

Total Edge Irregularity Strength of the Disjoint Union of Helm Graphs

Muhammad Kamran Siddiqui¹, Nurdin² & Edy Tri Baskoro³

¹Abdus Salam School of Mathematical Sciences, 68-B New Muslim Town, GC University, Lahore, Pakistan ²Mathematics Department, Faculty of Mathematics, and Natural Sciences, Hasanuddin University, Jalan Perintis Kemerdekaan, Km.10 Tamalanrea, Makassar, Indonesia ³Combinatorial Mathematics Research Group, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesa No. 10. Bandung 40132, Indonesia Email: kamransiddiqui75@gmail.com

Abstract. The total edge irregular k-labeling of a graph G=(V,E) is the labeling of vertices and edges of G in such a way that for any different edges their weights are distinct. The total edge irregularity strength, tes(G), is defined as the minimum k for which G has a total edge irregular k-labeling. In this paper, we consider the total edge irregularity strength of the disjoint union of m special types of helm graphs.

Keywords: disjoint union; edge irregular total labeling; helm graph; irregularity strength; total edge irregularity strength.

1 Introduction

In this paper, we consider a graph G as a finite graph (without loop and multiple edges) with the vertex-set V and the edge-set E. In [1], Baca, Jendrol, Miller and Ryan introduced the notion of the total edge irregular k-labeling of a graph G=(V,E) namely the labeling $\psi:V \cup E \to \{1,2,\ldots,k\}$ such that all edge weights are different. The weight wt(uv) of an edge uv is defined as $wt_{\psi}(uv) = \psi(u) + \psi(uv) + \psi(v)$. The total edge irregularity strength of G, denoted by tes(G), is the smallest k for which G has a total edge irregular k-labeling.

The basic idea of the total edge irregularity strength came from irregular assignments and the irregularity strength of graphs introduced by Chartrand, Jacobson, Lehel, Oellermann, Ruiz and Saba [2]. An *irregular assignment* is a k-labeling of the edges such that the sum of the labels of edges incident to a vertex is different for all the vertices of G. The smallest integer k for which G has an *irregular assignment* is called the *irregularity strength* of G, and is denoted by s(G).

It is not an easy task to compute the irregularity strength of graphs with simple structures, see [3-6]. Karonski, Luczak and Thomason [7] conjectured that the edges of every connected graph of order at least 3 can be assigned labels from {1, 2, 3} such that for all pairs of adjacent vertices the sums of the labels of the incident edges are distinct. Baca, Jendrol, Miller and Ryan [1] gave a lower bound on the total edge irregularity strength of a graph:

$$tes(G) \ge \max\left\{ \left\lceil \frac{|E(G)| + 2}{3} \right\rceil, \left\lceil \frac{\Delta(G) + 1}{2} \right\rceil \right\}$$
 (1)

where $\Delta(G)$ is the maximum degree of G. The authors of [1] determined the exact values of the total edge irregularity strength for paths, cycles, stars, wheels and friendship graphs. Recently, Ivanco and Jendrol [8] posed the following conjecture:

Conjecture 1. Let G be an arbitrary graph different from $K_{_}5$. Then

$$tes(G) = \max\left\{ \left\lceil \frac{|E(G)| + 2}{3} \right\rceil, \left\lceil \frac{\Delta(G) + 1}{2} \right\rceil \right\}$$
 (2)

Conjecture 1 has been verified for all trees in [8], for complete graphs and complete bipartite graphs in [9] and [10], for the Cartesian product of two paths $P_n \square P_m$ in [11], for the corona product of a path with certain graphs in [12], for

large dense graphs with $\frac{|E(G)|+2}{3} \le \frac{\Delta(G)+1}{2}$ in [13], for hexagonal grids in

[14], for the zigzag graph [15], for the categorical product of two paths $P_n \times P_m$ [16], for the categorical product of a cycle and a path $C_n \times P_m$ in [17,18], for a subdivision of stars in [19], for the categorical product of two cycles in [20], and for the strong product of two paths in [21].

Motivated by [22], we investigated the total edge irregularity strength of the disjoint union of helm graphs. A *helm graph* H_n is obtained from a wheel on n+1 vertices by adding a pendant edge to every vertex of its cycle C_n . In this study, we determined the total edge irregularity strength of the disjoint union of m copies of a certain helm graph. We also determined the total edge irregularity strength of the disjoint union of non-isomorphic helm graphs.

This paper adds further support to Conjecture 1 by demonstrating that the disjoint union of helm graphs has a total edge irregularity strength equal to

$$\left[\frac{\left|E\left(\bigcup_{j=1}^{m}H_{n+j}\right)\right|+2}{3}\right]$$

2 Main Results

First, we determine the total edge irregularity strength of a disjoint union mH_n of m copies of a helm graph H_n . Let

$$V(H_n) = \{c^j, x_i^j, y_i^j; 1 \le i \le n, 1 \le j \le m\}$$

$$E(H_n) = \{c^j x_i^j, x_i^j y_i^j, x_i^j x_{i+1}^j; 1 \le i \le n, 1 \le j \le m\}$$

Moreover, the subscript n+1 is replaced by 1.

Lemma 1. For $n \ge 3$ tes $(2H_n) = 2n + 1$.

Proof. From (1) it follows that $tes(2H_n) \ge 2n+1$. Now the existence of an optimal labeling φ_1 proves the converse inequality for $1 \le i \le n$ as follows:

$$\varphi_{1}(x_{i}^{1}) = \varphi_{1}(y_{i}^{1}) = 1, \quad \varphi_{1}(c^{1}) = \varphi_{1}(c^{2}) = 2n + 1,$$

$$\varphi_{1}(c^{1}x_{i}^{1}) = \varphi_{1}(x_{i}^{2}x_{i+1}^{2}) = \varphi_{1}(x_{i}^{1}y_{i}^{1}) = \varphi_{1}(x_{i}^{2}y_{i}^{2}) = i,$$

$$\varphi_{1}(x_{i}^{2}) = 2n + 1, \quad \varphi_{1}(y_{i}^{2}) = n + 1, \quad \varphi_{1}(c^{2}x_{i}^{2}) = \varphi_{1}(x_{i}^{1}x_{i+1}^{1}) = n + i.$$

It is easy to see that the weights of the edges are pair-wise distinct. This concludes the proof.

Theorem 1. Let $m, n \ge 3$ be two integers. Then, the total edge irregularity strength of a disjoint union mH_n of m copies of a helm graph H_n is mn+1.

Proof. As $|E(mH_n)| = 3mn$ then (1) implies that $tes(H_n) \ge mn+1$. Let k = mn+1. To prove the converse inequality, we define the total edge irregular k-labeling ψ_1 for $1 \le i \le n$ and $1 \le j \le m$ as follows:

$$\psi_1(c^j) = \psi_1(x_i^j) = \psi_1(y_i^j) = \min \left\{ \left| \frac{3n(j-1)+2}{2} \right|, k \right\}.$$

Case I: For $1 \le j \le m$ such that $\left| \frac{3n(j-1)+2}{2} \right| < k$

(i) When *n* is even, $\psi_1(x_i^j y_i^j) = i$, $\psi_1(x_i^j x_{i+1}^j) = n + i$, $\psi_1(c^j x_i^j) = 2n + i$,

- (ii) When n is odd,
 - (a) If j is odd, then the edges $c^j x_i^j$, $x_i^j y_i^j$ and $x_i^j x_{i+1}^j$ receive the same labels as in Case I (i)
 - (b) If j is even, $\psi_1(x_i^j y_i^j) = 1 + i$, $\psi_1(x_i^j x_{i+1}^j) = n + 1 + i$, $\psi_1(c^j x_i^j) = 2n + 1 + i$,

Case II: For
$$1 \le j \le m$$
 such that $\left| \frac{3n(j-1)+2}{2} \right| \ge k$

Let

$$w = \min \left\{ j; \ 1 \le j \le m \text{ such that } \left\lfloor \frac{3n(j-1)+2}{2} \right\rfloor \ge k \right\}$$

$$l = \max \left\{ t_j; \ 1 \le j \le m \text{ such that } \left\lfloor \frac{3n(j-1)+2}{2} \right\rfloor < k \right\}$$

$$t_j = \min \left\{ \left\lfloor \frac{3n(j-1)+2}{2} \right\rfloor, \ k \right\} \text{ for } 1 \le j \le m \text{ such that } \left\lfloor \frac{3n(j-1)+2}{2} \right\rfloor < k$$

(i) When n is even,

we here
$$n$$
 is even,
$$\psi_{1}\left(x_{i}^{j}y_{i}^{j}\right) = \begin{cases}
3n + 2(l - k) + i, & \text{if } j = w \\
3n + 2(l - k) + i + (j - w)3n, & \text{if } w + 1 \leq j \leq m
\end{cases}$$

$$\psi_{1}\left(x_{i}^{j}x_{i+1}^{j}\right) = \begin{cases}
4n + 2(l - k) + i, & \text{if } j = w \\
4n + 2(l - k) + i + (j - w)3n, & \text{if } w + 1 \leq j \leq m
\end{cases}$$

$$\psi_{1}\left(c^{j}y_{i}^{j}\right) = \begin{cases}
5n + 2(l - k) + i, & \text{if } j = w \\
5n + 2(l - k) + i + (j - w)3n, & \text{if } w + 1 \leq j \leq m
\end{cases}$$

- (ii) When n is odd,
 - (a) If w is odd

$$\psi_1\left(x_i^j\,y_i^j\right) = \begin{cases} 3\,n + 2\,(l-k) + 1 + i, & if \quad j = w \\ 3\,n + 2\,(l-k) + i + 1 + (j-w)3\,n, & if \quad w + 1 \le j \le m \end{cases}$$

$$\psi_1\left(x_i^j x_{i+1}^j\right) = \begin{cases} 4n + 2(l-k) + 1 + i, & \text{if} \quad j = w \\ 4n + 2(l-k) + i + 1 + (j-w)3n, & \text{if} \quad w + 1 \le j \le m \end{cases}$$

$$\psi_1\left(c^j y_i^j\right) = \begin{cases} 5n + 2(l-k) + 1 + i, & \text{if } j = w\\ 5n + 2(l-k) + i + 1 + (j-w)3n, & \text{if } w + 1 \le j \le m \end{cases}$$

(b) If w is even, then the edges $c^j x_i^j, x_i^j y_i^j$ and $x_i^j x_{i+1}^j$ receive the same labels as in Case II (i)

Under the labeling ψ_1 the total weights of the edges are described as follows:

- (i) The edges $x_i^j y_i^j$ for $1 \le i \le n, 1 \le j \le m$ receive consecutive integers from the interval [3n(j-1)+3, 3n(j-1)+n+2],
- (ii) The edges $x_i^j x_{i+1}^j$ for $1 \le i \le n, 1 \le j \le m$ receive consecutive integers from the interval [3n(j-1)+n+3, 3n(j-1)+2n+2],
- (iii) The edges $c^j x_i^j$ for $1 \le i \le n, 1 \le j \le m$ receive consecutive integers from the interval [3n(j-1)+2n+3, 3n(j-1)+3n+2].

It is not difficult to see that all vertex and edge labels are at most k and the edge-weights of the edges $c^j x_i^j, x_i^j y_i^j$ and $x_i^j x_{i+1}^j$ are pairwise distinct. Thus, the resulting labeling is a total edge irregular k-labeling. This concludes the proof.

For $m,n \ge 2$, let us consider the disjoint union of m non-isomorphic helm graphs: $H_{n+1}, H_{n+2}, H_{n+3}, ..., H_{n+m}$, where

$$V\left(\bigcup_{j=1}^{m} H_{n+j}\right) = \left\{c^{j}, x_{i}^{j}, y_{i}^{j}; \ 1 \le i \le n+j, 1 \le j \le m\right\}$$

is the corresponding vertex set and

$$E\left(\bigcup_{j=1}^{m} H_{n+j}\right) = \left\{c^{j} x_{i}^{j}, x_{i}^{j} y_{i}^{j}, x_{i}^{j} x_{i+1}^{j} ; 1 \le i \le n+j, 1 \le j \le m\right\}$$

is the corresponding edge set. Note that the subscript n+j+1 is replaced by 1.

Now, we determine the exact value of the total edge irregularity strength of the graph $\bigcup_{j=1}^m H_{n+j}$.

Theorem 1. Let $m, n \ge 2$ be two integers and $G \cong \bigcup_{j=1}^m H_{n+j}$. Then $tes(G) = mn + 1 + \frac{m(m+1)}{2}$.

Proof. As $|E(\bigcup_{j=1}^{m} H_{n+j})| = 3\sum_{j=1}^{m} (n+j)$ then from (1) it follows that $tes(G) \ge mn + 1 + \frac{m(m+1)}{2}$. Let $k = mn + 1 + \frac{m(m+1)}{2}$. To prove the converse inequality, we define the total edge irregular k-labeling ψ_2 for $1 \le i \le n+j$ and $1 \le j \le m$ as follows.

For $1 \le i \le n+1$

$$\begin{split} \psi_2(c^1) &= \psi_2(x_i^1) = \psi_2(y_i^1) = 1, \\ \psi_2\left(x_i^1 y_i^1\right) &= i, \quad \psi_2\left(x_i^1 x_{i+1}^1\right) = n + 1 + i, \quad \psi_2\left(c^1 x_i^1\right) = 2n + 2 + i, \end{split}$$

For $1 \le i \le n + j$

$$\psi_2(c^j) = \psi_2(x_i^j) = \psi_2(y_i^j) = \min \left\{ \left[\frac{3\sum_{s=1}^{j-1} (n+s+2)}{2} \right], k \right\} \text{ for } 2 \le j \le m.$$

• For
$$2 \le j \le m$$
 such that $\left| \frac{3\sum_{s=1}^{j-1} (n+s) + 2}{2} \right| < k$

(i) When
$$\sum_{s=1}^{j-1} (n+s) \equiv 0 \pmod{2}$$

 $\psi_2\left(x_i^j y_i^j\right) = i, \quad \psi_2\left(x_i^j x_{i+1}^j\right) = n+j+i, \quad \psi_2\left(c^j x_i^j\right) = 2n+2j+i,$

(ii) When
$$\sum_{s=1}^{j-1} (n+s) \equiv 1 \pmod{2}$$

 $\psi_2\left(x_i^j y_i^j\right) = 1+i, \quad \psi_2\left(x_i^j x_{i+1}^j\right) = 1+n+j+i, \quad \psi_2\left(c^j x_i^j\right) = 1+2n+2j+i,$

• For
$$2 \le j \le m$$
 such that $\left| \frac{3\sum_{s=1}^{j-1} (n+s) + 2}{2} \right| \ge k$

Let

$$w = \min \left\{ j; \ 2 \le j \le m \text{ such that } \left| \frac{3\sum_{s=1}^{j-1} (n+s) + 2}{2} \right| \ge k \right\}$$

$$\psi_{2}\left(x_{i}^{j}y_{i}^{j}\right) = \begin{cases} 3\sum_{s=1}^{w-1}(n+s) - 2k + i, & if \quad j = w\\ 3\sum_{s=1}^{w-1}(n+s) - 2k + i + 3n + 3j - 1, & if \quad w+1 \leq j \leq m \end{cases}$$

$$\psi_{2}\left(x_{i}^{j}x_{i+1}^{j}\right) = \begin{cases}
3\sum_{s=1}^{w-1}(n+s) - 2k + 2 + n + w + i, & if \quad j = w \\
3\sum_{s=1}^{w-1}(n+s) - 2k + i + 4n + 2j + w, & if \quad w+1 \le j \le m
\end{cases}$$

$$\psi_{2}\left(c^{j}x_{i}^{j}\right) = \begin{cases}
3\sum_{s=1}^{w-1}(n+s) - 2k + 2 + 2n + 2w + i, & if \quad j = w \\
3\sum_{s=1}^{w-1}(n+s) - 2k + i + 5n + j + 2w + 1, & if \quad w+1 \le j \le m
\end{cases}$$

$$\psi_{2}\left(c^{j}x_{i}^{j}\right) = \begin{cases} 3\sum_{s=1}^{w-1} (n+s) - 2k + 2 + 2n + 2w + i, & if \quad j = w \\ 3\sum_{s=1}^{w-1} (n+s) - 2k + i + 5n + j + 2w + 1, & if \quad w+1 \le j \le m \end{cases}$$

Under the labeling ψ_2 , the total weights of the edges are described as follows:

- The edges $x_i^1 y_i^1$, $x_i^1 x_{i+1}^1$ and $c^1 x_i^1$ for $1 \le i \le n+1$ receive consecutive integers from the interval [3,3+n], [4+n,2n+4] and [2n+5,3n+5], respectively.
- (ii) The edges $x_i^j y_i^j$ for $1 \le i \le n+j, 2 \le j \le m$ receive consecutive integers from the interval $3\sum_{j=1}^{j-1} (n+s) + 3, 3\sum_{j=1}^{j-1} (n+s) + n + j + 2$,
- (iii) The edges $x_i^j x_{i+1}^j$ for $1 \le i \le n+j, 2 \le j \le m$ receive consecutive integers from the interval $\left[3 \sum_{s=1}^{j-1} (n+s) + n + j + 3, 3 \sum_{s=1}^{j-1} (n+s) + 2n + 2j + 2 \right]$,

(iv) The edges $c^j x_i^j$ for $1 \le i \le n+j$, $2 \le j \le m$ receive consecutive integers from the interval $\left[3\sum_{s=1}^{j-1}(n+s)+2n+2j+3, 3\sum_{s=1}^{j}(n+s)+2\right]$,

It is not difficult to see that all vertex and edge labels are at most k and the edge-weights of the edges $c^i x_i^j$, $x_i^j y_i^j$ and $x_i^j x_{i+1}^j$ are pairwise distinct. Thus, the resulting labeling is a total edge irregular k-labeling. This concludes the proof.

3 Conclusion

In this paper, we have determined the exact value of the total edge irregularity strength of the disjoint union of m copies of a helm graph as well as the disjoint union of non-isomorphic helm graphs $\bigcup_{j=1}^{m} H_{n+j}$. We conclude by stating the following open problem:

Open Problem. For $m \ge 2$ find the exact value of the total edge irregularity strength of a disjoint union of m arbitrary helm graphs.

Acknowledgements

The authors wish to thank the anonymous referee for his/her valuable comments.

References

- [1] Baca, M., Jendrol, S., Miller, M. & Ryan, J., *On Irregular Total Labellings*, Discrete Math., **307**, pp. 1378-1388, 2007.
- [2] Chartrand, G., Jacobson, M.S., Lehel, J., Oellermann, O.R., Ruiz, S. & Saba, F., *Irregular Networks*, Congr. Numer., **64**, pp. 187-192, 1988.
- [3] Bohman, T. & Kravitz, D., *On the Irregularity Strength of Trees*, J. Graph Theory, **45**, pp. 241-254, 2004.
- [4] Frieze, A., Gould, R.J., Karonski, M. & Pfender, F., *On Graph Irregularity Strength*, J. Graph Theory, **41**, pp. 120-137, 2002.
- [5] Jendrol, S., Tkac, M., & Tuza, Z., *The Irregularity Strength and Cost of The Union of Cliques*, Discrete Math., **150**, pp. 179-186, 1996.
- [6] Nierhoff, T., A Tight Bound on The Irregularity Strength of Graphs, SIAM J. Discrete Math., 13, pp. 313-323, 2000.
- [7] Karonski, M., Luczak, T. & Thomason, A., *Edge Weights and Vertex Colours*, J. Combin. Theory B, **91**, pp. 151-157, 2004.
- [8] Ivanco, J. & Jendrol, S., *Total Edge Irregularity Strength of Trees*, Discussiones Math. Graph Theory, **26**, pp. 449-456, 2006.

- [9] Jendrol, S., Miskuf, J. & Sotak, R., *Total Edge Irregularity Strength of Complete and Complete Bipartite Graphs*, Electron. Notes Discrete Math., **28**, pp. 281-285, 2007.
- [10] Jendrol, S., Miskuf, J. & Sotak, R., *Total Edge Irregularity Strength of Complete Graphs and Complete Bipartite Graphs*, Discrete Math., **310**, pp. 400-407, 2010.
- [11] Miskuf, J. & Jendrol, S., On Total Edge Irregularity Strength of The Grids, Tatra Mt. Math. Publ., **36**, pp. 147-151, 2007.
- [12] Nurdin, Salman, A.N.M. & Baskoro, E.T., *The Total Edge-Irregular Strengths of The Corona Product of Paths with Some Graphs*, J. Combin., Math. Combin. Comput., **65**, pp. 163-175, 2008.
- [13] Brandt, S., Miskuf, J. & Rautenbach, D., *On A Conjecture about Edge Irregular Total Labellings*, J. Graph Theory, **57**, pp. 333-343, 2008.
- [14] Al-Mushayt, O., Ahmad, A. & Siddiqui, M.K., On the Total Edge Irregularity Strength of Hexagonal Grid Graphs, Australas. J. Combin. 53, pp. 263-271, 2012.
- [15] Ahmad, A., Siddiqui, M.K. & Afzal, D., On the Total Edge Irregularity Strength of Zigzag Graphs, Australasian. J. Combin., **54**, pp. 141-149, 2012.
- [16] Ahmad, A. & Baca, M., Total Edge Irregularity Strength of A Categorical Product of Two Paths, Ars. Combin, in press.
- [17] Ahmad, A. & Baca, M., Edge Irregular Total Labeling of Certain Family of Graphs, AKCE J. Graphs. Combin., **6**(1), pp. 21-29, 2009.
- [18] Siddiqui, M.K., On Total Edge Irregularity Strength of A Categorical Product of Cycle And Path, AKCE J. Graphs. Combin., 9(1), pp. 43-52, 2012.
- [19] Siddiqui, M.K., *On Tes of Subdivision of Star*, Int. J. of Math and Soft Compu., **2**(1), pp. 75-82, 2012.
- [20] Ahmad, A., Baca, M. & Siddiqui, M.K., *On Edge Irregular Total Labeling of Categorical Product of Two Cycles*, Theory of Computing systems, doi: 10.1007/s00224-013-9470-3.
- [21] Ahmad, A., Baca, M., Bashir, Y. & Siddiqui, M.K., *Total Edge Irregularity Strength of Strong Product of Two Paths*, Ars Combin., **106**, pp. 449-459, 2012.
- [22] Ahmad, A., Baca, M. & Numan, M., On Irregularity Strength of Disjoint Union of Friendship Graphs, Electronic J. Graph Theory and Appl., in press (accepted on 19 November 2012).