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Abstract. We use an indirect optimal control approach to calculate the optimal 
neural stimulation needed to obtain measured isometric muscle forces. The 
neural stimulation of the nerve system is hereby considered to be a control 
function (input) of the system ’muscle’ that solely determines the muscle force 
(output). We use a well-established muscle model and experimental data of 
isometric contractions. The model consists of coupled activation and contraction 
dynamics described by ordinary differential equations. To validate our results, 
we perform a comparison with commercial optimal control software. 
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1 0BIntroduction 
Mathematical models for everyday phenomena often ask for a control or input 
such that a system reacts in an optimal or at least in a desired way. Whether 
finding the optimal rotation of a stick for cooking potatoes on the open fire such 
that the potato has a desired temperature, see [1], or computing the optimal 
neural stimulation of a muscle such that the force output is as close as possible 
to experimentally measured data. Typical examples for biomechanical optimal 
control problems occur in the calculation of goal directed movements, see [2- 4] 
and in robotics [5]. Concerning huge musculoskeletal systems, the load sharing 
problem of muscle force distribution has to be solved using optimal control [6, 
7]. The most common application for solving the load sharing problem is the 
inverse dynamics of multi-body systems (MBS) as in [8,9]. The aim is to 
approximate observed multi-body trajectories by a forward simulation. The 
problem occurs to find a set of muscle activations such that the muscle forces 
resulting from the MBS simulation are similar to the measured ones. 

Considering a general optimal control problem there is a process described by a 
vector of state variables 𝐱 which has to be influenced by control variable u ∈ 𝒰 
within a time interval [t0, t1] such that a given objective function ℑ(𝐱, u) is 
minimized subject to the model equations. These model equations can be either 
ordinary differential equations (ODE), partial differential equations (PDE) or 
differential algebraic equations (DAE). Additional constraints on the control 
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variable as well as the state variable itself can be imposed. The corresponding 
general optimal control problem reads as follows: 

 𝑚𝑖𝑛𝑢 ℑ(𝐱,𝑢) =  ∫ 𝑗(𝐱(𝑢, 𝑡),𝑢(𝑡), 𝑡)𝑑𝑡𝑡1
𝑡0

 (1) 

subject to  𝑥̇ = 𝑓(𝐱,𝑢, 𝑡)     (ODEs) 

  0 = 𝑔(𝐱,𝑢, 𝑡)     (DAEs) 

  𝐱 𝜖 [𝑥𝑚𝑖𝑛,𝑥𝑚𝑎𝑥],  𝑢 ∈  𝒰, 𝐱(𝑡0) = 𝐱0 (Constraints) 

For solving this minimization problem we introduce an adjoint (or costate) 
variable λ which operates as a penalty function, if the ODE or DAE are not 
fulfilled. The optimized control variable u∗ is found at the saddle point of the 
Lagrangian ℒ. 

ℒ(𝐱, u, λ) = � j
t1

t0
(𝐱(u, t),  u(t),  t) + λ1(t) [𝐱̇ − f(𝐱, u, t)] + λ2(t) g(𝐱, u, t) dt 

subject to  𝐱 ∈ [𝐱min,𝐱max], u ∈ 𝒰, 𝐱(t0) = 𝐱0 (2) 

Almost exclusively in biomechanical literature, the problem in Eq. (1) is solved 
by the technique of first discretize then optimize also known as direct method. 
Therefore ℑ as well as the ODE/DAE constraints are discretized on a given time 
grid resulting in a huge non-linear program (NLP), see [1, 10-12]. For solving 
such NLPs, several efficient solvers have been designed. In [9] the program 
DIRCOL (DIRect COLlocation) from [13] is used. But for state-of-the-art 
programming MATLAB based packages exist like: GPOPS2 (General 
Pseudospectral Optimal Software) [14] or TOMLAB’s developments SNOPT 
(Sparse Linear OPTimizer) and PROPT (Per Rutquist OPTimizer) in [15]. 
Those solvers commonly use a (pseudo–)gradient based method like BFGS or 
other quasi–Newton methods for minimizing the objective function. 

However, we want to apply the approach of first optimize then discretize. 
Therefore we derive the first order necessary conditions for problem in Eq. (2) 
explicitly. We obtain the optimal control u∗ by solving the upcoming coupled 
ODE/DAE system. A state-of-the-art solver for the so-called indirect method 
(BNDSCO) was developed by [16]. The name BNDSCO indicates the use on 
boundary value problems with switching conditions. This solver uses a multiple 
shooting method to solve the resulting boundary value problem. For an 
enhanced discussion on both first discretize then optimize and first optimize then 
discretize approaches, see [11,13,17]. 

Most of the available literature on optimal control of muscle dynamics does not 
involve more control than just the level of activation, see [9]. However, we 
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choose a control on a deeper physiological level, namely the neural stimulation, 
to find an optimal neural stimulation such that the observed muscle forces are 
recovered. Furthermore we want to think of the neural stimulation as a 
continuous function rather than a bang–bang impulse as in [18]. 

The biomechanical applications of our method are multifaceted. At first it is an 
additional validation for the used muscle model because a qualitative error 
(objective function value) can be given. Moreover, the method’s findings allow 
an investigation of specific parts of the model, for example the passive and 
active force–length curves as well as the activation dynamics. Regaining the 
optimal stimulation of an isometric contraction additionally reveals information 
about internal concentric and eccentric contraction processes where the latter is 
normally hard to investigate solely, see [19]. Furthermore we obtain indications 
for model improvements such as the need to include the concept of fatigue as 
suggested in [20]. 

In Section 2 we recapitulate the muscle model given in [21] using contraction 
modes from [22]. For simplicity, we just consider the situation for a single 
muscle. In Section 3 we formally derive the first order optimality conditions and 
present an iterative solution algorithm for the upcoming coupled state–costate–
system. Our results are presented in Section 4. In Section 5 we compare our 
finding with the output of the above mentioned commercial software PROPT. 
The paper closes with an outlook on possible future work. 

2 Model Description and Problem Formulation 
In this paper we use a modified Hill–model [21,22] to describe the contraction 
motion of muscles. This model is based on a mechanical analogy of the muscle 
tendon complex (MTC) and is constituted by four basic compartments. The 
contractile element (CE) produces the force by contracting, or more precisely by 
actin–myosin cross–bridges at the sarcomere level. The parallel elastic element 
(PEE) represents the connective tissues and is responsible for the muscle 
passive behavior. The serial elastic element (SEE) represents the elastic 
behavior of the tendon connecting the muscle to the skeleton. The serial 
damping element (SDE) describes the viscous damping of the tendon. 

2.1 Model Description 
Let ℓMTC, ℓPEE,  ℓCE, ℓSEE and ℓSDE denote the length of the constituting 
elements. Due to the setup of the model the following restrictions hold: 

ℓCE = ℓPEE, ℓSEE = ℓSDE and ℓMTC = ℓCE + ℓSEE . 
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Using the notation Fi for the force acting on the i–th component, at equilibrium 
it holds that 

 FMTC = FCE + FPEE = FSEE + FSDE . (3) 

In the sequel we shortly outline the individual force equations, details can be 
found in [22]. For the reader not familiar with the biomechanical terminology, 
we recall that isometric contraction refers to the situation, where the muscle 
exerts some force without a change of length. In contrast to that, we speak of a 
concentric or eccentric contraction if the CE exerts force and shortens or 
elongates. 

Following [22], we define the relation between the isometric force Fisom and 
the length ℓCE of the muscle 

 Fisom(ℓCE) = �
exp �− � ℓCE−ℓCEopt

ℓCEoptΔWasc
�
νasc

� , if ℓCE < ℓCEopt ,

exp �− � ℓCE−ℓCEopt
ℓCEoptΔWdes

�
νdes

� , if ℓCE ≥ ℓCEopt .
 (4) 

The parameters ΔWasc, νasc and ΔWdes, νdes determine the width and slope of 
the two branches of the bell–shaped Fisom-curve. Note the normalization 
Fisom(ℓCEopt) = 1 at the optimal length ℓCE = ℓCEopt, where the muscle is able 
to produce its maximum isometric force Fmax. Other functional dependencies 
appear in literature, compare [23,24]. 

Subsequently we introduce the force–velocity relation of the contractile element 

 FCE�ℓCE, ℓ̇CE, q� = 

�
Fmax �

qFisom+arel
1−ℓ̇CE (brelℓCEopt)�

− arel� , if ℓ̇CE < 0 (concentric),

Fmax �
qFisom+arel,e

1−ℓ̇CE (brel,eℓCEopt� )
− arel,e� , if ℓ̇CE ≥ 0 (eccentric).

 (5) 

Note, that FCE is non–differentiable at ℓ̇CE = 0. The variable q denotes the 
muscle activity. According to Zajac [25] the activity and the external neural 
stimulation σ are related via the ODE 

 q̇ = 1
τ

(σ − σ ⋅ (1 − β) ⋅ (q − q0) − β ⋅ (q − q0)) . (6) 

The time constant τ and the activation–deactivation ratio β determine the 
velocity of activation growth or decay after a neural impulse. For a particular 
description of the physiological meaning of the occurring parameters see 
Appendix A or [22]. 
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Another activation dynamics was given as a differential-algebraic system by 
Hatze [26]. A compact form of this system as a first order non–linear ODE was 
derived in [21,22]: 

 q̇H = ν⋅m
1−q0

⋅ �σ ⋅ ρ(ℓCErel) ⋅
(1−qH)1+1/ν

(qH−q0)
1
ν−1

⋅ −(1− qH) ⋅ (qH − q0)� . (7) 

The frequency m and the parameter ν were set by Hatze and depend on the 
particular muscle. The function ρ(ℓCErel) is monotonically increasing and 
introduces a length-dependency of the activation. In [22] Hatze’s activation 
dynamics is not used. However, [27] stated that Hatze’s formulation might be 
physiologically more relevant than Zajac’s. Hence, we want to include its 
impact in the discussion. For a detailed discussion of the above activation 
dynamics see [26]. 

Following [21,22] the parameters arel, arel,e, brel and brel,e in Eq. (5) depend 
themselves on ℓCE and q via 

arel = �
arel,0
4

(1 + 3q), if ℓCE < ℓCEopt
arel,0
4

(1 + 3q)Fisom, if ℓCE ≥ ℓCEopt
arel,e = −Fe q Fisom  (8) 

 brel = brel,0
7

(3 + 4q),                brel,e = brel(1−Fe)

Se�1+
arel

q Fisom
�
 (9) 

The parameter Se is related to the ratio of the slopes at ℓCE = ℓCEopt of the 
concentric and eccentric branch, see Eq. (5). The parameter Fe = limℓ̇CE→∞FCE/
(Fmax q Fisom) is related to the asymptotic behavior of the eccentric force. The 
parameters arel,0 and brel,0 refer to the Hill parameters, see [28]. 

For the two elastic elements we generally assume a non–linear behavior above a 
certain slack length ℓPEE,0 and ℓSEE,0 

 FPEE(ℓCE) = 

 �
0, if ℓCE < ℓPEE,0 ,

Fmax ℱPEE  �
ℓCE−ℓPEE,0

ℓCEopt(1+ΔWdes)−ℓPEE,0
�
νPEE

, if ℓCE ≥ ℓPEE,0 .
 (10) 

The constant ℱPEE is related to the force FPEE of the parallel elastic element at 
the length ℓ = ℓCEopt(1 + ΔWdes) via FPEE(ℓ) = FmaxℱPEE. 

Following [22], the serial elastic element is assumed to behave linearly, if its 
length exceeds a threshold ℓSEE,nll: = (1 + ΔUSEE,nll)ℓSEE,0. 
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 FSEE(ℓSEE) = 

 

⎩
⎪
⎨

⎪
⎧

0, if ℓSEE < ℓSEE,0 ,

ΔFSEE,0 �
ℓSEE−ℓSEE,0

ΔUSEE,nllℓSEE,0
�
νSEE

, if ℓSEE,0 ≤ ℓSEE < ℓSEE,nll ,

ΔFSEE,0 �1 + ℓSEE−ℓSEE,nll
ΔUSEE,lℓSEE,0

� , if ℓSEE ≥ ℓSEE,nll .

 (11) 

The parameter ΔFSEE,0 refers to the force of the serial elastic element at length 
ℓSEE,nll. The linear elastic regime for large length ℓSEE ≥ ℓSEE,nll is governed 
by the parameter ΔUSEE,l. The exponent of non-linearity for the serial elastic 
element is fixed by νSEE = ΔUSEE,nll

ΔUSEE,l
, whereas the exponent for the parallel 

elastic element is an adjustable model parameter, in this work we choose 
νPEE = νSEE, compare [22]. 

For the damping element SDE we assume a linearly increasing damping force 

 FSDE�ℓ̇MTC,ℓCE, ℓ̇CE, q� = 

 DSDE �(1 − RSDE) FCE+FPEE
Fmax

+ RSDE� (ℓ̇MTC − ℓ̇CE) (12) 

with damping parameters DSDE at FMTC = FCE + FPEE = Fmax and RSDE at 
FMTC = 0. 

Solving the equilibrium Eq. (3) for the contraction velocity ℓ̇CE we obtain the 
following differential equation 

 ℓ̇CE =

⎩
⎪
⎨

⎪
⎧ −C1−�C12−4C2C0

2C2
, if ℓ̇CE < 0 ,

−C1,e+�C1,e
2 −4C2,eC0,e

2C2,e
, if ℓ̇CE ≥ 0 .

 (13) 

The coefficients C0, C1 and C2 are given by 

 𝐶0 =  𝐷0𝑙𝑀̇𝑇𝐶 + 𝑙𝐶𝐸𝑜𝑝𝑡𝑏𝑟𝑒𝑙(𝐹𝑆𝐸𝐸 − 𝐹𝑃𝐸𝐸 − 𝐹𝑚𝑎𝑥𝑞𝐹𝑖𝑠𝑜𝑚), 

 𝐶1 =  −�𝐶2𝑙𝑀̇𝑇𝐶 + 𝐷0 + 𝐹𝑆𝐸𝐸 − 𝐹𝑃𝐸𝐸 + 𝐹𝑚𝑎𝑥𝑎𝑟𝑒𝑙�,      (14) 

 𝐶2 =  𝑑𝑆𝐸,𝑚𝑎𝑥 �𝑅𝑆𝐷𝐸 − �𝑎𝑟𝑒𝑙 −
𝐹𝑃𝐸𝐸
𝐹𝑚𝑎𝑥

� (1 − 𝑅𝑆𝐷𝐸)�. 

The coefficients 𝐶0,𝑒, 𝐶1,𝑒, and 𝐶2,𝑒 in the eccentric case 𝑙𝐶̇𝐸 ≥ 0 are obtained 
when replacing 𝑎𝑟𝑒𝑙 , 𝑏𝑟𝑒𝑙 with 𝑎𝑟𝑒𝑙,𝑒 , 𝑏𝑟𝑒𝑙,𝑒. The auxiliary coefficients 𝑑𝑆𝐸,𝑚𝑎𝑥 
and 𝐷0 are given by 
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 𝑑𝑆𝐸,𝑚𝑎𝑥 =  𝐷𝑆𝐷𝐸
𝐹𝑚𝑎𝑥𝑎𝑟𝑒𝑙,0
𝑙𝐶𝐸𝑜𝑝𝑡𝑏𝑟𝑒𝑙,0

,         (15) 

 𝐷0 = 𝑙𝐶𝐸𝑜𝑝𝑡𝑏𝑟𝑒𝑙𝑑𝑆𝐸,𝑚𝑎𝑥 �𝑅𝑆𝐷𝐸 + (1 − 𝑅𝑆𝐷𝐸) �𝑞𝐹𝑖𝑠𝑜𝑚 + 𝐹𝑃𝐸𝐸
𝐹𝑚𝑎𝑥

��.    (16) 

Summarizing, Eqs. (3)-(13), we obtain a coupled system of equations allowing 
us to write the muscle force FMTC as a function of the neural stimulation σ, 
i.e. FMTC = FMTC(σ) .      

2.2 Problem Formulation 
In [22] all model parameters stated above were estimated on the basis of 
experiments by [29] namely isometric contractions. In the experimental setup, 
conducted on piglet muscle, all conditions were controlled. The neural 
stimulation σ was imposed by an external electrical 0/1–impulse 

 σ(t) = �1, if t ∈ [tstart, tend] = [0.1 s, 1.1 s] ,
0, else .  (17) 

As output information the resulting isometric force was measured at different 
fixed lengths ℓMTC of the muscle, see [22, Figure 7]. 

We address the following scenario: Assume we are not able to apply or measure 
the stimulation σ directly, but only measure the force resulting from isometric 
contraction. Are we able to reconstruct the stimulation σ(t)? In other words: We 
wish to find a stimulation σ∗(t) such that the resulting force FMTC∗ = FMTC(σ∗) 
is as close as possible to the experimentally measured force denoted by FMTC. 

Based on the previous muscle model we may notate this problem as a 
constrained minimization problem. Let 𝒰 = C([0, T], [0,1]) denote the 
continuous functions from time interval [0, T] which are bounded by [0,1] 

 min
𝜎∈𝒰

 ℑ(𝐹𝑀𝑇𝐶 ,𝜎) =  1
2
‖𝐹𝑀𝑇𝐶 − 𝐹�𝑀𝑇𝐶‖𝐿2 + 𝛼

2
‖𝜎‖𝐿2 (18) 

subject to the constraints 

 q̇ = f1(q,σ),                                             q(0) = q0, (19a) 

 ℓ̇CE = f2�ℓMTC, ℓ̇MTC,ℓCE, q� ,       ℓCE(0) = ℓCE,0 , (19b) 

 ℓ̇MTC = 0,                                           ℓMTC(0) = ℓMTC,0 , (19c) 

 FMTC =  f3(ℓMTC, ℓ̇MTC,ℓCE, q) (19d) 
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The constraint ℓ̇MTC = 0 in Eq. (19c) arises from the isometric contraction 
scenario. If other contraction types, e.g. quick release, are considered, this 
condition has to be replaced by the respective equations. 

3 Solution and Results 
Minimizing a cost functional  ℑ with respect to a control σ and subject to 
constraints given by a set of differential or algebraic conditions is a well-known 
and well-investigated problem. In this paper we will not go into details of 
proving the existence or uniqueness of minimizers, but rather formally derive 
the first order necessary conditions for the optimum. 

In the isometric case ℓMTC = ℓMTC,0 is constant, therefore we skip this variable 
henceforth. Using this simplification, let us denote the state variable by 
x = (FMTC, q, ℓCE). Introducing the adjoint variable λ = �λFMTC , λq, λℓCE�, we 
formally define the Lagrangian 

ℒ(x, λ,σ): = 

ℑ(x,σ) + ⟨λFMTC ,  FMTC − f3⟩L2 + ⟨λq,   q̇ − f1⟩L2 + ⟨λℓCE ,   ℓ̇CE − f2⟩L2 . (20) 

By ⟨u, v⟩L2: = ∫ uT
0 (t) v(t) dt we denote the usual L2–inner product. We use 

Du�u for the (Gâteaux) derivative of u in the direction of u�  and use ∂tu for the 
partial derivative of u with respect to𝑡. 

The necessary first order optimality conditions imply that at a local optimum all 
(Gâteaux) derivatives of ℒ vanish. Computing formally the derivatives with 
respect to the adjoint variables λFMTC ,  λq, λℓCE we recover the state system 

 Dλqℒ =0 ⇒     q̇ = f1(q,σ),     q(0) = q0,  (21a) 

 DλℓCE
ℒ = 0 ⇒     ℓ̇CE = f2(ℓMTC,ℓCE, q),       ℓCE(0) = ℓCE,0, (21b) 

 DλFMTC
ℒ = 0 ⇒  FMTC = f3(ℓMTC,ℓCE, q).  (21c) 

Taking derivatives with respect to the state variables FMTC , q,  ℓCE leads to a 
system of equations for the adjoint or costate: 

Dqℒ = 0 ⇒       λ̇q = −λFMTC ∂qf3 − λℓCE ∂qf2 − λq ∂qf1, λq(T) = 0 (22a) 

DℓCEℒ = 0 ⇒    λ̇ℓCE = −λFMTC ∂ℓCEf3 − λℓCE ∂ℓCEf2,   λℓCE(T) = 0 (22b) 

 DFMTCℒ = 0 ⇒  λFMTC = FMTC − FMTC. (22c) 

The derivative with respect to the control σ gives rise to the gradient condition 

 Dσℒ = 0 ⇒  α σ = λq ∂σf1 ,  0 ≤ σ ≤ 1 . (23) 
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Note that the differential equations for the adjoint variables λq and λℓCE have to 
be solved backwards in time, starting with the terminal conditions λq(T) =0 
and λℓCE(T) = 0. The functional expressions for the partial derivatives ∂qf3, 
etc. appearing in Eqs. (22a)-(23) can be derived explicitly, or at least 
symbolically in MATLAB. Using the Heaviside step function for expressing 
piecewise functions, these derivatives can be calculated in a closed form. 

To solve the non-linear system of Eqs. (21)-(23), we use the iterative Algorithm 
1. For the simulation results discussed in the next section, we implemented this 
algorithm using MATLAB (Version R2013b) including the symbolic toolbox 
for automatic computation of the partial derivatives and the pre–implemented 
ODE–solver ode45 for the numerical solution of the differential equations. 

Figure 1 shows the results of the optimal control approach. Regarding Figure 1 
(left) we compare the experimentally measured isometric forces FMTC (thin line, 
see [29]) with the force FMTC∗ = FMTC(σ∗) computed in the optimal control 
approach (bold line). Additionally, we have plotted the direct model output 
FMTC(σ) of the model Eq. (14) (dashed line) using the experimentally applied 
0/1–stimulation σ, see Eq. (17) . In Figure 1 (right) we show the reconstructed 
stimulation σ∗ obtained by the optimal control approach versus time. The 
dashed line refers to the experimental input, i.e. the 0/1–impulse σ. The results 
are plotted versus time for a muscle of given length ℓMTC = ℓMTC,ref =
6.15 cm. In the subsequent Figure 2 this length serves as reference length. 

Algorithm 1 Discretization after Optimization 
Require : f1, f2, f3, FMTC,α, ℓMTC, error tolerance Tol, initial guess σ0 for the stimulation 
Calculate 𝑙𝐶𝐸 ,0 using Eq. (3) 
Calculate 𝐹𝑀𝑇𝐶 using 𝜎 = 𝜎0 
   while ℑ(𝐹𝑀𝑇𝐶 ,𝜎) > 𝑇𝑜𝑙 𝒅𝒐 
Calculate λFMTC = FMTC − FMTC 
Solve λ̇ℓCE = −λFMTC ∂ℓCEf3 − λℓCE ∂ℓCEf2 with λℓCE(T) = 0 
Solve λ̇q = −λFMTC ∂qf3 − λℓCE ∂qf2 − λq ∂qf1 with λq(T) = 0 
Update σ via σ = (1 − ε) ⋅ σ + ε

α
⋅ λq ∂σf1 with convex combination factor ε 

Solve q̇ = f1(q,σ0) with q(0) = q0 
Solve ℓ̇CE = f2�ℓMTC, ℓ̇MTC, ℓCE, q� with ℓCE(0) = ℓCE,0 
Calculate FMTC = f3(ℓMTC, ℓ̇MTC, ℓCE, q) 
end while 
Output FMTC, ℓCE, ℓ̇CE, 𝑞,σ∗ = σ. 
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Figure 1 (Left) Isometric contraction forces vs. time: Experimental data [29] 
(thin), optimal control results  FMTC∗  from Algorithm 1 (bold) and direct model 
output FMTC(σ�)using (14) (dashed). The relative muscle length lMTC/lMTC,ref= 1. 
In addition we have marked the starting time tstart= 0.1s and ending time tend= 
1.1s of the experimental reference stimulation σ�. (Right) Stimulation vs. time: 
Result from the reconstruction using optimal control (thick line) and reference 
stimulation σ� , see Eq. (17) applied in the experiments (dashed line). The relative 
muscle length is given by lMTC/lMTC,ref= 1. 

4 Discussion 

4.1 Results for Muscle Length 𝓵𝐌𝐓𝐂 = 𝓵𝐌𝐓𝐂,𝐫𝐞𝐟 
We start with a discussion about several general findings for a single muscle 
length ℓMTC = ℓMTC,ref = 6.15 cm. In Figure 1 we compare the optimal control 
results to the experimental and reference data. 

First of all we notice that the shape of the reconstructed stimulation σ∗ is similar 
to the reference stimulation σ. The same holds true for the recomputed force 
FMTC∗  (bold line) compared to the experimental data FMTC (thin line) and the 
model output FMTC(σ) (dashed line). 

However, the reconstructed stimulation starts to rise before the onset of the 
reference stimulation. This can be partly explained by the forces, see Figure 1. 
The curve for the experimental data shows a much steeper increase than both 
computed curves, the bold one for the optimal control results and the dashed 
one for the model output. To compensate for the slower rate of increase, the 
optimal control curve has to start at earlier times t < tstart.This is only possible 
if the stimulation σ also switches to 1 at earlier times. 

Secondly, one may observe that the experimental results for the force show a 
slow decrease right after the peak of the force at t ≃ 0.5 s, although the muscle 
is still fully stimulated, see Figure 2. A mathematical explanation cannot be 
given, but this might indicate fatigue. However, this slight decrease of the 
experimental force data is responsible for the rather strange and unexpected 
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local peak of the optimal control stimulation at time t ≃ 1 s. Since the 
experimental forces decay already for t > 0.5 𝑠 and the optimal control tries to 
determine the stimulation such that the computed force fits the experimental 
data, the stimulation starts to decrease at around t = 0.8 s.  

Adjusting the decay rate of the computed force to the experimental data, in 
combination with the prior decay in the stimulation, seems to require the local 
peak of σat t ≃ 1 s. Once the stimulation is switched off at times t > 1.1 𝑠, all 
three force curves show almost identical decay rates. This indicates the model’s 
good correspondence with its parameters and the real–world situation. The 
optimal control results are largely independent of the initial guess σ0(t); the 
presented results were obtained using σ0(t) ≡ 0.5. 

 
Figure 2 Isometric contraction forces vs. time: Experimental data from [29] 
(thin black line), optimal control results (bold black line) and direct model output 
using Eq. (14) (dashed line). The different graphs refer to different relative 
muscle lengths ℓ𝑀𝑇𝐶/ℓ𝑀𝑇𝐶 ,𝑟𝑒𝑓, marked with little numbers 0.85,..., 1.1..  

 
Figure 3 Stimulation vs. time for different muscle lengths: Result from the 
reconstruction using optimal control (thick line) and literature reference 𝜎, 
see [22] (dashed line). The muscle length is indicated by the ℓ𝑀𝑇𝐶/ℓ𝑀𝑇𝐶,𝑟𝑒𝑓–
ratio and printed besides the respective optimal control curves. 
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4.2 Results for Muscle between 𝟎.𝟖𝟓 ≤ 𝓵𝐌𝐓𝐂/𝓵𝐌𝐓𝐂,𝐫𝐞𝐟 ≤ 𝟏.𝟏 
Using Figures 2 and 3 we compare the optimal control results with the 
experimental and reference data for various muscle lengths given in [22]. 

The previously stated results for the shape of the calculated curves, the 
stimulation peak at t = 1 sand the fatigue still hold true. However, the variation 
of the muscle length reveals some additional observations. 

At short muscle length the stimulation σ in Figure 3 appears to be significantly 
lower than the expected full stimulation, e.g. σ < 0.6 at the shortest 
length ℓMTC/ℓMTC,ref = 0.85. An explanation cannot be given within the 
framework of the used models. However, this observation suggests replacing 
Zajac’s activation dynamics Eq. (6) by Hatze’s formula, see [26,30]. In this 
modified activation dynamics, the muscle activation q depends not only on the 
neural stimulation σ, but also on the current muscle length ℓCE. 

For short muscles, e.g. ℓMTC ℓMTC,ref⁄ = 0.85 and 0.88, the experimental data 
show a faster decay of the force compared to the simulated results. This may 
also indicate that the activation depends on the muscle length as explained 
above. 

For long muscles, e.g. ℓMTC/ℓMTC,ref = 1.1, Figure 3 shows, that the 
reconstructed stimulation is non–zero even for times t < tstart , which can be 
explained regarding the initial forces in Figure 2. For t < tstart the 
experimentally observed forces are larger than the direct model output without 
neural stimulation. This indicates the need for further adjustment of the model 
parameters in the passive regime, i.e. for zero stimulation. The optimal control 
algorithm tries to diminish this force difference in order to reduce the objective 
function value. The only option is applying some non–zero stimulation to the 
model, which responds in generating the missing force for t < tstart. 

The results for the muscle length ℓMTC/ℓMTC,ref = 1.06 show a special 
behavior. Before the onset of the stimulation, i.e. for time t < tstart, the 
experimentally measured forces are less than the simulated forces, even with 
zero stimulation as seen in the direct model output (see dashed line in Figure 2). 
In contrast, the experimentally forces are larger than the simulated ones during 
the stimulation phase, i.e. for t ∈ [tstart, tend], even with maximal stimulation 
σ = 1. Hence the optimal control forces FMTC∗  agree with the model output 
FMTC(σ) for the experimentally applied 0/1–impulse σ in Eq. (17). 
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5 Comparison with Commercial Software 
To further validate our findings, we present a comparison of the results obtained 
by our optimal control algorithm with a commercial software package called 
PROPT (see [31]). This software is based on MATLAB and available with a 
demo license. PROPT currently uses Gauss or Chebyshev–point collocation for 
solving optimal control problems. As initial input, PROPT uses the model 
functions Eq. (3)–(13) as well as the objective ℑ and boundaries for state and 
control variables. The optimal control problem is discretized and the upcoming 
non-linear program (NLP) is solved. We are going to state some relevant facts 
using PROPT. For further information including some illustration problems 
see [32]. A similar commercial software package based on Gaussian pseudo-
spectral collocation is called GPOPS2, see [14]. 

Since non–continuous functions cannot be handled by the above mentioned 
packages, we have to approximate the Heaviside function by a smooth function 
Θ (k x) = 1

1+e−2kx
, with k ≫ 1. In our computations k = 3000 turned out to be a 

good choice. Since the commercial packages solve the optimal control problem 
by a first discretize then optimize approach, attention has to be paid to the 
number of discretization or grid points used in the computations. For more than 
200 grid points PROPT issued a warning that the upcoming NLP matrix was 
close to singularity and for less than 100 grid points the results may be 
incorrect. With a choice of 120 grid points the algorithm was able to run all 
calculations while the evaluation time was similar to our optimal control 
algorithm. 

 
Figure 4 Isometric contraction forces vs. time: Experimental data (thin line), 
our Algorithm 1 (bold line) and software package PROPT (dashed line). The 
different graphs refer to different relative muscle lengths ℓ𝑀𝑇𝐶/ℓ𝑀𝑇𝐶,𝑟𝑒𝑓 , 
compare Figure 2. 
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In Figure 4 we compare the computed muscle force obtained by our optimal 
control Algorithm 1 (bold line) and the PROPT–software (dashed line). As a 
reference we also included the experimental data (thin line). Figure 5 shows the 
stimulation σ computed by PROPT in comparison to the reference 0/1–impulse 
used in the experiments. 

 
Figure 5 Stimulation vs. time for different muscle lengths: Result from the 
reconstruction using PROPT (thick line) and literature reference 𝜎, see [22] 
(dashed line). The PROPT result is smoothed by a moving average (over a time 
period 𝑑𝑡 = 0.08 𝑠) to remove highly oscillatory behavior. 

Both optimal control methods, our first optimize then discretize approach in 
Algorithm 1 and the first discretize then optimize method implemented in the 
PROPT software yield very similar results for the muscle forces, see Figure 4. 
The initial oscillations in the PROPT–force for the ℓMTC/ℓMTC,ref = 1.06–
curve can be explained by similar reasons as the optimal control results in the 
previous section. 

Note that the stimulation σ computed by PROPT needed to be smoothed by a 
moving average filter. Due to the first discretize then optimize approach, the 
underlying NLP computes an individual optimal search direction for the 
stimulation σ at each discretization point. Hence the results can exhibit artificial 
oscillations and peaks. In contrast to that, our Algorithm 1, which is based on 
the first optimize then discretize approach, computes globally valid search 
directions; hence the results do not show discretization dependent artifacts or 
oscillations. 

Table 1 lists the values of the objective function ℑ, see Eq. (18), for our optimal 
control Algorithm 1, the commercial software PROPT and the direct model 
output using the 0/1–impulse stimulation. As expected, both optimized results 
yield lower objective function values compared to the direct output given in the 
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last column. Comparing the two optimization approaches to each other, the 
optimal control results are in most cases slightly better than the PROPT results; 
the total value of the objective function is about 3% lower for the optimal 
control methods. 

Table 1 Objective function values at different muscle lengths: Optimal control 
Algorithm 1 (FMTC∗ ), commercial software PROPT (FMTC,P) and direct model 
output (FMTC(σ)). Weighting parameter α = 0.1. The fourth column shows the 
L2–difference between our results and the PROPT–results. 

Length 
𝓵𝐌𝐓𝐂
𝓵𝐌𝐓𝐂,𝐫𝐞𝐟

 

Optimal 
Control 

𝓙(𝐅𝐌𝐓𝐂∗ ,𝛔∗) 

PROPT 
𝓙(𝐅𝐌𝐓𝐂,𝐏,𝛔𝐏∗ ) 

Comparison 
𝟏
𝟐
‖𝑭𝑴𝑻𝑪 − 𝑭�𝑴𝑻𝑪‖𝑳𝟐

+
𝜶
𝟐
‖𝝈∗ − 𝝈𝑷∗ ‖𝑳𝟐 

Direct Output 
𝓙(𝐅𝐌𝐓𝐂(𝛔),𝛔) 

0.85 3.3 2.9 1.9 13.4 
0.88 7.6 8.7 6 15.0 
0.91 9.7 8.9 4.8 24.0 
0.94 15.3 15 6 28.1 
0.97 16.5 17.2 5.4 35.3 
1.00 22.9 24.2 4.2 33.8 
1.03 24.7 26.3 4.4 32.7 
1.06 24.8 25.9 6.1 26.4 
1.08 8.9 9.4 3.6 21.0 
1.10 4.9 3.3 3.2 21.8 
∑ 138.6 141.9 45.6 251.5 

6 Outlook and Future Research 
We presented an optimal control algorithm to recalculate the stimulation of a 
muscle based on its isometric force output. Simulations performed with 
experimental data showed the applicability of our approach. High congruence 
between the experimentally applied stimulation and the mathematically 
recovered stimulation was found. A further comparison with commercial 
software validated our results. The computational results showed that the choice 
of the activation dynamics can be of importance. To further investigate the 
choice of activation dynamics, we derived a comparative sensitivity analysis of 
Hatze’s and Zajac’s activation dynamics by taking the effects of parameter 
changes into account, see [27]. 

Furthermore, a parameter estimation of the whole muscle model described in 
Chapter 2.1 would be of interest. In today’s biomechanics parameter estimation 
is still done by educated trial and error, therefore we want to find an algorithmic 
optimization approach. The available models might be improved by including 
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physiologically observed effects such as eccentric force–velocity relation, force 
depression, force enhancement and fatigue, see [21,33,34]. 

Eventually regarding modern biomechanical simulations we have to face huge 
multi-body systems with a multitude of muscles and boundary conditions 
performing a variety of movements such as walking, jumping or scoring a 
soccer goal, see [2,4,35,36]. Solving an optimal control problem for each 
muscle would be too expensive to perform within reasonable time. As an 
alternative optimal control strategy, the technique of space-mapping could be 
used. Developed for the use of microwave filter designs, see [37], the optimal 
control algorithm is based on the idea of two given models: an accurate but 
complex model and a simpler but inexact model. The optimization is done 
exclusively on the level of the simple model, whereas the crucial part is to find a 
mapping of the complex model to the simple model, the so-called space-
mapping. This idea could be used to control a complex multi-body system with 
several hundreds of components. 
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Appendix A. List of Symbols 
Symbol Meaning Value / Remark 

𝐚𝐫𝐞𝐥,𝟎/ 𝐛𝐫𝐞𝐥,𝟎 Hill-parameters of contraction dynamics 0.1 resp. 1Hz (muscle-specific) 

𝛃 corresponding deactivation boost  0.8 (muscle-specific) 
𝐜 maximal Ca2+-concentration in Hatze (1977) 1.37 ⋅ 10−4 mol ∙ l−1 
𝐃𝐒𝐄 damping parameter 0.3 (muscle-specific) 
𝚫𝐖𝐚𝐬𝐜 width of ascending limb of Fisom-curve 0.57 (muscle-specific) 
𝚫𝐖𝐝𝐞𝐬 width of descending limb of Fisom-curve 0.14 (muscle-specific) 
𝚫𝐅𝐒𝐄𝐄,𝟎 reference force of SEE 60N (muscle-specific) 

𝚫𝐔𝐒𝐄𝐄,𝐧𝐥𝐥 relative width of non-linear branch in SEE 0.1825 (muscle-specific) 

𝚫𝐔𝐒𝐄𝐄,𝐥 relative width of linear branch in SEE 0.073(muscle-specific) 

𝐅𝐞 limit factor for eccentric Force 1.8 (muscle-specific) 
𝐅𝐢𝐬𝐨𝐦 isometric muscle force length-depending 
𝐅𝐦𝐚𝐱 maximum isometric force of the CE 30N (muscle-specific) 
𝓕𝐏𝐄𝐄 normalization factor of FPEE w.r.t. Fmax 1 (muscle-specific) 
𝛄 representation of free Ca2+-concentration  time-depending 
𝓵𝐂𝐄 contractile element length time-depending 

𝓵̇𝐂𝐄 contraction velocity first time derivative of ℓCE 

𝓵𝐂𝐄𝐨𝐩𝐭 optimal CE length 0.015m (muscle-specific) 

𝓛𝐏𝐄𝐄 root of FPEE at ℒPEEℓCEopt 0.9 (muscle-specific) 

𝓵𝛒 pole in Hatze’s length dependency function 2.9 

𝓵𝐒𝐄𝐄,𝟎 slack length of SEE 0.045m (muscle-specific) 

𝐦 activation frequency constant in Hatze 10 Hz (muscle-specific) 

𝛎 exponent in Hatze’s formulation 3 (muscle-specific) 
𝛎𝐚𝐬𝐜 exponent of ascending limb of Fisom-curve 4 (muscle-specific) 
𝛎𝐝𝐞𝐬 exponent of descending limb of Fisom-curve 3 (muscle-specific) 
𝛎𝐏𝐄𝐄 exponent of FPEE-curve 2.5 (muscle-specific) 
𝐪 muscle activity (bound Ca2+-concentration) time-depending 
𝐪𝟎 basic activity according to Hatze (1977) 0.005 
𝐪𝐇 activation dynamics from Hatze time-depending 
𝐑𝐒𝐄 damping parameter 0.01 (muscle-specific) 
𝛒 length dependency of Hatze’s activation length-depending 

𝛒𝟎 factor in van Soest (1992) and Hatze (1977) 5.27 ⋅ 104 mol l−1 (muscle-specific) 
𝐒𝐞 ratio of derivatives of FCE at ℓ̇CE = 0 2 (muscle-specific) 

𝛔 neural muscle stimulation time-depending 
𝛕 activation time constant here: 1

40
 s 
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