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Abstract. This work studied eigenvalues and eigenvectors of a class of perturbed 

pairwise comparison matrices (PCMs). This type of matrices arises from 

Analytical Hierarchical Process with inconsistency comparison. By employing 

some nice structures of the PCMs, we show that the object dimension of size  

3n  can be reduced into a case of size 3, hence simplify the studies. 
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1 Introduction 

A pairwise comparison matrix (PCM) is a positive symmetrically reciprocal 

matrix arising in Analytical Hierarchy Process (AHP). The AHP is a 
multicriteria decision model introduced by Saaty which solves decision 

problems by prioritizing alternatives [1]. The application of the AHP as a 

decision problem tools gives rise to pairwise comparison matrices (PCMs). The 
core of the AHP is the priority vector corresponding to any PCM. This vector is 

the normalized principal right eigenvector of the PCM corresponding to the 

largest eigenvalue which is simple and its existence is guaranteed by Perron's 

Theorem [2]. 

Several approaches have been proposed for investigating the priority vector of a 

PCM [3]. Saaty's eigenvector method (EM) derived the priority vector as a 

positive vector minimizing the distance between the PCM and the ratio matrix 
formed by the positive vector with respect to a certain norm. Chu  [4] proposed  

the Least-squares method (LSM) and the Weighted Least-squares method 

(WLSM). Another method to estimate the priority vector proposed by Gass and 
Rapcsák [3] is by using the Singular Value Decomposition (SVD) of the PCM 

and the theory of low rank approximation. It was observed that the SVD 

approach has much to over from theoretical point of view.  

Meanwhile several results were proposed regarding the study and analysis of 
the principal eigenvector of a PCM. For example, Farkas [5] developed the 

spectral properties of PCM and shows how the perturbed PCM results in a 
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reversal of the rank order of the decision alternatives. Studying those results, it 

is observed that the nice property and structure of the PCM, particularly for 

simply perturbed PCMs, have not been fully exploited. 

In this note we study the eigenvalues and eigenvectors of  PCMs which are 
perturbed on one row and its corresponding column. The notion of  this class 

perturbed PCMs is adopted from Farkas [5]. By employing the well structured 

of these perturbed  PCMs, we demonstrates that investigating eigenvalues and 
eigenvectors of the PCMs can be transformed into a similar problem  of the 

corresponding  33  matrices. Hence, the investigation becomes simpler. 

2 Perturbed PCM 

Let    denote the real field. An nn   matrix )( ijaA   whose components 

belong to   is called transitive if kjikij aaa   for all nkji ,...,2,1,,  . An 

nn   matrix )( ijaA   whose components belong to }0{  is called 

symmetrically reciprocal (SR) if 1jiij aa   for ji   and 1iia  for all 

nji ,...,2,1,  . Any nonzero transitive matrix is SR but the converse is not true. 

It has been shown that an SR matrix is transitive if and only if it is of rank one 
[5] [3]. 

A pairwise comparison matrix (PCM) is an SR matrix which is positive. This 

kind of matrices arises in Analytical Hierarchy Process (AHP); a multicriteria 
decision model introduced by Saaty which solves decision problems by 

prioritizing alternatives. In AHP, the-ijth component of a PCM )( ijaA   

represents relative importance ratios of the-ith alternative over the-jth 

alternative with respect to a certain criterion. The core of the AHP is   the 

priority vector;  a positive vector whose ith component represents the weight or 
the score priority of the-ith alternative. This vector is the normalized principal 

right eigenvector of the PCM corresponding to the largest eigenvalue which is 

simple and its existence is guaranteed by Perron's Theorem [2]. Several 

methods have been proposed to study, analyse, and approximate the priority 
vector of a PCM. In this note we study the eigenvalues and eigenvectors of a 

PCM which is perturbed at one row. 

An ideal decision problem produces transitive PCMs called specific PCMs. As 
explained above, we have that a specific PCM has one-rank. Any normalized 

column vector of a specific PCM will be the priority vector. Particularly, 

suppose  )( ijc aA   is a specific PCM. We have  
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alternative where the sum of the weights of all alternatives is 1. 

However, a real decision problem most likely contains a subjective judgment on 

the relative importance ratios between alternatives, resulting in PCMs which are 
not transitive. A PCM is called perturbed PCM if it is not transitive. A PCM 

which is perturbed at the first row (and its associated first column) can be 

denoted as 
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where iix ,  are positive real numbers such that there are 11  nji  such 

that ji   . A PCM which is perturbed at another row can be transformed 

using permutation matrices to the above form (2). Hence, in this note it is 

sufficient if our discussion strictly on PCM of the form (2). 

The analysis of the algebraic eigenvalue-eigenvector problem of the simply 

perturbed PCM was addressed in Farkas [5]. It was shown that rank reversals 

can occur even only arbitrarily small departure from specific PCM. However, 
the nice structure of the perturbed PCM have not been fully employed.  In this 

note we propose another approach to study eigenvalue-eigenvector of PCM of 
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the form (2). In the following section, by employing the nice structures of the 

perturbed PCM,   we transform the object domain from matrices of size nn  

into 33  matrices. Consequently, the study of the eigenvalues and 

eigenvectors of the perturbed PCM can be studied by studying a more simple 

case. 

3 Eigenvalue and Eigenvector of Perturbed PCM 

Let us consider a  perturbed PCM of the form A  (2). When ji    for all i, j = 

1, 2,…, n-1, we obtain A  is transitive. Hence it has one-rank and can be written 

as (1). For the case there exist  11  nji  such that ji   , we have the 

following theorem. 

Theorem 3.1 If 3n  and there exist 11  nji  such that  ji    then 

Rank(A)=3. Particularly we have },,{ 1 wueB  is a basis of the image A, 

)Im(A , where  
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Proof: We have that the first, the-(i+1)th, and the-(j+1)th columns of A are 
linearly independent. Further, each of the other columns can be written as a 

linear combination of these three columns of A. Hence we have Rank(A) = 3 

and those three columns of A form a basis of )Im(A . 

Since each vector in B can be written as a linear combination of the obtained 

basis above and B is linearly independent, we can conclude that B is a basis of 

)Im(A .                                                                                                             

It is well known that the subspace )Im(A  is A-invariant. For the case of the 

perturbed PCM we have the following nice property of the A-invariant subspace 

)Im(A . 
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Theorem 3.2 If 3n  then the restriction of the linear transformation A on 

)Im(A  is an isomorphism. 

Proof: To prove the theorem it is enough to show that the restriction of the 

linear transformation A on )Im(A  is injective. It is obvious if for all i, j= 1, 2, 

… n-1 ji      then the restriction of the linear transformation A on )Im(A  is 

injective.  Hence, suppose and there exist 11  nji  such that  ji   . 

Let )(Im Ax  such that Ax = 0. Suppose wuex   1 . Then we have 

the restriction of A on )Im(A  is injective if we can show that  0  . 

Consider that 
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Thus, we obtain the theorem if we can show that the matrix 
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is nonsingular which will be done by showing 0)det( Z . 

First, note that we have a+b+c = 0 and acnbZ  )1()det( . By substituting 
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Now, we shall show 0)det( Z   using mathematical induction on n and 

employing the fact that the function 
t

ttf 1)(    on the interval ),0(   has 

only one minimum value f(1) = 2 at t = 1. For n=3 we have 
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resulting in 0)det( Z . On the other hand, if kj  , then 1
k

i

it 


. Hence, 

according to the property of the function f(t) mentioned above, 0)2( 1 
itit . 

As a result, 
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implying 0)det( Z . Thus, we proved the theorem.                                         

The nice structures of the perturbed PCM A on the two theorems above and 

their proofs result in the following facts. 

1. The space 
n  can be decomposed as a direct sum of two A-invariant 

subspaces   

)Ker()Im( AA n
 

2. The matrix (4) is the transformation matrix with respect to the basis B of 

the restriction of A on )Im(A , denoted as  B]|[ )Im( AA . 

3. The characteristics polynomial of A is the product of the characteristics 

polynomial of the restriction of A respectively on )Im(A  and )Ker(A . 

Hence, according to 2. we have the characteristic polynomial of A is 

))1()(()( 23 acnbnnp n     

4. All of the nonzero eigenvalues and eigenvectors of A are all of eigenvalues 

and eigenvectors of the restriction of A on )Im(A . Hence, suppose r is an 

eigenvalue of the transformation matrix (4) corresponding with the 

eigenvector 
T),,( 321  . We obtain r is a nonzero eigenvalue of A with 

the corresponding eigenvector is 

wuex 3211    

The above facts and Perron's Theorem about positive matrices lead us to a 
method for obtaining the principal eigenvalue and its corresponding eigenvector 

of the perturbed PCM A by the help of corresponding transformation matrix (4) 
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as the following. Let r be the maximal eigenvalue of B]|[ )Im( AA . That is, r is the 

maximal root of the characteristic polynomial 

))1()(()( 2

1 acnbnp     

According to Perron's Theorem we have r is simple. Hence, the solution 

subspace of the linear equation 
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is a one dimensional subspace. Following the argument in [5] we obtain that 

any column vector of the )]|[adj( )Im( BrI AA  is a basis of the solution 

subspace of (6). Particularly, assuming 1,,2,1,  nii   are closed to 1 and 

so 0 cr , we have 
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is a principal eigenvector of A.  

Note that we can consider the PCM A obtained from a specific (transitive) PCM 

(1) which is perturbed by a matrix formed by the vector 1e  and w. In this case,  

the transitive part of the PCM has the principal eigenvalue n with a principal 

eigenvector u.  Meanwhile the perturbed PCM A has the principal eigenvalue r 

with a principal eigenvector x. From equation (7) above, we observe that the 
closed form of the principal eigenvector x obtained from u perturbed by the 

vectors 1e  and w. 

4 Concluding Remarks 

By using basic results in linear algebra we can show some nice structures of a 

class perturbed PCMs. These properties made us able to obtain a closed form of 

the principal eigenvector of the perturbed PCMs as the principal eigenvector of 
the transitive part perturbed by the set of vectors that perturb the PCMs. The 

work on extension of current results to a general perturbed PCM, will be 

relegated in the future. 
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