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Abstract. In this study, a transmission model of the Avian influenza disease was
developed and analyzed in view of optimization of vaccination and medical
treatment. The model is a host-vector model. We focussed on control of Avian
influenza, where a vaccination is given to susceptible poultry, while medical
treatment is given to infected humans. In the model, the human population is
divided into four compartments: susceptible humans, infected humans, recovered
humans, and treated humans. Meanwhile, the poultry population is divided into
three compartments: susceptible poultry, infected poultry, and vaccinated
poultry. To analyze the dynamical behavior of the model, we obtained the
disease-free equilibrium, the endemic equilibrium, and the basic reproduction
ratio. Furthermore, a model of the optimal vaccination and medical treatment
schedule was constructed to know the optimal strategy for controlling Avian
influenza. The model can be used to determine the minimal cost of controlling
the disease. The model is solved by a genetic algorithm method. Numerical
simulations showed that effective control of Avian influenza can be achieved
with a combination of vaccination and medical treatment. Likewise, the optimal
schedule and strategy for controlling Avian influenza are shown.

Keywords: genetic algorithm; host-vector model; medical treatment; optimization;
vaccination.

1 Introduction

Avian influenza (H5N1) is an animal disease that can be transmitted to humans
through animals, such as ducks, chickens and other fowl. It is caused by
influenza virus type A [1]. This virus can be classified into two groups: highly
pathogenic Avian influenza A and low pathogenic Avian influenza A [2]. Avian
influenza viruses have three subtypes that are able to transmit the disease to
birds and humans: influenza A H5, A H9, and A H7 [2]. The symptoms when a
human is infected by the Avian influenza virus are indicated by hacking, ague,
coldness, and headache [3].

Avian influenza naturally occurs among poultry but infections with the virus
have recently been detected among humans. The transmission of the disease to
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humans occurs through air contaminated with the Avian influenza virus. It
originates from feces of poultry that suffers from Avian influenza. If the Avian
influenza virus is transmitted to humans, it causes serious problems. In
Hongkong in 1998, Avian influenza attacked humans. Sixteen cases of human
infection by the virus were confirmed and three were suspected [4]. In
Indonesia, humans infected by Avian influenza have been recorded in 151 cases
of whom 52 died [5]. In Vietnam, similarly, 119 cases and 59 deaths have been
recorder [5].

Since Avian influenza can be transmitted from poultry to humans, prevention
programs to control the disease could help to reduce number of the Avian
influenza cases [6]. Intervention programs and case management of Avian
influenza in Indonesia have been implemented, such as maintaining cleanliness,
washing hands after having contact with poultry, cleaning and spraying poultry
cages with disinfectant. In addition, medical treatment and vaccination can also
prevent the spread of the disease. A vaccine for poultry is available but until
now a vaccine against Avian influenza for humans has not been found.
Available drugs for treatment of humans infected with Avian influenza are
Zanamivir and Oseltamivir.

One of the ways to prevent the spread of Avian influenza is vaccination of
poultry and medical treatment of infected humans. Numerous researches have
been conducted to study the behavior of Avian influenza. One of the possible
approaches is through mathematical modeling. Mathematical models of Avian
influenza have been developed to understand characteristics of the disease. A
mathematical model that considers both spatial factors and farm volume has
been developed by Manach, et al. in [7]. An ordinary differential equation
model has been constructed by Iwami in [8]. Iwami’s model was extended by
Gumel in [9]. He developed a model of Avian influenza in which contact
between human and birds (wild and domestic) is assumed and infected humans
are isolated. An optimal-strategy model of Avian influenza has been built by
Jung, et al. [10]. In [11], Vaidya, et al. studied the dynamics of the Avian
influenza virus in wild birds. Martcheva built a model of Avian influenza in [12]
that combines models of humans suffering from influenza.

The present study modeled the pattern of Avian influenza spread with
vaccination and medical treatment. The basic reproduction ratio (R)) was
determined as well as the existence point of endemic and non-endemic
equilibrium. Furthermore, the model of the vaccination and medical treatment
schedules can be used to provide vaccination and medical treatment strategies.
A genetic algorithm is used to find the optimal solutions of the objective
function.



166 Optimal Vaccination and Treatment Schedules

2 Mathematical Model

The mathematical model of the Avian influenza in humans and poultry was
constructed based on the following assumptions. First, the birth rate of the
humans is constant, the birth rate of the poultry is not constant. Second, the
poultry population lives in a livestock area. Third, Avian influenza causes death
in poultry and humans. Fourth, transmission of Avian influenza occurs from
poultry to humans but it is not transmitted from humans to poultry. Fifth,
vaccinations are given to susceptible poultry and medical treatment are given to
infected humans. Sixth, humans and poultry are born in a susceptible state.
Seventh, infected poultry having contact with humans and other poultry results
in infection. Lastly, medical treatment is given periodically.

The mathematical model is based on the transmission diagram shown in Figure
1. Table 1 shows the variables and parameters. The mathematical model of

Avian influenza in human and poultry populations is given in Eq. (1).

Table 1 Variables and parameters.

Symbol Parameter Definition Dimension
Su(t) Number of susceptible humans Human
L) Number of infected humans Human
Ry1) Number of recovered humans Human
Tw®) Number of treated humans Human
Sy(t) Number of susceptible poultry Poultry
1) Number of infected poultry Poultry
V) Number of vaccinated poultry Poultry

A Human recruitment rate Human/Time
A, Poultry recruitment rate Poultry/Time
by, Successful transmission rate for poultry to human 1/Time

b, Successful transmission rate for poultry to poultry 1/Time

a Transition rate of humans from treated humans to susceptible humans 1/Time

B Transition rate of humans from recovered humans to susceptible humans 1/Time

e Transition rate of humans from infected humans to susceptible humans 1/Time

u Natural death rate of humans 1/Time

o Harvest rate of poultry population 1/Time

o Virulence of humans 1/Time

o, Virulence of poultry 1/Time

A Rate of treatment of infected humans 1/Time

& Rate of vaccination of susceptible poultry 1/Time

@ Recovery rate due to treatment -
Yy Cost function of treatment of infected humans 1/human
v, Cost function of vaccination of susceptible poultry 1/poultry
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Figure 1 Transmission diagram of Avian influenza in humans and poultry.
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2.1 Analysis of the Model

2.1.1 Equilibrium Point

Here, we are trying to figure out the equilibrium points in the area that is
denoted by Q, as follows:

Q={S,1,V,S,,I,R,T)eR}.

s Ly Ly

The model has two possible equilibria: the disease-free equilibrium and the
endemic equilibrium. The disease free equilibrium of the model for poultry is

. A EA A
E, =(S,,0,V,S5,,0,0,0)with § =——,V = — ,and S, =—.
O+¢ 0(0+¢) u
b,0
Define, R =—————.
(B+¢)O+0,)

The endemic equilibrium of the Avian influenza model of poultry is
E =(S,1.,V,S,,1,,R, T) with

s po Loty
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Where
B =bp(1-0)o(6+ A+ @)+ p(u+a+A+20))+bu((l-w)o+ u+a)(u+o+y+A)Z
By, =(1-0)d+ u+a)u(u+ p)u+o+y+4).

The endemic equilibrium £, exists if and only if R >1.

Theorem 1. The Avian influenza model has E, =(S,,0,V,S,,0,0,0) as the
non-endemic equilibrium point. It is locally asymptotically stable if and only if

R >1.
Proof. We study the stability of E =(S,,0,V,S,,0,0,0). The corresponding

Jacobian matrix D, is as follows
0

b0
—(0+¢) - 0o 0 0 0 0
0+¢
b 0
0 v -@+5,) 0 0 0 0 0
0+¢
& 0 -0 0 0 0 0
JEO_ 0 —% 0 -u 0 p 0
A,u
bAO
0 — 0 0 —(u+A+d5+y) 0 0
A, p
0 0 0o 0 4 —(u+p) a
0 0 0o 0 A 0 -(0(l-w)+u+a)

Eigenvalues of Jg are

x =-0,
x,=—(0+¢),
X, ==L,
X, =—~(u+p),

x,=—((l-w)o+u+a,
x,=(R -1)(0+3,)),

x,=—(u+o+A+y).
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Observe that a,,b,c;, when R >1. Therefore all of the eigenvalues of /g, are

negative if and only if R <1. This proves Theorem 1.

Theorem 2. The Avian influenza model has E =(S,,1,,V,S,,I,,R,,T)as the

h2>"h>""h?
endemic equilibrium point. It is locally asymptotically stable if and only if
R >1.

Proof. We study the stability of £, =(S,,/,V,S,,1,,R,,T) . The corresponding

h>"h>""h?

Jacobian matrix D, is as follows
1

D, 0
T5=p b |
3 4

where
bIS, blsS, b,S, b1S, b1S
Vv ~— vy _(9+g) _ vy 4 vy > vy >
S, +1,+Vy S +1+V S+ +V (S, +1,+V) S, +1,+V)
D - ___bLS, - bIS, bS, —— blLS, (045 - blS, i
S, +1,+V)y S +1,+V S+ +V (S, +1,+V) (S, +1,+V)
£ 0 12
and
- . -
_7"_# 0 Y;; 0
S, +1,+V
br,,
D, = - —(u+A+65+y) 0 0
S, +1,+V
0 7 —(u+p) a
L 0 A 0 -(6(l-a)+u+a) ]

The eigenvalues of J g are given by the eigenvalues of D, and D,. The
characteristic polynomial of the matrix D, is p(x)=x"+ax’ +ax+a,, where

o0&

0

a,=0(R +1)+0 (R -1)+——(R -1)+&R,,
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2

5 R -1
al:(Rl—l)(35v5+3é‘v0+50+5v2+ ”0‘9+.9J+R1(9+g)—( 17D

R,

(62+5,6),

(R, —DRDBG*(25, +0)
a, = 2 .
R
1

Observe that a,,a,,a, >1 when R >1. Therefore, the roots of the characteristic
polynomial p(x) are negative if R, >1. The characteristic polynomial of the
matrix D, is q(x)=x"+bx’ +bx" +bx+b,, where

(Rl - 1)

b3=4y+y+a+/1+5+(l—a))é‘+,6’+ ,
R
1

(R -1
=

b )(b(a+7/+3,u+/1+ﬂ+(1—w)5)) +eq,

1

R -1
b :u((l—a))b5(ﬂ+l+5+2,u+7)+ba(5+/1+7)+
Rl
2b,u(a+/‘t+7+5+ﬂ+%,u)+bﬂ(/t+25))+c2
(Rl_l)

By = (1= @)bS(uy + B+ uh+ us + S + 1> + 2B +
R
1 5

b,uz(,u+a+y+/1+ﬂ+5)+b,u(ﬂa+25ﬂ+ya+/1a+ﬂﬂ+5a)+/15,B)+c3

c1 =(1-0)o0(0+A+y+3f+6u+a)+pla+A+3u+y)+3uBu+i+a+y)+a(dl+y),

¢y = (1= )S(S + 248 + 24 + 2P+ AP + 1B+ 2uy +34°) +4ps” +
2u(Ap+Pa+Sa+ia+yB+ya+dB)+ o (S+A+y)+ 312 (A+B+a+S+y)
ey =(u+a)l-o)ou(u+p)u+d+y+2).

Observe that a,,a,,a,,a, >0 when R >1. Therefore, the roots of the
characteristic polynomial g(x) are negative if R >1. We deduce that E is

locally asymptotically stable when R, >1. This proves Theorem 2.
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2.1.2 Basic Reproduction Ratio

The basic reproduction ratio is an important parameter in the epidemiology of
infectious diseases. It is defined as the expected number of secondary cases
rising from one infected person who encounters a closed susceptible population
[13]. The notation that is often used for this parameter is R,. It can be obtained
in several ways. In this study, R, was obtained by building a matrix that
generates a number of new infected individuals. This matrix is usually denoted
by K and called Next-Generation Matrix (NGM). NGM is evaluated at the value
of the non-endemic equilibrium point, which is obtained by

b 0
(O+8)0+5 )

bAO
| A4,u(0+5)

The largest eigenvalue of K is
b0
Ry=—Vt—
(O +¢)0+0,)

We know that R, is equal to R; as defined in the equilibrium point subsection.
The vaccination parameter (g) affects the value of Ry. If the Avian influenza is
endemic in poultry, the virus will be endemic in humans. The parameters that
can be controlled to prevent endemic Avian influenza are vaccination and the
harvesting of the poultry.

3 Optimization Model

An optimal vaccination strategy in a deterministic model was introduced by
Hethcote and Waltman in [14]. They developed the model to optimize the
vaccination schedule in an epidemic model. In the present study, the
optimization model describes a vaccination and medical treatment scenario
within a certain period to reduce the number of Avian Influenza cases.
Therefore, there are two control parameters to be considered: the rate of medical
treatment for infected humans (A) and the rate of vaccination for susceptible

poultry (¢).

If the rate of vaccination and medical treatment increases, then the total costs
required to manage the disease also increase. Vaccination and medical treatment
costs are influenced by many other factors, such as labor costs, operational
costs, etc. Therefore, the following objective function was used:
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Aty At, Ar,
Minimize / =, | [ 1,, (Odt+[ 1,, @)dt+...+ [ 1,, (D)t |+
0

Aty At

, 2
At, At, At,
o [S,di+[s, (di+..+[ S, (0
0 Aty At

n-1

where f €R, k is the number of times to deliver the medicine and vaccine at

time ¢ or k= Tm’ A is the duration of the period during which to deliver the
medicine and vaccine, /1j and &, are the rates of medical treatment and

vaccination, ¥, and i/, are the cost functions, 7,, is the number of infected
humans who are given medical treatment at the jth period, and S is
J

susceptible poultry that is given vaccine at the j & period, j=1,2,3,...,n. The
objective function in Eq. (2) has the following constraint:

L)+ R (1) +T(1) < 4,
ax,, 1,(t) < B, 3)

max , [, (t) <C.

Here A, B and C are the maximum numbers of Avian influenza cases. The
mathematical problem to be solved is to minimize Eq. (2) with the constraint in
Eq. (3) satisfying Eq. (1). This problem is solved by a genetic algorithm.

4 Numerical Simulation

This section illustrates the dynamics of an infected human compartment and
scenarios for controlling Avian influenza. The simulation was done using a
genetic algorithm. The values of the parameters and the initial conditions are
given in Table 2. The simulated time period was divided into six periods. For
each period, the initial conditions were obtained from the results of the ending
point of the previous period of simulation. The objective function was
calculated from the integral of susceptible poultry and infected humans
multiplied by the cost function.

The results of the simulation are shown in Table 3 and Figure 2. Table 3 shows
the minimum of the objective function for control of the Avian influenza with
the vaccination and medicine treatment scenario. The total period of time for
vaccination and medical treatment was two years divided into six periods. For
each period, we administered the proper rate of vaccination and medical
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treatment. Based on these results we can apply design scenarios for preventing
Avian influenza infection. For example, during the first period, vaccination was
given to susceptible poultry at a rate of 0.319 per time and medical treatment
was given to infected humans at a rate of 0.748 per time. The vaccination rates
and the medical treatment for the following period were as shown in Table 3.
Therefore, we obtained a cost of 22,398,171 cost units.

Table 2 Initial condition and parameter values.

Symbol Value
Su(?) 900 human
1) 5 human
Rh(z) 0
1) 0
Sy(t) 300 poultry
1) 100 poultry

V() 0

t [0, 24]

u 0.00128 month’
u, 0.0208 month™
b, 0.5 month™

-1

bv 0.7 month

a 0.7 month™
B 0.0417 month™
7 0.03 month™
) 0.3 month™
5\/ 0.6 month™

@ 0.1

A 4

v, 10,000 human’’
v, 15,000 poultry™
A 120 human
B 100 human
C 150 poultry

The dynamics of infected humans are illustrated in Figure 2. In this figure, four
simulated cases are shown, i.e. the infected human population without medical
treatment or vaccination; only medical treatment; only vaccination; with
medical treatment and vaccination.
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Using the scenarios in Table 2, the number of Avian influenza cases were
reduced 36.26% with vaccination and medical treatment, 25.68% with
vaccination only, and 24.72% with medical treatment only. If the budget is
limited, medical treatment is more effective than only vaccination for a short
period. Over a longer period, however, the poultry vaccination scenario
significantly reduces the number of the infected humans. The best result in this
simulation was reached when both medical treatment and vaccination were
given to the host and vector population.

Table 3 Optimization results.

Ati+1 Ati+-l
Objective
i I, dt j s, dt O
Period A I I iy Ve function
At Ay,
0-4 0.748 0.319 820.116 145.099
4-8 0.795 0.449 138.175 81.144
8-12 0.585 0.546 733.676 12.447 22,398,171
12-16 0.637 0.541 63.559 1.556
16-20 0.709 0.502 65.605 0.145
20-24 0.608 0.635 58.079 0.014

250 T T T r
Without vaccination and treatment

—Without treatment

200 — Without vaccination

With vaccination and treatment

150

Population

100

50

Time(month)

Figure 2 Numerical simulation of infected humans.
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5 Conclusions

A model of Avian influenza with vaccination and medical treatment was
developed in this study. The model illustrates the dynamics of Avian influenza
transmission. In it, the human population is divided into four compartements:
susceptible, infected, recovered, and treated. Meanwhile, the poultry population
is divided into three compartments: susceptible, infected and vaccinated. The
basic reproduction ratio and equilibrium points, i.e. the disease-free and the
endemic equilibrium of the model, were obtained along with the basic
reproduction ratio (R,) for the poultry. It was shown that endemic Avian
influenza in poultry will cause endemic Avian influenza in humans. The disease-
free equilibrium was locally asymptotically stable when Ry< 1 and the endemic
equilibrium was locally asymptotically stable when R, > 1. Prevention of
endemic Avian influenza can be achieved by vaccination of the poultry and
medical treatment of infected humans. Optimization to reduce the number of
cases of human Avian influenza infection were presented in this paper.
Numerical simulation of the optimization model indicated that the dynamics of
human infection decreases significantly when the Avian influenza virus is
controlled by vaccination and medical treatment. In addition, the optimum
vaccination and medical treatment schedules were also determined, indicating a
strategy for controlling the disease over any certain period of time.
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