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Abstract. The total edge irregular-labeling of a grapié=(V,E) is the labeling

of vertices and edges G in such a way that for any different edges their
weights are distinct. e toal edge irregularity strengthes (G), is defined as
the minimumk for which G has a total edge irregul&fabeling. In this paper,
we consider the total edge irregularity strengthhef disjdint union of m special
types of helm graphs.
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1 I ntroduction

In this paper, we consider a greG as a finite graph (without loop and multij
edges) with the vertegetV and the edge-sé&t In [1], Baca, Jendrol, Miller an
Ryan introduced the notion cthe total edge irreguldk-labeling of a grap!
G=(V,E namely the labeling ¢:VOE - {1,2,...,k} such that all edg

weights are different.The weigh wt(uv) of an edgeuv is defined as
wt, (uv) =¢/(u) +¢(uv) +¢/(v). The total edge irregularity strength Gf
denoted bytes(G), is the smallesk for which G has a totakdge irregulak-
labeling.

The basic idea of the total edge irregularity gitkncame from irregule
assignments and ehirregularity strength of graphs introduced by @aad,
Jacobson, Lehel, Oellermann, Ruiz and ! [2]. An irregular assgnment is a
k-labeling of the edges such that the sum of theldateedges incident to
vertex is different for all the verticeof G. The smallest integes for which G
has anirregular assgnment is called theirregularity strength of G, andis
denoted by(G).
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It is not an easy task to compute the irregulasitgngth of graphs with simple
structures, see [3-6]. Karonski, Luczak and Thomg3® conjectured that the
edges of every connected graph of order at leasin3ve assigned labels from
{1, 2, 3} such that for all pairs of adjacent vees the sums of the labels of the
incident edges are distinct. Baca, Jendrol, Milad Ryan [1] gave a lower
bound on the total edge irregularity strength gfaph:

tes(G) = max{PE(G)| * 2—‘ ,[A(G) +1W} 1)

3 2

where A (G) is the maximum degree @. The authors of [1] determined the

exact values of the total edge irregularity strenfiir paths, cycles, stars,
wheels and friendship graphs. Recently, lvanco aeddrol [8] posed the
following conjecture:

Conjecture 1. Let G be an arbitrary graph different fro 5. Then
_ [E@)+2|[A@G)+1
tes(G) = maxﬂ 3 W { ) )

Conjecture 1 has been verified for all trees in [8f complete graphs and
complete bipartite graphs in [9] and [10], for hartesian product of two paths

P.oP, in [11], for the corona product of a path withte@r graphs in [12], for
[E(G)|+2 _AG)+1
3 T 2

large dense graphs wit in [13], for hexagonal grids in

[14], for the zigzag graph [15], for the categofiseoduct of two pathd?, x P,

[16], for the categorical product of a cycle andagh C, %P, in [17,18], for a

subdivision of stars in [19], for the categoricabguct of two cycles in [20],
and for the strong product of two paths in [21].

Motivated by [22], we investigated the total edgegdularity strength of the
disjoint union of helm graphs. Adm graph H is obtained from a wheel on
n+1 vertices by adding a pendant edge to every vetets cycle C . In this

study, we determined the total edge irregularitgregth of the disjoint union of
m copies of a certain helm graph. We also determihedotal edge irregularity
strength of the disjoint union of non-isomorphid¢rhgraphs.

This paper adds further support to Conjecture ldbgnonstrating that the
disjoint union of helm graphs has a total edgegurfarity strength equal to
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2 Main Results

First, we determine the total edge irregularitgsgth of a disjoint uniomH
of mcopies of a helm grapH . Let

V(Hn)={c",>¢,yi"; 1Si£n,1sjgm}
E(Hn):{CJXj,&jMJ, X%, 1Si£n,]sjgm}
Moreover, the subscriptr1 is replaced by 1.

Lemmal Fornx=3tes(2H,)=n+1.

Proof. From (1) it follows thatIes(ZHn)z 2n+1. Now the existence of an
optimal labelingg, proves the converse inequality foxi < n as follows:

6. ()= ¢.(v}) =1, 4,(c')=8,(c?)=2n+ 1,
¢, (clxil) =@, (xizxiil) = ¢1(Xilyil) _ ¢1(Xi 2y 2) .

¢1()§2) =2n+1, ¢1(in) =n+1, ¢1(Cz)§2) =¢1()§1Xi1+1) = n+i.

It is easy to see that the weights of the edgesparewise distinct. This
concludes the proof.

Theorem 1. Let m,n>3 be two integers. Then, the total edge irregularity
strength of a disjoint uniomH , of m copies of a helm grapHl, is mn+1.

Proof. As |E(mH )| = 3mn then (1) implies thattes(Hn) >mn+1. Letk =
mn+1. To prove the converse inequality, we definettital edge irregulak-
labeling ¢, for 1<i<n and1< j <mas follows:
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U(e) =g () =y} = minﬂ%”*zj, k}.

Casel: Fori< j<m such that[?’n(i -+ 2J< K
2

(i) Whennis even,
(,lfl(xijyij ) =i, wl(xijxiil) =n+i, wl(cjxij)= 2n+i,
(i) Whennis odd,
(a) If jis odd, then the edgesx’,x'y) and x'x/, receive the same
labels as in Case | (i)
(b) If j is even,
‘/’1(Xijyij):1+i: ‘/’1(Xijxij+1) =n+1+i, wl(cjxij): n+ 1+i,

3n(j -1+ ZJ
2

Casell: Forlsjsmsuchthat{ >k

Let
w=min{j; 1< j <m such that r’n(J_TMJZk}

i+ 1< j<m such that LMJ;ZMJ <k}

t; =minﬂ3n(J_Tl)+2J, k} for 1< j<m such that L%ZJ <k

| = max{t

(i) Whenn s even,

- 3n+2(1 -k)+i, if j=w
w,(x'y!) = o . .
3n+2(1 -k)+i+ (j—-w)3n, if w+1l<j<m
, dn+2(1 -k)+i, if j=w
l//l (XiJXiJ+:L) = . . . .
In+2(1-Kk)+i+(j—-w)3n, if w+1l< j<m
o 5n+2(1-k)+i, if j=w
l/’l(CinJ): . . . .
5n+2(1 -k)+i+ (j—-w)3n, if w+1l< j<m

(i) Whennis odd,
(a) If wis odd
o 3n+2(1-k)+ 1+i, if j=w
wl(xijyij)z . . . _
3n+2(1-k)+i+1+ (j-w)3, if w+l<j<sm
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o dn+2(1 - k)+1+i, if j=w
wl(XiXHl): , . . .
An+2(1-k)+i+1+ (j—-w)3, if w+l<j<m

w,(c'y!)= 5n+2(-k)+1+i, if  j=w
N T Bn+ 20 -k)+i+ 1+ (j-w)3n, if w+ 1< j<sm

(b) If wis even, then the edge<'x’, X'y’ and ¥'x, receive the same
labels as in Case Il (i)

Under the labelingy, the total weights of the edges are described &mfsi

(i) The edges )gj yij for 1<i<n,1< j <m receive consecutive integers from
the interval [31(j-1)+3, 3(j-1)+n+2],

(i) The edgesx'X, for 1<i<n,1< j <m receive consecutive integers from
the interval [31(j-1)+n+3, N(j-1)+2n+2],

(i) The edgesc’ )gj for 1<i<n,1< j <m receive consecutive integers from
the interval [B(j-1)+2n+3, N (j-1)+3n+2].

It is not difficult to see that all vertex and edgbels are at mo&tand the edge-
weights of the edges'x’, X'y andx'x, are pairwise distinct. Thus, the resulting
labeling is a total edge irregulieiabeling. This concludes the proof.

For m,n>2, let us consider the disjoint union of m non-iseptoc helm
graphs:H_,,,H . H H where

n+1? n+2! " 'n+377 7 Tndm !
V(jD:lejj:{c‘,)g‘,yiJ; l<isn+j,1< sm}
is the corresponding vertex set and
E(jﬁlHnﬂ}{cj&% Xyl Xk, 5 1<isn+j, 1< j<m)
is the corresponding edge set. Note that the sipbseij+1 is replaced by 1.

Now, we determine the exact value of the total ddggularity strength of the

graph [J H..;
j=1 '
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Theorem 1. Let mn=2 be two integers andG DEHMJ. Then
j=1

t&(G):mn+1+m.

Proof. As |E(5H I :gi(nﬂ') then from (1) it follows that
i=1 n+j

=1

m(m+1)

tes(G) = mn+1+ Let k=mn +1+W,To prove the converse

inequality, we define the total edge irregukeiabeling ¢/, for 1<i<n+j and
1< j <mas follows.

For 1<i<n+1
l//z(Cl) =w2()§l) =~’//2(yil) =1,
v, (Xilyil) =i, Y, (Xilxi1+1) =n+1+i, 41/2(01Xi1) =2n+ 2+i,

For 1<i<n+j

j-1
3Z(n+s+2)
() =9, () =¢,(y)) = minq| ==——— 1, k¢ for 2<j<m.
j-1
3Z(n+s)+2
* For2<js<msuchthaf st |<k
2

j-1
0 When 2. (n+s) =0(mod 2)
s=1
w,(xiy) =i, @, (%) =n+i+is wo(c'x!) = 2n+ 2j +i,
j-1
(i) When 2, (n+s)=1(mod2)
s=1

‘//2(Xijyij):1+il W2(Xijxij+1):1+n+j+i: l/jz(cjxij): I+ n+ 21 +i,
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j-1

3D (n+s)+2
e For2<jsmsuchthat st |5 kg
2
Let
j-1
3D (n+s)+2
w=min<{ j; 2<j<m such that -‘Flf > k
w-1
3) (n+s)-2k+i, if j=w

v, (Xij yij): st=_11
3 (n+s)-2k+i+3n+3j-1, if w+icjsm

s=1

w-1
3} (n+s)-2k+2+n+w+i, if j=w
l/’z (Xij Xij+1) — s=1

w-1
3 (n+s)-2k+i+4n+ 2j+w, if w+isjsm

s=1

w-1

3 (n+s)-2k+2+2n+ W+i, if j=w
wo(c'x')=1 o

3Z(n+s)—2k+i+5n+j+2W+1, if w+l<j<sm

s=1

Under the labelingy , the total weights of the edges are described &mAfsi

(i) The edgex(y’, x'x,, andc’x’for 1<i<n+1 receive consecutive integers
from the interval [3,3#], [4+n,2n+4] and [21+5,3+5], respectively.
(i) The edgesx'y’ for 1<i<n+j,2< j<m receive consecutive integers

. = j-1
from the interval 32 (n+s)+3, 32 h+s)+n+j+ 2} \

L s=1 s=1

(ii) The edges)g‘xj+l for 1<i<n+j,2<j<m receive consecutive integers

. i1 i-1
from the interval 3 (n+s)+n+j+3,3 (+s)+ 2n+ 2j+ 2},
s=1

s=1
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(iv) The edgescjxj for 1<i<n+j,2<j<m receive consecutive integers

- ;
from the interval[:gjz (n+s)+2n+ 2j+ 3, 3211 h+s)+ 2} ,

s=1 s=1

It is not difficult to see that all vertex and edgbels are at mo&tand the edge-
weights of the edge<'x’,x'y) andx'x), are pairwise distinct. Thus, the
resulting labeling is a total edge irregukdiabeling. This concludes the proof.

3 Conclusion

In this paper, we have determined the exact valubeototal edge irregularity

strength of the disjoint union ofl copies of a helm graph as well as the disjoint

union of non-isomorphic helm grapEISH i We conclude by stating the
j=1

following open problem:

Open Praoblem. For m= 2 find the exact value of the total edge irregujarit
strength of a disjoint union of m arbitrary helnaghs.
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