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Abstract. In this study, a transmission model of the Avian influenza disease was 
developed and analyzed in view of optimization of vaccination and medical 
treatment. The model is a host-vector model. We focussed on control of Avian 
influenza, where a vaccination is given to susceptible poultry, while medical 
treatment is given to infected humans. In the model, the human population is 
divided into four compartments: susceptible humans, infected humans, recovered 
humans, and treated humans. Meanwhile, the poultry population is divided into 
three compartments: susceptible poultry, infected poultry, and vaccinated 
poultry. To analyze the dynamical behavior of the model, we obtained the 
disease-free equilibrium, the endemic equilibrium, and the basic reproduction 
ratio. Furthermore, a model of the optimal vaccination and medical treatment 
schedule was constructed to know the optimal strategy for controlling Avian 
influenza. The model can be used to determine the minimal cost of controlling 
the disease. The model is solved by a genetic algorithm method. Numerical 
simulations showed that effective control of Avian influenza can be achieved 
with a combination of vaccination and medical treatment. Likewise, the optimal 
schedule and strategy for controlling Avian influenza are shown. 

Keywords: genetic algorithm; host-vector model; medical treatment; optimization; 
vaccination. 

1 Introduction 

Avian influenza (H5N1) is an animal disease that can be transmitted to humans 
through animals, such as ducks, chickens and other fowl. It is caused by 
influenza virus type A [1]. This virus can be classified into two groups: highly 
pathogenic Avian influenza A and low pathogenic Avian influenza A [2]. Avian 
influenza viruses have three subtypes that are able to transmit the disease to 
birds and humans: influenza A H5, A H9, and A H7 [2]. The symptoms when a 
human is infected by the Avian influenza virus are indicated by hacking, ague, 
coldness, and headache [3]. 

Avian influenza naturally occurs among poultry but infections with the virus 
have recently been detected among humans. The transmission of the disease to 
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humans occurs through air contaminated with the Avian influenza virus. It 
originates from feces of poultry that suffers from Avian influenza. If the Avian 
influenza virus is transmitted to humans, it causes serious problems. In 
Hongkong in 1998, Avian influenza attacked humans. Sixteen cases of human 
infection by the virus were confirmed and three were suspected [4]. In 
Indonesia, humans infected by Avian influenza have been recorded in 151 cases 
of whom 52 died [5]. In Vietnam, similarly, 119 cases and 59 deaths have been 
recorder [5].  

Since Avian influenza can be transmitted from poultry to humans, prevention 
programs to control the disease could help to reduce number of the Avian 
influenza cases [6]. Intervention programs and case management of Avian 
influenza in Indonesia have been implemented, such as maintaining cleanliness, 
washing hands after having contact with poultry, cleaning and spraying poultry 
cages with disinfectant. In addition, medical treatment and vaccination can also 
prevent the spread of the disease. A vaccine for poultry is available but until 
now a vaccine against Avian influenza for humans has not been found. 
Available drugs for treatment of humans infected with Avian influenza are 
Zanamivir and Oseltamivir.  

One of the ways to prevent the spread of Avian influenza is vaccination of 
poultry and medical treatment of infected humans. Numerous researches have 
been conducted to study the behavior of Avian influenza. One of the possible 
approaches is through mathematical modeling. Mathematical models of Avian 
influenza have been developed to understand characteristics of the disease. A 
mathematical model that considers both spatial factors and farm volume has 
been developed by Manach, et al. in [7]. An ordinary differential equation 
model has been constructed by Iwami in [8]. Iwami’s model was extended by 
Gumel in [9]. He developed a model of Avian influenza in which contact 
between human and birds (wild and domestic) is assumed and infected humans 
are isolated. An optimal-strategy model of Avian influenza has been built by 
Jung, et al. [10]. In [11], Vaidya, et al. studied the dynamics of the Avian 
influenza virus in wild birds. Martcheva built a model of Avian influenza in [12] 
that combines models of humans suffering from influenza.  

The present study modeled the pattern of Avian influenza spread with 
vaccination and medical treatment. The basic reproduction ratio (R0) was 
determined as well as the existence point of endemic and non-endemic 
equilibrium. Furthermore, the model of the vaccination and medical treatment 
schedules can be used to provide vaccination and medical treatment strategies. 
A genetic algorithm is used to find the optimal solutions of the objective 
function. 
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2 Mathematical Model 

The mathematical model of the Avian influenza in humans and poultry was 
constructed based on the following assumptions. First, the birth rate of the 
humans is constant, the birth rate of the poultry is not constant. Second, the 
poultry population lives in a livestock area. Third, Avian influenza causes death 
in poultry and humans. Fourth, transmission of Avian influenza occurs from 
poultry to humans but it is not transmitted from humans to poultry. Fifth, 
vaccinations are given to susceptible poultry and medical treatment are given to 
infected humans. Sixth, humans and poultry are born in a susceptible state. 
Seventh, infected poultry having contact with humans and other poultry results 
in infection. Lastly, medical treatment is given periodically. 

The mathematical model is based on the transmission diagram shown in Figure 
1. Table 1 shows the variables and parameters. The mathematical model of 
Avian influenza in human and poultry populations is given in Eq. (1). 

 Variables and parameters. Table 1

Symbol Parameter Definition Dimension 
Sh(t) Number of susceptible humans Human 
Ih(t) Number of infected humans Human 
Rh(t) Number of recovered humans  Human 
T(t) Number of treated humans Human 
Sv(t) Number of susceptible poultry Poultry 
Iv(t) Number of infected poultry Poultry 
V(t) Number of vaccinated poultry Poultry 
A Human recruitment rate Human/Time 
Av Poultry recruitment rate Poultry/Time 
bh Successful transmission rate for poultry to human 1/Time 
bv Successful transmission rate for poultry to poultry 1/Time 
  Transition rate of humans from treated humans to susceptible humans 1/Time 
  Transition rate of humans from recovered humans to susceptible humans 1/Time 
  Transition rate of humans from infected humans to susceptible humans 1/Time 
µ Natural death rate of humans 1/Time 
Ө Harvest rate of poultry population 1/Time 
  Virulence of humans 1/Time 
δv Virulence of poultry 1/Time 
  Rate of treatment of infected humans 1/Time 
  Rate of vaccination of susceptible poultry 1/Time 
  Recovery rate due to treatment - 

h  Cost function of treatment of infected humans 1/human 

v  Cost function of vaccination of susceptible poultry 1/poultry 
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Figure 1 Transmission diagram of Avian influenza in humans and poultry. 
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2.1 Analysis of the Model 

2.1.1 Equilibrium Point 

Here, we are trying to figure out the equilibrium points in the area that is 
denoted by Ω, as follows: 

 7{( , , , , , , ) }.v v h h hS I V S I R T     

The model has two possible equilibria: the disease-free equilibrium and the 
endemic equilibrium. The disease free equilibrium of the model for poultry is 
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The endemic equilibrium of the Avian influenza model of poultry is 
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Where 

1 ((1 ) ( ) ( 2 )) ((1 ) )( )B b b                                  
2 (1 ) ) ( )( )B                   . 

The endemic equilibrium 1
E  exists if and only if 1 1R  . 

Theorem 1. The Avian influenza model has 0 ( ,0, , , 0,0,0)v hE S V S  as the 

non-endemic equilibrium point. It is locally asymptotically stable if and only if 

1 1R  . 

Proof. We study the stability of 0 ( ,0, , , 0,0,0)v hE S V S . The corresponding 

Jacobian matrix 
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Eigenvalues of  ܬாబ are 

 1x   ,  

 2 ( )x     , 

 3x   , 

 4 ( )x     , 

 5 ((1 ) )x         , 

 6 1( 1)( )vx R     , 
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Observe that 1 1 1, ,a b c  when 1 1R  . Therefore all of the eigenvalues of ܬாబ	are 

negative if and only if 1 1R  .  This proves Theorem 1. 

Theorem 2.  The Avian influenza model has 1 ( , , , , , , )v v h h hE S I V S I R T as the 

endemic equilibrium point. It is locally asymptotically stable if and only if 

1 1R  . 

Proof. We study the stability of 1 ( , , , , , , )v v h h hE S I V S I R T . The corresponding 

Jacobian matrix 
1ED  is as follows 
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The eigenvalues of 
1EJ  are given by the eigenvalues of 1D  and 4D . The 

characteristic polynomial of the matrix 1D   is 3 2
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2.1.2 Basic Reproduction Ratio  

The basic reproduction ratio is an important parameter in the epidemiology of 
infectious diseases. It is defined as the expected number of secondary cases 
rising from one infected person who encounters a closed susceptible population 
[13]. The notation that is often used for this parameter is R0. It can be obtained 
in several ways. In this study, R0 was obtained by building a matrix that 
generates a number of new infected individuals. This matrix is usually denoted 
by K and called Next-Generation Matrix (NGM). NGM is evaluated at the value 
of the non-endemic equilibrium point, which is obtained by 
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The largest eigenvalue of K is 
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We know that R0 is equal to R1 as defined in the equilibrium point subsection. 
The vaccination parameter (ε) affects the value of R0. If the Avian influenza is 
endemic in poultry, the virus will be endemic in humans. The parameters that 
can be controlled to prevent endemic Avian influenza are vaccination and the 
harvesting of the poultry. 

3 Optimization Model 

An optimal vaccination strategy in a deterministic model was introduced by 
Hethcote and Waltman in [14]. They developed the model to optimize the 
vaccination schedule in an epidemic model.  In the present study, the 
optimization model describes a vaccination and medical treatment scenario 
within a certain period to reduce the number of Avian Influenza cases. 
Therefore, there are two control parameters to be considered: the rate of medical 
treatment for infected humans (λ) and the rate of vaccination for susceptible 
poultry (ε). 

If the rate of vaccination and medical treatment increases, then the total costs 
required to manage the disease also increase. Vaccination and medical treatment 
costs are influenced by many other factors, such as labor costs, operational 
costs, etc.  Therefore, the following objective function was used: 



 Tasmi & Nuning Nuraini 173   

 

1 2

1 2 2

1 1

1 2

1 2 2

1 1

0

0

Minimize  ( ) ( ) ... ( )

( ) ( ) ... ( )

n

n

n

n

tt t

h h h h

t t

tt t

v v v v

t t

f I t dt I t dt I t dt

S t dt S t dt S t dt

  

  









 

 

 

 

    

  

 
  
 
 
  
 

  

  
, (2) 
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, ∆ is the duration of the period during which to deliver the 
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and j  are the rates of medical treatment and 

vaccination, h  and v  are the cost functions, 
jhI   is the number of infected 

humans who are given medical treatment at the thj  period, and 
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susceptible poultry that is given vaccine at the thj  period, 1, 2,3, ...,j n . The 
objective function in Eq. (2) has the following constraint: 
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Here A, B and C are the maximum numbers of Avian influenza cases. The 
mathematical problem to be solved is to minimize Eq. (2) with the constraint in 
Eq. (3) satisfying  Eq. (1). This problem is solved by a genetic algorithm. 

4 Numerical Simulation 

This section illustrates the dynamics of an infected human compartment and 
scenarios for controlling Avian influenza. The simulation was done using a 
genetic algorithm. The values of the parameters and the initial conditions are 
given in Table 2. The simulated time period was divided into six periods. For 
each period, the initial conditions were obtained from the results of the ending 
point of the previous period of simulation. The objective function was 
calculated from the integral of susceptible poultry and infected humans 
multiplied by the cost function. 

The results of the simulation are shown in Table 3 and Figure 2. Table 3 shows 
the minimum of the objective function for control of the Avian influenza with 
the vaccination and medicine treatment scenario. The total period of time for 
vaccination and medical treatment was two years divided into six periods. For 
each period, we administered the proper rate of vaccination and medical 
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treatment. Based on these results we can apply design scenarios for preventing 
Avian influenza infection. For example, during the first period, vaccination was 
given to susceptible poultry at a rate of 0.319 per time and medical treatment 
was given to infected humans at a rate of 0.748 per time. The vaccination rates 
and the medical treatment for the following period were as shown in Table 3. 
Therefore, we obtained a cost of 22,398,171 cost units.   

 Initial condition and parameter values. Table 2

Symbol Value
Sh(t) 900 human 
Ih(t) 5 human 
Rh(t) 0 
T(t) 0 
Sv(t) 300 poultry 
Iv(t) 100 poultry 
V(t) 0 

t  [0, 24] 
 0.00128 month-1

v  0.0208 month-1 

hb  0.5 month-1 

vb  0.7 month-1 

 0.7 month-1 

  0.0417 month-1 
 0.03 month-1 
  0.3 month-1 

v  0.6 month-1 

  0.1 

  4 

h
  10,000 human-1 

v
  15,000 poultry-1 

A 120 human 

B  100 human 

C  150 poultry 

The dynamics of infected humans are illustrated in Figure 2. In this figure, four 
simulated cases are shown, i.e. the infected human population without medical 
treatment or vaccination; only medical treatment; only vaccination; with 
medical treatment and vaccination.  
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Using the scenarios in Table 2, the number of Avian influenza cases were 
reduced 36.26% with vaccination and medical treatment, 25.68% with 
vaccination only, and 24.72% with medical treatment only. If the budget is 
limited, medical treatment is more effective than only vaccination for a short 
period. Over a longer period, however, the poultry vaccination scenario 
significantly reduces the number of the infected humans. The best result in this 
simulation was reached when both medical treatment and vaccination were 
given to the host and vector population. 

 Optimization results. Table 3

Period   ε 

1

1

i

i

i

t

h

t

I dt








  

1

1

i

i

i

t

v

t

s dt








  

 
Objective 
function 

 

0-4 0.748 0.319 820.116 145.099 

22,398,171 

4-8 0.795 0.449 138.175 81.144 
8-12 0.585 0.546 733.676 12.447 

12-16 0.637 0.541 63.559 1.556 
16-20 0.709 0.502 65.605 0.145 
20-24 0.608 0.635 58.079 0.014 

 
Figure 2 Numerical simulation of infected humans. 
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5 Conclusions 

A model of Avian influenza with vaccination and medical treatment was 
developed in this study. The model illustrates the dynamics of Avian influenza 
transmission. In it, the human population is divided into four compartements: 
susceptible, infected, recovered, and treated. Meanwhile, the poultry population 
is divided into three compartments: susceptible, infected and vaccinated. The 
basic reproduction ratio and equilibrium points, i.e. the disease-free and the 
endemic equilibrium of the model, were obtained along with the basic 
reproduction ratio (R0) for the poultry. It was shown that endemic Avian 
influenza in poultry will cause endemic Avian influenza in humans. The disease-
free equilibrium was locally asymptotically stable when R0 < 1 and the endemic 
equilibrium was locally asymptotically stable when R0 > 1. Prevention of 
endemic Avian influenza can be achieved by vaccination of the poultry and 
medical treatment of infected humans. Optimization to reduce the number of 
cases of human Avian influenza infection were presented in this paper. 
Numerical simulation of the optimization model indicated that the dynamics of 
human infection decreases significantly when the Avian influenza virus is 
controlled by vaccination and medical treatment. In addition, the optimum 
vaccination and medical treatment schedules were also determined, indicating a 
strategy for controlling the disease over any certain period of time.  
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