the molecular weight of the polymer to form 
poly(urethane-urea). 

4 Conclusion 
Poly(urethane) was successfully prepared by polymerization of diol compounds 
(9-ethoxy-1,10-octadecanediol) obtained through modification and purification 
of palm oil and 4,4-methylen-bis phenyl isocyanate (MDI) under nitrogen 
atmosphere at 85 °C, and poly(urethane-urea) was obtained by addition of 
ethylene diamine as chain extender into poly(urethane). The 9-ethoxy-1,10-
octadecanediol was obtained by several reaction steps, i.e. epoxidation of oleic 
acid, ring-opening of oleic acid epoxide, and reduction of oleic acid ester. The 
addition of ethylene diamine as chain extender in poly(urethane) can improve 
the molecular weight of the polymer to form poly(urethane-urea). This result 
was supported by an analysis of the chemical structure by FTIR and 1H NMR 
spectroscopy. The thermal stability of poly(urethane-urea) is higher than that of 
poly(urethane) because poly(urethane-urea) has a longer chain than 
poly(urethane), which allows the interaction between molecules in the form of 
higher hydrogen bonds. 
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