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Abstract. Harary and Miller (1983) started the research on the (restricted) size
Ramsey number for a pair of small graphs. They obtained the values for some
pairs of small graphs with order not more than four. In the same year, Faudree
and Sheehan continued the research and extended the result to al pairs of small
graphs with order not more than four. Moreover, in 1998, Lortz and Mengenser
gave the size Ramsey number and the restricted size Ramsey number for al pairs
of small forests with order not more than five. Recently, we gave the restricted
size Ramsey number for a path of order three and any connected graph of order
five. In this paper, we continue the research on the (restricted) size Ramsey
number involving small graphs by investigating the restricted size Ramsey
number for matching with two edges versus any graph of order five with no
isolates.
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1 Introduction

Let G be a graph with the vertex set, edge set, order, and size are V(G), E(G),
v(G), and e(G), respectively. We denote the degree of avertex v € V(G) by
d(v) and the minimum (resp. maximum) degree of verticesin G by §(G) (resp.
A(G)). Let H € G. A graph G — H is obtained from G by deleting al edgesin
H. Further terminology related to graphs can be found in [1].

The size Ramsey number of graphs G and H, #(G, H), is the smallest size of
graph F such that for any red-blue coloring of al edges of F we have a
subgraph G in red color or a subgraph H in blue color. If the order of F in the
size Ramsey number must be equal to r (G, H), then we call it the restricted size
Ramsey number, r*(G, H). The Ramsey number of graphs G and H, (G, H), is
the minimum order r of K,. such that any red-blue coloring of its edges contains
asubgraph G in red color or a subgraph H in blue color. Furthermore, we say F
arrowing graphs G and H, denoted by F — (G, H), if any red-blue coloring of
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the edges of F contains a subgraph G in red color or a subgraph H in blue color.
In addition, a red-blue coloring of the edges of F is called (G, H)-good if under
this coloring, F does not contain G in red color and H in blue color. The
notation F -» (G, H) meansthat there existsa (G, H)-good coloring in F.

The concept of the size Ramsey number was introduced by Erdos, et al. [2] in
1978, who aso gave some results for this problem. Long before this
introduction, the concept of the Ramsey number had already been established in
graph theory. The restricted size Ramsey number is a direct consequence of the
concept of the size Ramsey and Ramsey number in graphs. Some results on the
size Ramsey number and the restricted size Ramsey number of graphs can be
foundin [3-6].

To find the exact values of the (restricted) size Ramsey number for a pair of
graphs is challenging, even for a pair of small graphs. In 1983, Harary and
Miller [7] initiated the investigation on the (restricted) size Ramsey number for
a pair of small graphs. They obtained some exact values for a pair of graphs
with order not more than four. However, since the proof is long and needs a
tedious amount of work, they omitted the proof of some of their results. Faudree
and Sheehan [8] continued the investigation and compiled the complete values
for the (restricted) size Ramsey number for any pair of graphs with order not
more than four. They also did not give any proof of their results. Lortz and
Mengenser (1998) in [9] continued the investigation and derived the size and
the restricted size Ramsey numbers for all pairs of small forests with order not
more than five.

For the same reason as given by Faudree and Sheehan [8], they also did not
provide proof of their results. Recently, in [6] we gave the restricted size
Ramsey number for pairs of a path P; and any connected graph of order five.
We presented the complete proof for this case. To carry on the research on the
restricted size Ramsey number involving small graphs, we investigated the
restricted size Ramsey number for pairs of a matching with two edges, 2K, and
graph with no isolates of order five.

2 Préiminaries

The list of al graphs of order five that do not have isolated vertices is given in
Figure 1. In 1972, Chvéatal and Harary [10] gave the Ramsey number for 2K,
and any graph with no isolates, as stated in Theorem 1. This theorem provides
the order of graph F suchthat F — (2K,, H), infinding r* (2K, H).
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Figurel List of graphswith no isolates with order 5.

Theorem 1 [10] For any graph H with no isolates,
r(2K,,H) = {v(H) + 2,H is complete,v(H) + 1, otherwise.

Some exact values of r*(2K,, H) when H is a connected graph of order five are
dready known. From the results of Lortz and Mengenser [9] we have
r*(2K,,H)) = 6, v*(2K,,H,) = 8, r*(2K,,H;) = 12, and r*(2K,,H,) = 6.
Furthermore, from our previous results in [11] we have r*(2K,, H;) = 12,
r*(2Ky, Hi4) = 13, r*(2K,, Hig) = 15, r*(2K,, Hy9) = 13, r*(2K,, Hyp) =
14, r*(2K,, Hy,) = 15, r*(2K,, Hy;) = 15 and r*(2K,, H,3) = 21. For the
remaining graph H;, we will derive the exact values for r*(2K,, H;). To prove
some of our results, we use Theorem 2.

Theorem 2[11] Forn = 3,

(2K, K) ={n+22)n=4n2)-1,n=3

where (n r) isacombination of n objects taken r at atime.
Obvioudly, the following monotonicity property can be derived from the
definition of the (restricted) size Ramsey number. If ¢' € G and H' € H, then

#(G',H") < #(G, H) (1)
and
r*(G',H") <r*(G,H) (2

Note that Chvétal and Harary [10] gave this kind of monotonicity property for
the Ramsey number of a pair of graphs.

3 Main Results

In this section, we present r*(2K,, H;) for which the values are not yet known.
Sincer*(2K,, Ks) = 21 isaready known, our goal isto find r*(2K,, H;) for al
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H; in Figure 1, except H,; or Ks. Using Theorem 1 we obtain r(2K,,H;) = 6
for every H; in our consideration. For any pair of graphs G and H, it is known
that e(G) + e(H) — 1 <r*(G,H) < (r(G,H) 2). Using this bound, we have
e(H;) +1 <r*(2K,,H;) <15 for al H; in our consideration. We will give
r*(2K,, H;) for H; a graph that contains a C; in Theorems 3 and 4; H; agraph
that contains a C, in Theorems 5, 7, and 6; H; a graph that contains a Cs in
Theorems 8, 9, and 10; and the remaining in Theorem 11.

Lemmas 1 and 2 give the properties of graph F such that F — (2K,, H) for any
graph H without isolates. Lemma 1 is a generalization of the lemma given in
[12], which they gave for H = K; ,,. Actually, the lemma holds for any graph H
and the proof is similar to the proof in [12]. Lemmas 3 and 4 give the properties
of F such that F —» (2K,, H) when graph H contains cycles. We will use all
these lemmas in proving our theorems.

Lemma 1. Let H be agraph. F - (2K,, H) holds if and only if the following
conditions are satisfied:

1. HSF—-vforeveryv e V(F) and
2. HSF—-(Csforevery C3inF.

Lemma 2. Let H be a graph with no isolates. If F - (2K,,H) and v(F) =
r(2K,, H), then §(F) = 2.

Proof. If H=K,, F - (2K,,H), and v(F) = r(2K,,H), then Theorem 2
implies §(F) = 2. If H # K,,, then using Theorem 1 we obtain v(F) =n + 1.
Suppose to the contrary that F - (2K,,H), v(F)=n+1, and §(F) < 1.
Assume u isavertex with d(u) = 1 and v isaneighbor of u. Thegraph F — v
consists of a component with order n — 1 and an isolate. Obviously, H € F — v
and Lemma2impliesF » (2K,, H). We have a contradiction.

Lemma 3. For n > 4, let H be a graph with v(H) = n and H contains a cycle
of length t, C;, for 3 <t <n.If F - (2K,,H), then F contains at least two C;
which do not share avertex and are not incident to a C5.

Proof. For n > 4, let H be agraph with v(H) =nand C; S H for 3 <t <n.
Suppose to the contrary that F — (2K,,H) and al C, for3 <t <ninF sharea
vertex or are incident to a Cs. If al C; in F share avertex v, then H £ F — v
and if al C; in F are incident to a C5, then H € F — C3. Lemma 1 implies
F +» (2K,, H). We have a contradiction.

In Figure 2(a) we give an example of a graph that contains more than one C5 but
al share avertex v. By removing v, it means that by coloring all edges incident
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to v red (edges in dotted line), C; € F — v. In Figure 2(b) we give an example
of agraph that contains more than one C; but all areincident to a C; (let’s call it
C3). By removing C3, it means that by coloring all edges belonging to C; as red
(edgesin dotted line), C; € F — Cs.

Figure2 Examplesfor Lemma3.

Lemma 4. For n = 4, let H be a graph with v(H) = n and H contains a cycle
withlengthn — 1. If F - (2K,, H) and v(F) = r(2K,, H), then 6 (F) = 3.

Proof. For n > 4, let H be a graph with v(H) =nand C,_1 S H. If H = K,
F - (2K,,H), and v(F) = r(2K,, H), then Theorem 2 implies §(F) = 3. If
H % K,, then using Theorem 1 we obtan v(F) =n+ 1. Suppose to the
contrary that F — (2K,,H), v(F) =n+1, and §(F) < 2. Lemma 2 implies
6(F) = 2. Suppose u is a vertex with degree 2 and v is a neighbor of u. The
degreeof u in F —vis1. Since v(F) =n+1, itisclear that C,_; £ F — v.
Hence, LemmalimpliesF » (2K,, H). We have a contradiction.

Theorem 3. 7*(2K,, Hs) = r*(2K,, Hg) = 10.

Proof. We know that r(2K,, Hs) = r(2K,, Hg) = 6. Note that C; € Hs € Hj.
To show the upper bound, consider F = K, — (C, U K5). All verticesin F have
degree either 3 or 4. The graph F — v with d(v) = 3 isawheel without a spoke
and F — v with d(v) = 4 isagraph containing two triangles that share a vertex.
Itisclear that Hg © F — v for both kind of vertices. Furthermore, al C; in F are
isomorphic, involving two vertices with degree 3 and a vertex with degree 4. It
is easy to verify that Hg € F — C; for every (5. Hence, Lemma 1 implies
F - (2K,,Hg), s0 r*(2K,, Hg) <10. Since Hs € Hg, by (2) we obtain
r*(2K,, Hs) < 10.
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Figure3 Graphs F that satisfy the conditions for the lower bound of Theorem 3.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) =9. According to Lemma 2 and 3, §(F) = 2 and F must contain at least
two C; which do not share a vertex and are not incident to a C5. There are four
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graphs satisfying these conditions, as shown in Figure 3, each with a red-blue
coloring that is (2K,, Hs)-good (dotted line in red color). For al F, F »
(2K,,Hs), so r*(2K,,Hs) > 10. Since Hs S Hg, by (2) we obtain
r*(2K,, Hg) = 10.

Theorem 4. r*(2K,, Hg) = 9.

Proof. We know that r(2K,, Hg) = 6. Note that C; € Hs. To show the upper
bound, let F = Mg with M, be a Mobius ladder with six vertices. Observe that
F is a 3-regular graph and contains two isomorphic C. It is easy to verify that
H, € F —v for every v € V(F) and Hy € F — C5 for every C; in F. Hence,
LemmalimpliesF = (2K,, Hg), Sor*(2K;, Hg) < 9.

Figure4 GraphsF that satisfy the conditions for the lower bound of Theorem 4.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 8. According to Lemma 2 and 3, §(F) = 2 and F must contain at least
two C; which do not share a vertex and are not incident to a C5. There are only
two graphs satisfying these conditions, as shown in Figure 4, with red-blue
coloring that are (2K,, Hg)-good (the red color in dotted line). Hence, F »
(2K,, Hy) for both F, so r*(2K,, Hy) = 9.

Theorem 5. r*(2K,, Hy) = 8.

Proof. We know that r(2K,, Hy) = 6. Note that C, S Hy. To show the upper
bound, let F' = Mg with M be a Mébius ladder with six vertices. Consider
F = F' — e with e is an edge belonging to C, in F'. Observe that F is a C;-free
and all vertices in F have degree either 2 or 3. Suppose u is a vertex with
d(u) =2 and v with d(v) = 3. It is clear that Hy € F — v € F — u. Hence,
LemmalimpliesF — (2K,, Hy), SOT*(2K,, Hy) < 8.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 7. According to Lemma 2 and 3, §(F) = 2 and F must contain at least
two C, which do not share a vertex and are not incident to a C;. However, there
is no graph satisfying these conditions, so r*(2K,, Hy) = 8.

Theorem 6 r*(ZKz, le) =12.
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Proof. We know that r(2K,, H,;) = 6. Note that C, € H,,. To show the upper
bound, consider F = K, — 3K,. Observe that F is a 4-regular graph and all C;
in F areisomorphic. It can be verified that H,, € F — v for every v € V(F) and
H,, € F — C; for every C; in F. Hence, Lemma 1 implies F — (2K,, H;,), SO
r*(2K,, Hyp) < 12.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 11. According to Lemmas 2 and 3, §(F) = 2 and F must contain at
least two C, which do not share a vertex and are not incident to a C5. There are
four graphs F satisfying these conditions, namely, F is isomorphic to K, —
(C3UK,), Kg—Ps, Kg— (P,UK,), or Kg—2P;. If F=Kg— (C3UK,) or
F =Kz — Ps,then Hi, € F —v withv isavertex withd(v) =5. If F = K, —
(P,UK,) or F =Kz — 2P, then H;, € F — (5 for any C3 in each F. Hence,
LemmalimpliesF » (2K,, Hy,) foral F,sor*(2K,,H,,) = 12.

Proof. We know that r(2K,,H,;) = 6. To show the upper bound, consider
F=Kgs—K;3.InF thereisavertex u withd(u) =5and H;; SF —u S F —
v for any v in F. Furthermore, thereisa K, in F and al verticesv € V(K,) are
adjacent to u and one is adjacent to vertex x with d(x) = 2. There are five
kinds of C; in F, namely, C; involving u and two v not adjacent to x, C;
involving u and two v oneis adjacent to x, C5 involving three v not adjacent to
x, C3 involving three v one is adjacent to x, and C; involving x. It can be
verified that for every kind of C;, Hy, © F — C3. Hence, Lemma 1 implies
F - (2K,,Hy1), 07" (2K,, Hy1) < 12.

Before proving the lower bound, consider F' = K, — 2P,. It is clear that
Hy; € F' — v for vertex v with d(v) = 5. To show the lower bound, we must
consider al graphs F with v(F) = 6 and e(F) = 11. According to Lemma 2,
§(F) = 2. However, all F that satisfy these conditions are subgraphs of F'.
Therefore, Lemma 1 implies F » (2K,, H;,) for all F. Hence r*(2K,, Hy1) =
12.

Theorem 8. r*(2K,, Hyy) = r*(2K;, Hy3) = 11.

Proof. We know that r(2K,, H,,) = r(2K,, H;3) = 6. Note that H;, = C5 S
H,5. To show the upper bound, consider F = K; — (P, U K5). All verticesin F
have degree either 3 or 4. For u isavertex withd(u) =4, Hj3 €S F—uc F —
v for every v in F. Furthermore, there are two different C; in F, namely, C;
involving three vertices with degree 4 and C5 involving two vertices with degree
3 and a vertex with degree 4. It can be verified that for both kinds of Cs,
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Hi3 € F — (5. Hence, Lemma 1 implies F — (2K,, Hy3), S0 r*(2K;, Hi3) <
11. Since H,y € H,3, by (2) weobtain r*(2K,, H;¢) < 11.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 10. According to Lemma 4, §(F) = 3. There are four graphs F
satisfying these conditions, namely F is isomorphic to Ky — (C3 U P3), K4 —
(CLUK;), Kg —Cs, 0r Kg — 2P;. For dl F, H £ F — C5 for any C3 ineach F.
Thus, Lemma l implies F » (2K,, Hy,) for al F, so r*(2K,, H;y) = 11. Since
H,y, € H,3, by (2) weobtainr*(2K,, H;3) = 11.

Theorem 9 r*(ZKz, H16) =12.

Proof. We know that r(2K,, H,¢) = 6. Note that C5 S Hy4. TO show the upper
bound, consider F = K, — 3K,. Observe that F is a 4-regular graph and all C;
in F are isomorphic. It is easy to verify that H;, € F — v for every v € V(F)
and H;, € F — C; for every C5 in F. Hence, Lemma l implies F - (2K,, Hyg),
S0 1r*(2K,, Hig) < 12.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 11. According to Lemma 4, §(F) = 3. Furthermore, A(F) < 4 as if
thereisavertex v with d(v) = 5, thene(F —v) =11 -5 =6 < e(H,4). The
only graph satisfying the above conditions is F isomorphic to either Kg — (P, U
K,) or K;—2P;. Note that A(H.¢) = 4. For both F, Hi € F —v since
A(F —v) =3 for v e V(F) with d(v) = 4. Hence, Lemma 1 implies F »
(2K3,Hi6), 07" (2K, Hyg) = 12.

Proof. We know that r(2K,, H;;) = 6. Note that C; S H,,. To show the upper
bound, consider F = K, — 2K,. All verticesin F have degree either 4 or 5. For
u is a vertex with d(u) =5, H, S F—-—uCSF—v for evety v in F.
Furthermore, there are two different C; in F, namely, C; involving two vertices
with degree 5 and a vertex with degree 4 and C; involving two vertices with
degree 4 and a vertex with degree 5. It can be verified that for both kinds of C5,
Hy; € F — C5. Hence Lemma 1 implies F — (2K,,H,7), SO r*(2K;, H{7) <
13.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 12. According to Lemma 4, §(F) = 3. There are four graphs F
satisfying these conditions, namely F is isomorphic to Ky — 3K,, Kz — (P3 U
K;), Kg — 2P, 0r Kg — C5. If F = Kg — 3K,, then H; £ F — C5 for any C5. If
F =Kg — (P; UKy), then H;; € F — C5 with C; involving three vertices with
degreed. If F = K4 — Py, then Hy; € F — v with v of degree5. If F = K4 — (5,
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then H,; € F — C; with C; involving three vertices with degree 5. Hence,
LemmalimpliesF » (2K,, H,;) foral F,sor*(2K,,H,;) = 13.

Theorem 11. r*(2K,, H;5) = 14.

Proof. We know that r(2K,, H,,) = 6. To show the upper bound, consider
F = Kz — K,. All verticesin F have degree either 4 or 5. For u is avertex with
d(u) =5, His S F—u < F —v for every v € V(F). Furthermore, there are
two different C; in F, namely, C5 involving three vertices with degree 5 and C5
involving two vertices with degree 5 and a vertex with degree 4. It can be
verified that for both kinds of C;, His € F — C5. Hence, Lemma 1 implies
F > (2K, Hys), 07" (2K,, Hys) < 14.

To show the lower bound, we must consider al graphs F with v(F) = 6 and
e(F) = 13. The only graph satisfying these conditionsis F isomorphic to either
Ks — P; or Ko — 2K,. If F = K; — P;, then Hic € F — C5 with C3 involving
three vertices with degree 5. If F = Ky — 2K, then H;5 € F — C3 with C;
involving two vertices with degree 4 and a vertex with degree 5. Hence, Lemma
limpliesF +» (2K,, H;5) for both F, so r*(2K;, Hy5) = 14.

We compile the restricted size Ramsey number for 2K, versus any graph of
order five with noisolatesin Table 1.

Tablel Compilation of r*(2K,, H) with H is a graph that has no isolates of
order five.

~  H, H, H, H, Hy H,  H,  H,
6 8 7 6 10 9 © 10
2K 19 9] [9] [ Th3 Th4 [11] Th3
T* H9 HlO Hll H12 H13 H14 H15 H16
8 11 12 12 11 13 14 12
2Kz Ths Th8 Th7 The Th8 [11] Thll Tho
r Hi; Hig Hio Hyq Hyy Hy, Hys
e 13815 13 14 15 15 21
2 Thi0 11 [ [ [ [ [

4 Conclusion

In this paper we gave the complete list of the exact values of the restricted size
Ramsey number for 2K, versus any graph of order five with no isolates. For
further research:

1. Find the size Ramsey number of #(2K,, H) for al H in Figure 1 except
H23.
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2. Find the restricted size Ramsey number r*(2K,, H) with H is a graph of
order six for which r*(2K,, H) isnot yet givenin [5].
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