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the edges of ܨ contains a subgraph ܩ in red color or a subgraph ܪ in blue color. 
In addition, a red-blue coloring of the edges of ܨ is called (ܩ,  if under ݀݋݋݃-(ܪ
this coloring, ܨ does not contain ܩ in red color and ܪ in blue color. The 
notation ܨ ↛ ,ܩ) means that there exists a (ܪ,ܩ)   .ܨ good coloring in-(ܪ

The concept of the size Ramsey number was introduced by Erdös, et al. [2] in 
1978, who also gave some results for this problem. Long before this 
introduction, the concept of the Ramsey number had already been established in 
graph theory. The restricted size Ramsey number is a direct consequence of the 
concept of the size Ramsey and Ramsey number in graphs. Some results on the 
size Ramsey number and the restricted size Ramsey number of graphs can be 
found in [3-6]. 

To find the exact values of the (restricted) size Ramsey number for a pair of 
graphs is challenging, even for a pair of small graphs. In 1983, Harary and 
Miller [7] initiated the investigation on the (restricted) size Ramsey number for 
a pair of small graphs. They obtained some exact values for a pair of graphs 
with order not more than four. However, since the proof is long and needs a 
tedious amount of work, they omitted the proof of some of their results. Faudree 
and Sheehan [8] continued the investigation and compiled the complete values 
for the (restricted) size Ramsey number for any pair of graphs with order not 
more than four. They also did not give any proof of their results. Lortz and 
Mengenser (1998) in [9] continued the investigation and derived the size and 
the restricted size Ramsey numbers for all pairs of small forests with order not 
more than five.  

For the same reason as given by Faudree and Sheehan [8], they also did not 
provide proof of their results. Recently, in [6] we gave the restricted size 
Ramsey number for pairs of a path ଷܲ and any connected graph of order five. 
We presented the complete proof for this case. To carry on the research on the 
restricted size Ramsey number involving small graphs, we investigated the 
restricted size Ramsey number for pairs of a matching with two edges, 2ܭଶ, and 
graph with no isolates of order five. 

2 Preliminaries 

The list of all graphs of order five that do not have isolated vertices is given in 
Figure 1. In 1972, Chvátal and Harary [10] gave the Ramsey number for 2ܭଶ 
and any graph with no isolates, as stated in Theorem 1. This theorem provides 
the order of graph ܨ such that ܨ → ,ଶܭ2) ,ଶܭ2)∗ݎ in finding ,(ܪ  .(ܪ
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Figure 1 List of graphs with no isolates with order 5. 

 
Theorem 1 [10] For any graph ܪ with no isolates,  

,ଶܭ2)ݎ  (ܪ = (ܪ)ݒ} + ,݁ݐ݈݁݌݉݋ܿ		ݏ݅		ܪ,2 (ܪ)ݒ +  	.݁ݏ݅ݓݎℎ݁ݐ݋			,1
Some exact values of ܭ2)∗ݎଶ,  is a connected graph of order five are ܪ when (ܪ
already known. From the results of Lortz and Mengenser [9] we have ܭ2)∗ݎଶ, (ଵܪ = ,ଶܭ2)∗ݎ ,6 (ଶܪ = ,ଶܭ2)∗ݎ ,8 (ଷܪ = 12, and ܭ2)∗ݎଶ, (ସܪ = 6. 
Furthermore, from our previous results in [11] we have ܭ2)∗ݎଶ, (଻ܪ = ,ଶܭ2)∗ݎ ,12 (ଵସܪ = ,ଶܭ2)∗ݎ ,13 (ଵ଼ܪ = ,ଶܭ2)∗ݎ ,15 (ଵଽܪ = ,ଶܭ2)∗ݎ ,13 (ଶ଴ܪ ,ଶܭ2)∗ݎ ,14= (ଶଵܪ = ,ଶܭ2)∗ݎ ,15 (ଶଶܪ = 15 and ܭ2)∗ݎଶ, (ଶଷܪ = 21. For the 
remaining graph ܪ௜, we will derive the exact values for ܭ2)∗ݎଶ,  ௜). To proveܪ
some of our results, we use Theorem 2.  

Theorem 2 [11] For ݊ ≥ 3,  

,ଶܭ2)∗ݎ  (௡ܭ = {(݊ + 2	2	), ݊ ≥ 4, (݊	2	) − 1, ݊ = 3	 
where (݊	ݎ) is a combination of ݊ objects taken ݎ at a time. 
Obviously, the following monotonicity property can be derived from the 
definition of the (restricted) size Ramsey number. If ܩ′ ⊆ ′ܪ and ܩ ⊆   then ,ܪ

,ᇱܩ)ݎ̂  (ᇱܪ ≤ ,ܩ)ݎ̂  (1) (ܪ

 and  

,ᇱܩ)∗ݎ  (′ܪ ≤ ,ܩ)∗ݎ  (2) (ܪ

Note that Chvátal and Harary [10] gave this kind of monotonicity property for 
the Ramsey number of a pair of graphs. 

3 Main Results 

In this section, we present ܭ2)∗ݎଶ,  .௜) for which the values are not yet knownܪ
Since ܭ2)∗ݎଶ, (ହܭ = 21 is already known, our goal is to find ܭ2)∗ݎଶ,  ௜) for allܪ
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,ଶܭ2)ݎ ହ. Using Theorem 1 we obtainܭ ଶଷ orܪ ௜ in Figure 1, exceptܪ (௜ܪ = 6 
for every ܪ௜ in our consideration. For any pair of graphs ܩ and ܪ, it is known 
that ݁(ܩ) + (ܪ)݁ − 1 ≤ ,ܩ)∗ݎ (ܪ ≤ ,ܩ)ݎ) (௜ܪ)݁ Using this bound, we have .(	2	(ܪ + 1 ≤ ,ଶܭ2)∗ݎ (௜ܪ ≤ 15 for all ܪ௜ in our consideration. We will give ܭ2)∗ݎଶ,  ௜ a graphܪ ;ଷ in Theorems 3 and 4ܥ ௜ a graph that contains aܪ ௜) forܪ
that contains a ܥସ in Theorems 5, 7, and 6; ܪ௜ a graph that contains a ܥହ in 
Theorems 8, 9, and 10; and the remaining in Theorem 11. 

Lemmas 1 and 2 give the properties of graph ܨ such that ܨ → ,ଶܭ2)  for any (ܪ
graph ܪ without isolates. Lemma 1 is a generalization of the lemma given in 
[12], which they gave for ܪ =  ܪ ଵ,௡. Actually, the lemma holds for any graphܭ
and the proof is similar to the proof in [12]. Lemmas 3 and 4 give the properties 
of ܨ such that ܨ → ,ଶܭ2)  contains cycles. We will use all ܪ when graph (ܪ
these lemmas in proving our theorems. 

Lemma 1. Let ܪ be a graph. ܨ → ,ଶܭ2)  holds if and only if the following (ܪ
conditions are satisfied:   

ܪ .1 ⊆ ܨ − ݒ for every ݒ ∈   and (ܨ)ܸ
ܪ .2 ⊆ ܨ −    .ܨ ଷ inܥ ଷ for everyܥ

Lemma 2. Let ܪ be a graph with no isolates. If ܨ → ,ଶܭ2) (ܨ)ݒ and (ܪ ,ଶܭ2)ݎ= (ܨ)ߜ then ,(ܪ ≥ 2.  

Proof. If ܪ ≅ ܨ ,௡ܭ → ,ଶܭ2) (ܨ)ݒ and ,(ܪ = ,ଶܭ2)ݎ  then Theorem 2 ,(ܪ
implies (ܨ)ߜ ≥ 2. If ܪ ≇ (ܨ)ݒ ௡, then using Theorem 1 we obtainܭ = ݊ + 1. 
Suppose to the contrary that ܨ → ,ଶܭ2) (ܨ)ݒ ,(ܪ = ݊ + 1, and (ܨ)ߜ ≤ 1. 
Assume ݑ is a vertex with ݀(ݑ) = 1 and ݒ is a neighbor of ݑ. The graph ܨ −  ݒ
consists of a component with order ݊ − 1 and an isolate. Obviously, ܪ ⊈ ܨ −  ݒ
and Lemma 2 implies ܨ ↛ ,ଶܭ2)   .We have a contradiction .(ܪ

Lemma 3. For ݊ ≥ 4, let ܪ be a graph with (ܪ)ݒ = ݊ and ܪ contains a cycle 
of length ܥ ,ݐ௧, for 3 ≤ ݐ ≤ ݊. If ܨ → ,ଶܭ2)  ௧ܥ contains at least two ܨ then ,(ܪ
which do not share a vertex and are not incident to a ܥଷ.   

Proof. For ݊ ≥ 4, let ܪ be a graph with (ܪ)ݒ = ݊ and ܥ௧ ⊆ for 3 ܪ ≤ ݐ ≤ ݊. 
Suppose to the contrary that ܨ → ,ଶܭ2) ௧ for 3ܥ and all (ܪ ≤ ݐ ≤ ݊ in ܨ share a 
vertex or are incident to a ܥଷ. If all ܥ௧ in ܨ share a vertex ݒ, then ܪ ⊈ ܨ −  ݒ
and if all ܥ௧ in ܨ are incident to a ܥଷ, then ܪ ⊈ ܨ − ܨ ଷ. Lemma 1 impliesܥ ↛ ,ଶܭ2)   .We have a contradiction .(ܪ

In Figure 2(a) we give an example of a graph that contains more than one ܥଷ but 
all share a vertex ݒ. By removing ݒ, it means that by coloring all edges incident 
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to ݒ red (edges in dotted line), ܥଷ ⊈ ܨ −  In Figure 2(b) we give an example .ݒ
of a graph that contains more than one ܥଷ but all are incident to a ܥଷ (let’s call it ܥଷᇱ). By removing ܥଷᇱ , it means that by coloring all edges belonging to ܥଷᇱ  as red 
(edges in dotted line), ܥଷ ⊈ ܨ − ଷᇱܥ . 

 
Figure 2 Examples for Lemma 3. 

Lemma 4. For ݊ ≥ 4, let ܪ be a graph with (ܪ)ݒ = ݊ and ܪ contains a cycle 
with length ݊ − 1. If ܨ → ,ଶܭ2) (ܨ)ݒ and (ܪ = ,ଶܭ2)ݎ (ܨ)ߜ then ,(ܪ ≥ 3.   

Proof. For ݊ ≥ 4, let ܪ be a graph with (ܪ)ݒ = ݊ and ܥ௡ିଵ ⊆ ܪ If .ܪ ≅ ܨ ,௡ܭ → ,ଶܭ2) (ܨ)ݒ and ,(ܪ = ,ଶܭ2)ݎ (ܨ)ߜ then Theorem 2 implies ,(ܪ ≥ 3. If ܪ ≇ (ܨ)ݒ ௡, then using Theorem 1 we obtainܭ = ݊ + 1. Suppose to the 
contrary that ܨ → ,ଶܭ2) (ܨ)ݒ ,(ܪ = ݊ + 1, and (ܨ)ߜ ≤ 2. Lemma 2 implies (ܨ)ߜ = 2. Suppose ݑ is a vertex with degree 2 and ݒ is a neighbor of ݑ. The 
degree of ݑ in ܨ − (ܨ)ݒ is 1. Since ݒ = ݊ + 1, it is clear that ܥ௡ିଵ ⊈ ܨ −  .ݒ
Hence, Lemma 1 implies ܨ ↛ ,ଶܭ2)   .We have a contradiction .(ܪ

Theorem 3.  ܭ2)∗ݎଶ, (ହܪ = ,ଶܭ2)∗ݎ (଼ܪ = 10.  

Proof. We know that ܭ2)ݎଶ, (ହܪ = ,ଶܭ2)ݎ (଼ܪ = 6. Note that ܥଷ ⊆ ହܪ ⊆  .଼ܪ
To show the upper bound, consider ܨ = ଺ܭ − ସܥ) ∪  have ܨ ଶ). All vertices inܭ
degree either 3 or 4. The graph ܨ − (ݒ)݀ with ݒ = 3 is a wheel without a spoke 
and ܨ − (ݒ)݀ with ݒ = 4 is a graph containing two triangles that share a vertex. 
It is clear that ଼ܪ ⊆ ܨ −  are ܨ ଷ inܥ for both kind of vertices. Furthermore, all ݒ
isomorphic, involving two vertices with degree 3 and a vertex with degree 4. It 
is easy to verify that ଼ܪ ⊆ ܨ − ܨ ଷ. Hence, Lemma 1 impliesܥ ଷ for everyܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ so ,(଼ܪ (଼ܪ ≤ 10. Since ܪହ ⊆ ,ଶܭ2)∗ݎ by (2) we obtain ,଼ܪ (ହܪ ≤ 10. 

 

Figure 3 Graphs ܨ that satisfy the conditions for the lower bound of Theorem 3. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 9. According to Lemma 2 and 3, (ܨ)ߜ ≥ 2 and ܨ must contain at least 
two ܥଷ which do not share a vertex and are not incident to a ܥଷ. There are four 
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graphs satisfying these conditions, as shown in Figure 3, each with a red-blue 
coloring that is (2ܭଶ, ܨ ,ܨ ହ)-good (dotted line in red color). For allܪ ,ଶܭ2)↛ ,ଶܭ2)∗ݎ ହ), soܪ (ହܪ ≥ 10. Since ܪହ ⊆ ,ଶܭ2)∗ݎ by (2) we obtain ,଼ܪ (଼ܪ ≥ 10.  

Theorem 4.  ܭ2)∗ݎଶ, (଺ܪ = 9.  

Proof. We know that ܭ2)ݎଶ, (଺ܪ = 6. Note that ܥଷ ⊆  ହ. To show the upperܪ
bound, let ܨ = ଺ܪ ଷ. It is easy to verify thatܥ is a 3-regular graph and contains two isomorphic ܨ ଺ be a Möbius ladder with six vertices. Observe thatܯ ଺ withܯ ⊆ ܨ − ݒ for every ݒ ∈ ଺ܪ and (ܨ)ܸ ⊆ ܨ −  ,Hence .ܨ ଷ inܥ ଷ for everyܥ
Lemma 1 implies ܨ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଺), soܪ (଺ܪ ≤ 9. 

 

Figure 4 Graphs ܨ that satisfy the conditions for the lower bound of Theorem 4. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 8. According to Lemma 2 and 3, (ܨ)ߜ ≥ 2 and ܨ must contain at least 
two ܥଷ which do not share a vertex and are not incident to a ܥଷ. There are only 
two graphs satisfying these conditions, as shown in Figure 4, with red-blue 
coloring that are (2ܭଶ, ܨ ,଺)-good (the red color in dotted line). Henceܪ ,ଶܭ2)↛ ,ଶܭ2)∗ݎ so ,ܨ ଺) for bothܪ (଺ܪ ≥ 9.	 
Theorem 5.  ܭ2)∗ݎଶ, (ଽܪ = 8.  

Proof. We know that ܭ2)ݎଶ, (ଽܪ = 6. Note that ܥସ ⊆  ଽ. To show the upperܪ
bound, let ܨ′ = ܨ ଺ be a Möbius ladder with six vertices. Considerܯ ଺ withܯ = ′ܨ − ݁ with ݁ is an edge belonging to ܥ଺ in ܨ′. Observe that ܨ is a ܥଷ-free 
and all vertices in ܨ have degree either 2 or 3. Suppose ݑ is a vertex with ݀(ݑ) = 2 and ݒ with ݀(ݒ) = 3. It is clear that ܪଽ ⊆ ܨ − ݒ ⊆ ܨ −  ,Hence .ݑ
Lemma 1 implies ܨ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଽ), soܪ (ଽܪ ≤ 8. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 7. According to Lemma 2 and 3, (ܨ)ߜ ≥ 2 and ܨ must contain at least 
two ܥସ which do not share a vertex and are not incident to a ܥଷ. However, there 
is no graph satisfying these conditions, so ܭ2)∗ݎଶ, (ଽܪ ≥ 8.  

Theorem 6.  ܭ2)∗ݎଶ, (ଵଶܪ = 12.  
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Proof. We know that ܭ2)ݎଶ, (ଵଶܪ = 6. Note that ܥସ ⊆  ଵଶ. To show the upperܪ
bound, consider ܨ = ଺ܭ −  ଷܥ is a 4-regular graph and all ܨ ଶ. Observe thatܭ3
in ܨ are isomorphic. It can be verified that ܪଵଶ ⊆ ܨ − ݒ for every ݒ ∈ ଵଶܪ and (ܨ)ܸ ⊆ ܨ − ܨ Hence, Lemma 1 implies .ܨ ଷ inܥ ଷ for everyܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଵଶ), soܪ (ଵଶܪ ≤ 12. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 11. According to Lemmas 2 and 3, (ܨ)ߜ ≥ 2 and ܨ must contain at 
least two ܥସ which do not share a vertex and are not incident to a ܥଷ. There are 
four graphs ܨ satisfying these conditions, namely, ܨ is isomorphic to ܭ଺ ଷܥ)− ∪ ଺ܭ ,(ଶܭ − ହܲ, ܭ଺ − ( ସܲ ∪ ଺ܭ ଶ), orܭ − 2 ଷܲ. If ܨ = ଺ܭ − ଷܥ) ∪ ܨ ଶ) orܭ = ଺ܭ − ହܲ, then ܪଵଶ ⊈ ܨ − (ݒ)݀ is a vertex with ݒ with ݒ = 5. If ܨ = ଺ܭ −( ସܲ ∪ ܨ ଶ) orܭ = ଺ܭ − 2 ଷܲ, then ܪଵଶ ⊈ ܨ −  ,Hence .ܨ ଷ in eachܥ ଷ for anyܥ
Lemma 1 implies ܨ ↛ ,ଶܭ2) ,ଶܭ2)∗ݎ so ,ܨ ଵଶ) for allܪ (ଵଶܪ ≥ 12.  

Theorem 7.  ܭ2)∗ݎଶ, (ଵଵܪ = 12.  

Proof. We know that ܭ2)ݎଶ, (ଵଵܪ = 6. To show the upper bound, consider ܨ = ଺ܭ − (ݑ)݀ with ݑ there is a vertex ܨ ଵ,ଷ. Inܭ = 5 and ܪଵଵ ⊆ ܨ − ݑ ⊆ ܨ ݒ and all vertices ܨ ସ inܭ Furthermore, there is a .ܨ in ݒ for any ݒ− ∈  are (ସܭ)ܸ
adjacent to ݑ and one is adjacent to vertex ݔ with ݀(ݔ) = 2. There are five 
kinds of ܥଷ in ܨ, namely, ܥଷ involving ݑ and two ݒ not adjacent to ܥ ,ݔଷ 
involving ݑ and two ݒ one is adjacent to ܥ ,ݔଷ involving three ݒ not adjacent to ܥ ,ݔଷ involving three ݒ one is adjacent to ݔ, and ܥଷ involving ݔ. It can be 
verified that for every kind of ܥଷ, ܪଵଶ ⊆ ܨ − ܨ ଷ. Hence, Lemma 1 impliesܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଵଵ), soܪ (ଵଵܪ ≤ 12. 

Before proving the lower bound, consider ܨ′ = ଺ܭ − 2 ଶܲ. It is clear that ܪଵଵ ⊈ ′ܨ − (ݒ)݀ with ݒ for vertex ݒ = 5. To show the lower bound, we must 
consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 11. According to Lemma 2, (ܨ)ߜ ≥ 2. However, all ܨ that satisfy these conditions are subgraphs of ܨ′. 
Therefore, Lemma 1 implies ܨ ↛ ,ଶܭ2) ,ଶܭ2)∗ݎ Hence .ܨ ଵଵ) for allܪ (ଵଵܪ ≥12.  

Theorem 8.  ܭ2)∗ݎଶ, (ଵ଴ܪ = ,ଶܭ2)∗ݎ (ଵଷܪ = 11.  

Proof. We know that ܭ2)ݎଶ, (ଵ଴ܪ = ,ଶܭ2)ݎ (ଵଷܪ = 6. Note that ܪଵ଴ = ହܥ ܨ ଵଷ. To show the upper bound, considerܪ⊇ = ଺ܭ − ( ସܲ ∪  ܨ ଶ). All vertices inܭ
have degree either 3 or 4. For ݑ is a vertex with ݀(ݑ) = ଵଷܪ ,4 ⊆ ܨ − ݑ ⊆ ܨ  ଷܥ ,namely ,ܨ ଷ inܥ Furthermore, there are two different .ܨ in ݒ for every ݒ−
involving three vertices with degree 4 and ܥଷ involving two vertices with degree 
3 and a vertex with degree 4. It can be verified that for both kinds of ܥଷ, 
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ଵଷܪ ⊆ ܨ − ܨ ଷ. Hence, Lemma 1 impliesܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଵଷ), soܪ (ଵଷܪ ≤11. Since ܪଵ଴ ⊆ ,ଶܭ2)∗ݎ ଵଷ, by (2) we obtainܪ (ଵ଴ܪ ≤ 11. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 10. According to Lemma 4, (ܨ)ߜ ≥ 3. There are four graphs ܨ 
satisfying these conditions, namely ܨ is isomorphic to ܭ଺ − ଷܥ) ∪ ଷܲ), ܭ଺ ସܥ)− ∪ ଺ܭ ,(ଶܭ − ଺ܭ ହ, orܥ − 2 ଺ܲ. For all ܪ ,ܨ ⊈ ܨ −  .ܨ ଷ in eachܥ ଷ for anyܥ
Thus, Lemma 1 implies ܨ ↛ ,ଶܭ2) ,ଶܭ2)∗ݎ so ,ܨ ଵ଴) for allܪ (ଵ଴ܪ ≥ 11. Since ܪଵ଴ ⊆ ,ଶܭ2)∗ݎ ଵଷ, by (2) we obtainܪ (ଵଷܪ ≥ 11.  

Theorem 9.  ܭ2)∗ݎଶ, (ଵ଺ܪ = 12.  

Proof. We know that ܭ2)ݎଶ, (ଵ଺ܪ = 6. Note that ܥହ ⊆  ଵ଺. To show the upperܪ
bound, consider ܨ = ଺ܭ −  ଷܥ is a 4-regular graph and all ܨ ଶ. Observe thatܭ3
in ܨ are isomorphic. It is easy to verify that ܪଵ଺ ⊆ ܨ − ݒ for every ݒ ∈  (ܨ)ܸ
and ܪଵ଺ ⊆ ܨ − ܨ Hence, Lemma 1 implies .ܨ ଷ inܥ ଷ for everyܥ → ,ଶܭ2)  ,(ଵ଺ܪ
so ܭ2)∗ݎଶ, (ଵ଺ܪ ≤ 12. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 11. According to Lemma 4, (ܨ)ߜ ≥ 3. Furthermore, (ܨ)߂ ≤ 4 as if 
there is a vertex ݒ with ݀(ݒ) = 5, then ݁(ܨ − (ݒ = 11 − 5 = 6 <  The .(ଵ଺ܪ)݁
only graph satisfying the above conditions is ܨ isomorphic to either ܭ଺ − ( ସܲ ଺ܭ ଶ) orܭ∪ − 2 ଷܲ. Note that ߂(ܪଵ଺) = 4. For both ܪ ,ܨଵ଺ ⊈ ܨ − ܨ)߂ since ݒ − (ݒ = 3 for ݒ ∈ (ݒ)݀ with (ܨ)ܸ = 4. Hence, Lemma 1 implies ܨ ,ଶܭ2)↛ ,ଶܭ2)∗ݎ ଵ଺), soܪ (ଵ଺ܪ ≥ 12.  

Theorem 10.  ܭ2)∗ݎଶ, (ଵ଻ܪ = 13.  

Proof. We know that ܭ2)ݎଶ, (ଵ଻ܪ = 6. Note that ܥହ ⊆  ଵ଻. To show the upperܪ
bound, consider ܨ = ଺ܭ − (ݑ)݀ is a vertex with ݑ have degree either 4 or 5. For ܨ ଶ. All vertices inܭ2 = ଵ଻ܪ ,5 ⊆ ܨ − ݑ ⊆ ܨ −  .ܨ in ݒ for every ݒ
Furthermore, there are two different ܥଷ	in ܨ, namely, ܥଷ involving two vertices 
with degree 5 and a vertex with degree 4 and ܥଷ involving two vertices with 
degree 4 and a vertex with degree 5. It can be verified that for both kinds of ܥଷ, ܪଵ଻ ⊆ ܨ − ܨ ଷ. Hence Lemma 1 impliesܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଵ଻), soܪ (ଵ଻ܪ ≤13. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 12. According to Lemma 4, (ܨ)ߜ ≥ 3. There are four graphs ܨ 
satisfying these conditions, namely ܨ is isomorphic to ܭ଺ − ଺ܭ ,ଶܭ3 − ( ଷܲ ଺ܭ ,(ଶܭ∪ − 2 ସܲ, or ܭ଺ − ܨ ଷ. Ifܥ = ଺ܭ − ଵ଻ܪ ଶ, thenܭ3 ⊈ ܨ − ܨ ଷ. Ifܥ ଷ for anyܥ = ଺ܭ − ( ଷܲ ∪ ଵ଻ܪ ଶ), thenܭ ⊈ ܨ −  ଷ involving three vertices withܥ ଷ withܥ
degree 4. If ܨ = ଺ܭ − ସܲ, then ܪଵ଻ ⊈ ܨ − ܨ of degree 5. If ݒ with ݒ = ଺ܭ −  ,ଷܥ
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then ܪଵ଻ ⊈ ܨ −  ,ଷ involving three vertices with degree 5. Henceܥ ଷ withܥ
Lemma 1 implies ܨ ↛ ,ଶܭ2) ,ଶܭ2)∗ݎ so ,ܨ ଵ଻) for allܪ (ଵ଻ܪ ≥ 13.  

Theorem 11.  ܭ2)∗ݎଶ, (ଵହܪ = 14.  

Proof. We know that ܭ2)ݎଶ, (ଵସܪ = 6. To show the upper bound, consider ܨ = ଺ܭ − (ݑ)݀ is a vertex with ݑ have degree either 4 or 5. For ܨ ଶ. All vertices inܭ = ଵହܪ ,5 ⊆ ܨ − ݑ ⊆ ܨ − ݒ for every ݒ ∈  Furthermore, there are .(ܨ)ܸ
two different ܥଷ in ܨ, namely, ܥଷ involving three vertices with degree 5 and ܥଷ 
involving two vertices with degree 5 and a vertex with degree 4. It can be 
verified that for both kinds of ܥଷ, ܪଵହ ⊆ ܨ − ܨ ଷ. Hence, Lemma 1 impliesܥ → ,ଶܭ2) ,ଶܭ2)∗ݎ ଵହ), soܪ (ଵହܪ ≤ 14. 

To show the lower bound, we must consider all graphs ܨ with (ܨ)ݒ = 6 and ݁(ܨ) = 13. The only graph satisfying these conditions is ܨ isomorphic to either ܭ଺ − ଷܲ or ܭ଺ − ܨ ଶ. Ifܭ2 = ଺ܭ − ଷܲ, then ܪଵହ ⊈ ܨ −  ଷ involvingܥ ଷ withܥ
three vertices with degree 5. If ܨ = ଺ܭ − ଵହܪ ଶ, thenܭ2 ⊈ ܨ −  ଷܥ ଷ withܥ
involving two vertices with degree 4 and a vertex with degree 5. Hence, Lemma 
1 implies ܨ ↛ ,ଶܭ2) ,ଶܭ2)∗ݎ so ,ܨ ଵହ) for bothܪ (ଵହܪ ≥ 14.  

We compile the restricted size Ramsey number for 2ܭଶ versus any graph of 
order five with no isolates in Table 1. 

Table 1 Compilation of ݎ∗(ܭ2ଶ,ܪ) with ܪ is a graph that has no isolates of 
order five. ܪ   ∗ݎଵ   ܪଶ   ܪଷ   ܪସ   ܪହ   ܪ଺   ܪ଻   ܭ2  ଼ܪଶ	  6  

 [9]  
 8  

 [9]  
 12  
 [9]  

 6  
 [9]  

 10  
 Th.3  

 9  
 Th.4 

 12  
 [11]  

 10  
 Th.3  ܪ   ∗ݎଽ  ܪଵ଴   ܪଵଵ ଵଶܪ ଵଷܪ ଵସܪ ଵହܪ 	ଶܭଵ଺  2ܪ   8  

 Th.5 
 11  

 Th.8  
 12  

 Th.7  
 12  

 Th.6  
 11  

 Th.8  
 13  

 [11]  
 14  

 Th.11 
 12  

 Th.9  ܪ   ∗ݎଵ଻   ܪଵ଼   ܪଵଽ   ܪଶ଴   ܪଶଵ   ܪଶଶ   ܪଶଷ    
  
	ଶܭ2    13  

 Th.10 
 15  

 [11]  
 13  

 [11]  
 14  

 [11]  
 15  

 [11]  
 15  

 [11]  
 21  

 [11]  

4 Conclusion 

In this paper we gave the complete list of the exact values of the restricted size 
Ramsey number for 2ܭଶ versus any graph of order five with no isolates. For 
further research: 

1. Find the size Ramsey number of  ̂ܭ2)ݎଶ,  .ଶଷܪ in Figure 1 except ܪ for all (ܪ
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2. Find the restricted size Ramsey number ܭ2)∗ݎଶ,  is a graph of ܪ with (ܪ
order six for which ܭ2)∗ݎଶ,  .is not yet given in [5] (ܪ
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