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Abstract. We use an indirect optimal control approach to calculate the optimal
neural stimulation needed to obtain measured isometric muscle forces. The
neural stimulation of the nerve system is hereby considered to be a control
function (input) of the system muscle’ that solely determines the muscle force
(output). We use a well-established muscle model and experimental data of
isometric contractions. The model consists of coupled activation and contraction
dynamics described by ordinary differential equations. To validate our results,
we perform a comparison with commercial optimal control software.
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1 Introduction

Mathematical models for everyday phenomena often ask for a control or input
such that a system reacts in an optimal or at least in a desired way. Whether
finding the optimal rotation of a stick for cooking potatoes on the open fire such
that the potato has a desired temperature, see [1], or computing the optimal
neural stimulation of a muscle such that the force output is as close as possible
to experimentally measured data. Typical examples for biomechanical optimal
control problems occur in the calculation of goal directed movements, see [2- 4]
and in robotics [5]. Concerning huge musculoskeletal systems, the load sharing
problem of muscle force distribution has to be solved using optimal control [6,
7]. The most common application for solving the load sharing problem is the
inverse dynamics of multi-body systems (MBS) as in [8,9]. The aim is to
approximate observed multi-body trajectories by a forward simulation. The
problem occurs to find a set of muscle activations such that the muscle forces
resulting from the MBS simulation are similar to the measured ones.

Considering a general optimal control problem there is a process described by a
vector of state variables x which has to be influenced by control variable u € U
within a time interval [ty,t;] such that a given objective function J(x,u) is
minimized subject to the model equations. These model equations can be either
ordinary differential equations (ODE), partial differential equations (PDE) or
differential algebraic equations (DAE). Additional constraints on the control
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variable as well as the state variable itself can be imposed. The corresponding
general optimal control problem reads as follows:

min, I(x,u) = ffol j(x(u, £), ut), t)dt 1)
subject to x=f(x,ut) (ODEs)
0=gxu,t) (DAEs)
X € [Xmin» Xmax) u € U, x(ty) =xg (Constraints)

For solving this minimization problem we introduce an adjoint (or costate)
variable A which operates as a penalty function, if the ODE or DAE are not
fulfilled. The optimized control variable u* is found at the saddle point of the
Lagrangian L.

t

L(x,u,)) = f 1j xX(u,t), u(t), ) + A, (t) [x—f(x,u,t)] +A,(t) g(x,u,t) dt

to

subject to X € [Xmim Xmax), U E U, x(ty) =X, 2

Almost exclusively in biomechanical literature, the problem in Eq. (1) is solved
by the technique of first discretize then optimize also known as direct method.
Therefore 3 as well as the ODE/DAE constraints are discretized on a given time
grid resulting in a huge non-linear program (NLP), see [1, 10-12]. For solving
such NLPs, several efficient solvers have been designed. In [9] the program
DIRCOL (DIRect COLlocation) from [13] is used. But for state-of-the-art
programming MATLAB based packages exist like: GPOPS2 (General
Pseudospectral Optimal Software) [14] or TOMLAB’s developments SNOPT
(Sparse Linear OPTimizer) and PROPT (Per Rutquist OPTimizer) in [15].
Those solvers commonly use a (pseudo-)gradient based method like BFGS or
other quasi—-Newton methods for minimizing the objective function.

However, we want to apply the approach of first optimize then discretize.
Therefore we derive the first order necessary conditions for problem in Eq. (2)
explicitly. We obtain the optimal control u* by solving the upcoming coupled
ODE/DAE system. A state-of-the-art solver for the so-called indirect method
(BNDSCO) was developed by [16]. The name BNDSCO indicates the use on
boundary value problems with switching conditions. This solver uses a multiple
shooting method to solve the resulting boundary value problem. For an
enhanced discussion on both first discretize then optimize and first optimize then
discretize approaches, see [11,13,17].

Most of the available literature on optimal control of muscle dynamics does not
involve more control than just the level of activation, see [9]. However, we
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choose a control on a deeper physiological level, namely the neural stimulation,
to find an optimal neural stimulation such that the observed muscle forces are
recovered. Furthermore we want to think of the neural stimulation as a
continuous function rather than a bang—bang impulse as in [18].

The biomechanical applications of our method are multifaceted. At first it is an
additional validation for the used muscle model because a qualitative error
(objective function value) can be given. Moreover, the method’s findings allow
an investigation of specific parts of the model, for example the passive and
active force-length curves as well as the activation dynamics. Regaining the
optimal stimulation of an isometric contraction additionally reveals information
about internal concentric and eccentric contraction processes where the latter is
normally hard to investigate solely, see [19]. Furthermore we obtain indications
for model improvements such as the need to include the concept of fatigue as
suggested in [20].

In Section 2 we recapitulate the muscle model given in [21] using contraction
modes from [22]. For simplicity, we just consider the situation for a single
muscle. In Section 3 we formally derive the first order optimality conditions and
present an iterative solution algorithm for the upcoming coupled state—costate—
system. Our results are presented in Section 4. In Section 5 we compare our
finding with the output of the above mentioned commercial software PROPT.
The paper closes with an outlook on possible future work.

2 Model Description and Problem Formulation

In this paper we use a modified Hill-model [21,22] to describe the contraction
motion of muscles. This model is based on a mechanical analogy of the muscle
tendon complex (MTC) and is constituted by four basic compartments. The
contractile element (CE) produces the force by contracting, or more precisely by
actin—myosin cross—bridges at the sarcomere level. The parallel elastic element
(PEE) represents the connective tissues and is responsible for the muscle
passive behavior. The serial elastic element (SEE) represents the elastic
behavior of the tendon connecting the muscle to the skeleton. The serial
damping element (SDE) describes the viscous damping of the tendon.

2.1 Model Description

Let Ymrc, fpeR, fcEr fsgg and fgpg denote the length of the constituting
elements. Due to the setup of the model the following restrictions hold:

tce = fper, ¥sgg = fspg and  furc = fcg + fsEE -
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Using the notation F; for the force acting on the i—th component, at equilibrium
it holds that

Fmrc = Fcg + Fpgg = Fsgg + Fspg - (3)

In the sequel we shortly outline the individual force equations, details can be
found in [22]. For the reader not familiar with the biomechanical terminology,
we recall that isometric contraction refers to the situation, where the muscle
exerts some force without a change of length. In contrast to that, we speak of a
concentric or eccentric contraction if the CE exerts force and shortens or
elongates.

Following [22], we define the relation between the isometric force Figon, and
the length ¢ of the muscle

exp (—

exp (—

v
?cE—fCEopt

asc i
). ik < Logop

\Y
2ce—{cEopt | @
eCEoptAWdes

fCEoptAWasc

Fisom(Ycg) = (4)
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), lf'BCEZgCEOpt .

The parameters AWy, Vase and AWyes, V4es determine the width and slope of
the two branches of the bell-shaped Fjsom,-curve. Note the normalization
Fisom (fcEopt) = 1 at the optimal length £¢g = £cgopt, Where the muscle is able
to produce its maximum isometric force F,.4. Other functional dependencies
appear in literature, compare [23,24].

Subsequently we introduce the force—velocity relation of the contractile element

Fee(fce fee q) =
F; +a P .
Fmax( AlisomTArel arel), if {cg <0 (concentric),
1_£CE/(bre1€CEopt) (5)
qFisom*arele ie 7 :
F ( - - —a ), if fcg = 0 (eccentric).
max 1_€CE/(brel,e€CEopt) rele CE ( )

Note, that Fcg is non-differentiable at g = 0. The variable q denotes the
muscle activity. According to Zajac [25] the activity and the external neural
stimulation o are related via the ODE

d=z(c—0c-(1-B)-(a—d0) B (@ —do)) - (6)

The time constant t and the activation—deactivation ratio 3 determine the
velocity of activation growth or decay after a neural impulse. For a particular
description of the physiological meaning of the occurring parameters see
Appendix A or [22].
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Another activation dynamics was given as a differential-algebraic system by
Hatze [26]. A compact form of this system as a first order non-linear ODE was
derived in [21,22]:

. . 1— 1+1/v
=~ o - p(lere) - M (1 —qp) - (@u—q0)|- ()
1=do (Qu-q0)v "

The frequency m and the parameter v were set by Hatze and depend on the
particular muscle. The function p(€cgrer) 1S monotonically increasing and
introduces a length-dependency of the activation. In [22] Hatze’s activation
dynamics is not used. However, [27] stated that Hatze’s formulation might be
physiologically more relevant than Zajac’s. Hence, we want to include its
impact in the discussion. For a detailed discussion of the above activation
dynamics see [26].

Following [21,22] the parameters ayej, arele, brer aNd bre e in Eq. (5) depend
themselves on £ and q via

arzl.o_ (1+39), if ’cg < fcEopt

rel arzl,o (1 + 3Q)Ficom, if cg = "'DCEopt rele e 4 Misom (8)
bre ) bre 1_Fe
brel = % 3+ 4'(1), brel,e = 1(—31) (9)
Se(1+qurseom)

The parameter S, is related to the ratio of the slopes at £cg = €cgope Of the
concentric and eccentric branch, see Eq. (5). The parameter Fe = lim;___,.,Fcg/

(Fmax 9 Fisom) 1S related to the asymptotic behavior of the eccentric force. The
parameters a ;o and by o refer to the Hill parameters, see [28].

For the two elastic elements we generally assume a non-linear behavior above a
certain slack length £pgg o and £sgg o

Fpee(fce) =
0, if‘gCE < 'EPEE,O ,
fcE—?PEE,0 VPEE (20)
Fmax Free (€CEopt(1+AWdes)—f’PEE.o> » 1bce = frpgo -

The constant Fpgg is related to the force Fpgg of the parallel elastic element at
the Iength { = 'gCEopt(l + AWdes) Via FPEE (‘g) = FmaxTPEE-

Following [22], the serial elastic element is assumed to behave linearly, if its
length exceeds a threshold £sgg i = (1 + AUsgg ni1)seE,0-
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Fsge(fsge) =
( 0, if £sgg < ¥sggo »
£seE—fsEEo | SEE
AF (—) , iff <? <{ ,
S2: 00 YT e——— seE,0 < ?sgE < ?sgE,nll (12)
?sEg—?SEEnll .
AFsgg,o (1 e | if £sgg = £sgEnn -
SEE,I*SEE,0

The parameter AFggg o refers to the force of the serial elastic element at length
Csgenn- The linear elastic regime for large length £sgg = £sggny IS governed

by the parameter AUggg). The exponent of non-linearity for the serial elastic

. AU
element is fixed by vggg =%E'"”, whereas the exponent for the parallel
SEE1

elastic element is an adjustable model parameter, in this work we choose
Vpgg = Vsgg, compare [22].

For the damping element SDE we assume a linearly increasing damping force
Fspe(?mrc fcrr £cr,q) =
Fcp+F p p
DspE ((1 - RSDE)% + RSDE) (¥mrc — fcr) (12)

with damping parameters Dgpg at Fyrc = Fcg + Fpeg = Fnax and Rgpg at
FMTC = 0

Solving the equilibrium Eq. (3) for the contraction velocity £ we obtain the
following differential equation

|( —Cy— [C3-4C,C, .
N b <0

=] (19
- 2 _
I\ cl,e+dt;1c,;4cz,eco,e’ if 25 > 0 .
The coefficients C,, C; and C, are given by
CO = DOiMTC + lCEoptbrel(FSEE - FPEE - Fmaquisom):
¢, = —(Cz Imrc + Do + Fsgg — Fppp + Fmaxarel)v (14)

F
C2 = dsgmax <RSDE - [arel - F;zi] (1- RSDE))-
The coefficients Cy ., C1¢, and C, . in the eccentric case Icg = 0 are obtained
when replacing a,;, bre; With ¢ ¢, brep 0. The auxiliary coefficients dgg 1ax
and D, are given by
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_ FrmaxQrel,o
dSE,max - DSDEl b ’ (15)
CEoptlrel,0

max

F
Dy = lcpoptbreidsemax <RSDE + (1 — Rspg) (qusom + FPEE)>- (16)

Summarizing, Egs. (3)-(13), we obtain a coupled system of equations allowing
us to write the muscle force Fyrc as a function of the neural stimulation o,

i.e. FMTC = FMTC(G) .

2.2 Problem Formulation

In [22] all model parameters stated above were estimated on the basis of
experiments by [29] namely isometric contractions. In the experimental setup,
conducted on piglet muscle, all conditions were controlled. The neural
stimulation o was imposed by an external electrical 0/1-impulse

lft € [tstart: tend] - [0.1 S, 1.1 S] )

else . n

— 1,

o(t) = {0,
As output information the resulting isometric force was measured at different
fixed lengths £yt Of the muscle, see [22, Figure 7].

We address the following scenario: Assume we are not able to apply or measure
the stimulation o directly, but only measure the force resulting from isometric
contraction. Are we able to reconstruct the stimulation o(t)? In other words: We
wish to find a stimulation o™ (t) such that the resulting force Fyirc = Furc(0™)

is as close as possible to the experimentally measured force denoted by Fyrc.

Based on the previous muscle model we may notate this problem as a
constrained minimization problem. Let U = C([0,T],[0,1]) denote the
continuous functions from time interval [0, T] which are bounded by [0,1]

in =1 —F a
min 3(Furc, ) = 5 Furc = Furclliz + 3 lloll2 (18)

subject to the constraints

q=fi(q,0), q(0) = qq, (19a)
2ce = f,(fmre Pure e q) . £ee(0) = £cgo (19b)
Pyt =0, ymrc(0) = mrco » (19c¢)

Fure = f3(fmre Pmre feer Q) (19d)
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The constraint #yrc = 0 in Eq. (19c) arises from the isometric contraction
scenario. If other contraction types, e.g. quick release, are considered, this
condition has to be replaced by the respective equations.

3 Solution and Results

Minimizing a cost functional 3 with respect to a control o and subject to
constraints given by a set of differential or algebraic conditions is a well-known
and well-investigated problem. In this paper we will not go into details of
proving the existence or uniqueness of minimizers, but rather formally derive
the first order necessary conditions for the optimum.

In the isometric case ¢yrc = £mTc,o IS constant, therefore we skip this variable
henceforth. Using this simplification, let us denote the state variable by
x = (Fure, 0, £cg). Introducing the adjoint variable A = (Ag,,.., A Apeg ), We
formally define the Lagrangian

L(x,A,0):=

3(%,0) + Apyrer Fure — 3012 + (Mg, @ — i)z + (Aggy Leg — )z . (20)

By (u,v)2:= fOT u (t) v(t) dt we denote the usual L?—inner product. We use

Dgu for the (Géateaux) derivative of u in the direction of @ and use d.u for the
partial derivative of u with respect tot.

The necessary first order optimality conditions imply that at a local optimum all
(Géateaux) derivatives of £ vanish. Computing formally the derivatives with
respect to the adjoint variables Ag,,..., Aq, A, We recover the state system

D}\qL =0=> q = fl(q’ 0), q(O) = (o, (21&)
D}%CEL =0 = ’?CE = fz ('FMTC, gCEJ q), »€CE (0) — ,€CE,0’ (21b)
D}‘FMTCL =0 = Furc = f3(fmre fce D- (21c)

Taking derivatives with respect to the state variables Fyrc,q, £cg leads to a
system of equations for the adjoint or costate:

DgL=0=  Aq=—Ap,p0qfs — Aoy gfz —Aq0gf1, Ag(T) =0 (22a)

DpeL =0 = Aoy = —Aryre Orcsfs — Aogg Oecplzr Aoy (T) =0 (22b)
Dpypcl = 0= Apyo. = Furc — Furc (22c)

The derivative with respect to the control o gives rise to the gradient condition
DeL=0=  ao=2A0f, 0<o<1. (23)
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Note that the differential equations for the adjoint variables A4 and A, have to
be solved backwards in time, starting with the terminal conditions A4(T) =0
and A, (T) = 0. The functional expressions for the partial derivatives df3,
etc. appearing in Eqgs. (22a)-(23) can be derived explicitly, or at least
symbolically in MATLAB. Using the Heaviside step function for expressing
piecewise functions, these derivatives can be calculated in a closed form.

To solve the non-linear system of Egs. (21)-(23), we use the iterative Algorithm
1. For the simulation results discussed in the next section, we implemented this
algorithm using MATLAB (Version R2013b) including the symbolic toolbox
for automatic computation of the partial derivatives and the pre—implemented
ODE-solver ode45 for the numerical solution of the differential equations.

Figure 1 shows the results of the optimal control approach. Regarding Figure 1
(left) we compare the experimentally measured isometric forces Fyrc (thin line,
see [29]) with the force Fypc = Fyrc(o™) computed in the optimal control
approach (bold line). Additionally, we have plotted the direct model output
Futc (o) of the model Eq. (14) (dashed line) using the experimentally applied
0/1-stimulation &, see Eq. (17) . In Figure 1 (right) we show the reconstructed
stimulation ¢* obtained by the optimal control approach versus time. The
dashed line refers to the experimental input, i.e. the 0/1-impulse . The results
are plotted versus time for a muscle of given length fyrc = CmTcref =
6.15 cm. In the subsequent Figure 2 this length serves as reference length.

Algorithm 1 Discretization after Optimization
Require : f;, f,, f3, Fyre, , £mrc, €rror tolerance Tol, initial guess o, for the stimulation
Calculate ¢ o using Eq. (3)
Calculate Fy¢ using o = g,
while S(Fyrc, 0) > Tol do
Calculate Ag,,.. = Fyrc — Furc
Solve Ay = —Apype Oocgfs = Aoeg Dol With A, (T) = 0
Solve )lq = —Apyre 0qfs = Ageg 0gfz — Aq 9gf; With A4 (T) = 0
Updateoviac=(1—¢)- -0+ i - Aq 0,f;1 with convex combination factor &
Solve q = f;(q, 6,) with q(0) = q,
Solve ?cg = £, (€mrc, mres £ce @) With £c£(0) = e
Calculate Fyre = f3(£mrc, £mre, £ 9)
end while
output Fyre, £cg, 2cg, ¢, 0° = o.
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Figure 1 (Left) Isometric contraction forces vs. time: Experimental data [29]
(thin), optimal control results Fypc from Algorithm 1 (bold) and direct model
output Fyrc(o)using (14) (dashed). The relative muscle length lyrc/lprc rer= 1-
In addition we have marked the starting time tg.,«= 0.1s and ending time tqpq=
1.1s of the experimental reference stimulation ©. (Right) Stimulation vs. time:
Result from the reconstruction using optimal control (thick line) and reference

stimulation @, see Eq. (17) applied in the experiments (dashed line). The relative
muscle length is given by Iyrc/Imrcrer= 1.

4 Discussion

41 Results for Muscle Length €yrc = €mrcref

We start with a discussion about several general findings for a single muscle

length £yrc = €mrcrer = 6.15 cm. In Figure 1 we compare the optimal control
results to the experimental and reference data.

First of all we notice that the shape of the reconstructed stimulation o* is similar
to the reference stimulation . The same holds true for the recomputed force

Firre (bold line) compared to the experimental data Fyrc (thin line) and the
model output Fyrc (o) (dashed line).

However, the reconstructed stimulation starts to rise before the onset of the
reference stimulation. This can be partly explained by the forces, see Figure 1.
The curve for the experimental data shows a much steeper increase than both
computed curves, the bold one for the optimal control results and the dashed
one for the model output. To compensate for the slower rate of increase, the
optimal control curve has to start at earlier times t < tg¢ap¢. This is only possible
if the stimulation o also switches to 1 at earlier times.

Secondly, one may observe that the experimental results for the force show a
slow decrease right after the peak of the force at t = 0.5 s, although the muscle
is still fully stimulated, see Figure 2. A mathematical explanation cannot be
given, but this might indicate fatigue. However, this slight decrease of the
experimental force data is responsible for the rather strange and unexpected



22 Robert Rockenfeller & Thomas Go6tz

local peak of the optimal control stimulation at time t=1s. Since the
experimental forces decay already for t > 0.5 s and the optimal control tries to
determine the stimulation such that the computed force fits the experimental
data, the stimulation starts to decrease at around t = 0.8 s.

Adjusting the decay rate of the computed force to the experimental data, in
combination with the prior decay in the stimulation, seems to require the local
peak of cat t = 1s. Once the stimulation is switched off at times t > 1.1 s, all
three force curves show almost identical decay rates. This indicates the model’s
good correspondence with its parameters and the real-world situation. The
optimal control results are largely independent of the initial guess o, (t); the
presented results were obtained using o, (t) = 0.5.

4

— Experiment
|— Optimal contral result
Direct model output

-0.5 6 T\r?l“esis) 1I - 1.5
Figure 2 Isometric contraction forces vs. time: Experimental data from [29]
(thin black line), optimal control results (bold black line) and direct model output
using Eq. (14) (dashed line). The different graphs refer to different relative
muscle lengths €yrc/€yrc rer, Marked with little numbers 0.85,..., 1.1..

—Optimal control result ! ! !
01 - impulse

Stirmulation

0.4)

—014 —0!2 4] 02 0"%'ime {s[’J.S 0:8 ; : .hl .|2 1 !d
Figure 3 Stimulation vs. time for different muscle lengths: Result from the
reconstruction using optimal control (thick line) and literature reference o,
see [22] (dashed line). The muscle length is indicated by the €yrc/€urcrer—

ratio and printed besides the respective optimal control curves.
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4.2 Results for Muscle between 0.85 < €yrc/fmrerer < 1.1

Using Figures2 and 3 we compare the optimal control results with the
experimental and reference data for various muscle lengths given in [22].

The previously stated results for the shape of the calculated curves, the
stimulation peak at t = 1 sand the fatigue still hold true. However, the variation
of the muscle length reveals some additional observations.

At short muscle length the stimulation o in Figure 3 appears to be significantly
lower than the expected full stimulation, e.g.oc < 0.6 at the shortest
length £yrc/?mtcrer = 0.85. An explanation cannot be given within the
framework of the used models. However, this observation suggests replacing
Zajac’s activation dynamics Eq. (6) by Hatze’s formula, see [26,30]. In this
modified activation dynamics, the muscle activation q depends not only on the
neural stimulation o, but also on the current muscle length £¢g.

For short muscles, e.g. £yrc/fmrcrer = 0.85 and 0.88, the experimental data
show a faster decay of the force compared to the simulated results. This may
also indicate that the activation depends on the muscle length as explained
above.

For long muscles, e.g.fmrc/fmrcrer = 1.1, Figure 3 shows, that the
reconstructed stimulation is non-zero even for times t < tg.,+ , Which can be
explained regarding the initial forces in Figure2. For t <ty the
experimentally observed forces are larger than the direct model output without
neural stimulation. This indicates the need for further adjustment of the model
parameters in the passive regime, i.e. for zero stimulation. The optimal control
algorithm tries to diminish this force difference in order to reduce the objective
function value. The only option is applying some non-zero stimulation to the
model, which responds in generating the missing force for t < tgart.

The results for the muscle length yrc/€mrcrer = 1.06 show a special
behavior. Before the onset of the stimulation, i.e.for time t < tge, the
experimentally measured forces are less than the simulated forces, even with
zero stimulation as seen in the direct model output (see dashed line in Figure 2).
In contrast, the experimentally forces are larger than the simulated ones during
the stimulation phase, i.e. for t € [tgtart, tena], €ven with maximal stimulation
o = 1. Hence the optimal control forces Fypc agree with the model output
Fumrc (o) for the experimentally applied O/1-impulse G in Eq. (17).



24 Robert Rockenfeller & Thomas Go6tz

5 Comparison with Commercial Software

To further validate our findings, we present a comparison of the results obtained
by our optimal control algorithm with a commercial software package called
PROPT (see [31]). This software is based on MATLAB and available with a
demo license. PROPT currently uses Gauss or Chebyshev—point collocation for
solving optimal control problems. As initial input, PROPT uses the model
functions Eqg. (3)-(13) as well as the objective 3 and boundaries for state and
control variables. The optimal control problem is discretized and the upcoming
non-linear program (NLP) is solved. We are going to state some relevant facts
using PROPT. For further information including some illustration problems
see [32]. A similar commercial software package based on Gaussian pseudo-
spectral collocation is called GPOPS2, see [14].

Since non-continuous functions cannot be handled by the above mentioned
packages, we have to approximate the Heaviside function by a smooth function

Ok (x) = ﬁ with k > 1. In our computations k = 3000 turned out to be a

good choice. Since the commercial packages solve the optimal control problem
by a first discretize then optimize approach, attention has to be paid to the
number of discretization or grid points used in the computations. For more than
200 grid points PROPT issued a warning that the upcoming NLP matrix was
close to singularity and for less than 100 grid points the results may be
incorrect. With a choice of 120 grid points the algorithm was able to run all
calculations while the evaluation time was similar to our optimal control
algorithm.

40,

Exparimeant
—Optimal control result
35]---PROPT resul

]
T

Farce (N)

85 0 05 1 15
Time (s)
Figure 4 Isometric contraction forces vs. time: Experimental data (thin line),
our Algorithm 1 (bold line) and software package PROPT (dashed line). The
different graphs refer to different relative muscle lengths €yrc/€urcyrer
compare Figure 2.
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In Figure 4 we compare the computed muscle force obtained by our optimal
control Algorithm 1 (bold line) and the PROPT—software (dashed line). As a
reference we also included the experimental data (thin line). Figure 5 shows the
stimulation o computed by PROPT in comparison to the reference 0/1-impulse
used in the experiments.

—PROPT resul ! !
01 - impulse i

Stimulation

08 1 12 14

~0.4 -0.2 0 0.2

0:4_ 0:6
Time (s)
Figure 5 Stimulation vs.time for different muscle lengths: Result from the
reconstruction using PROPT (thick line) and literature reference o, see [22]

(dashed line). The PROPT result is smoothed by a moving average (over a time
period dt = 0.08 s) to remove highly oscillatory behavior.

Both optimal control methods, our first optimize then discretize approach in
Algorithm 1 and the first discretize then optimize method implemented in the
PROPT software yield very similar results for the muscle forces, see Figure 4.
The initial oscillations in the PROPT-force for the £yrc/fmrcrer = 1.06—
curve can be explained by similar reasons as the optimal control results in the
previous section.

Note that the stimulation o computed by PROPT needed to be smoothed by a
moving average filter. Due to the first discretize then optimize approach, the
underlying NLP computes an individual optimal search direction for the
stimulation o at each discretization point. Hence the results can exhibit artificial
oscillations and peaks. In contrast to that, our Algorithm 1, which is based on
the first optimize then discretize approach, computes globally valid search
directions; hence the results do not show discretization dependent artifacts or
oscillations.

Table 1 lists the values of the objective function 3, see Eq. (18), for our optimal
control Algorithm 1, the commercial software PROPT and the direct model
output using the 0/1-impulse stimulation. As expected, both optimized results
yield lower objective function values compared to the direct output given in the
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last column. Comparing the two optimization approaches to each other, the
optimal control results are in most cases slightly better than the PROPT results;
the total value of the objective function is about 3% lower for the optimal
control methods.

Table 1 Objective function values at different muscle lengths: Optimal control
Algorithm 1 (Fyrc), commercial software PROPT (Fyrcp) and direct model
output (Fyrc(0)). Weighting parameter o = 0.1. The fourth column shows the
L2—difference between our results and the PROPT-results.

Lenath Ontimal Comparison
o e PROPT  ZIFyyp — Fyrcll,2  Direct Output
r— IFire, ) J(Furcp, 0p) a, J(Furc(0),06)
re +5llo” —aplly2
0.85 3.3 2.9 1.9 13.4
0.88 7.6 8.7 6 15.0
0.91 9.7 8.9 4.8 24.0
0.94 15.3 15 6 28.1
0.97 16.5 17.2 5.4 35.3
1.00 22.9 24.2 4.2 33.8
1.03 24.7 26.3 4.4 32.7
1.06 24.8 25.9 6.1 26.4
1.08 8.9 9.4 3.6 21.0
1.10 4.9 3.3 3.2 21.8
> 138.6 141.9 45.6 251.5

6 Outlook and Future Research

We presented an optimal control algorithm to recalculate the stimulation of a
muscle based on its isometric force output. Simulations performed with
experimental data showed the applicability of our approach. High congruence
between the experimentally applied stimulation and the mathematically
recovered stimulation was found. A further comparison with commercial
software validated our results. The computational results showed that the choice
of the activation dynamics can be of importance. To further investigate the
choice of activation dynamics, we derived a comparative sensitivity analysis of
Hatze’s and Zajac’s activation dynamics by taking the effects of parameter
changes into account, see [27].

Furthermore, a parameter estimation of the whole muscle model described in
Chapter 2.1 would be of interest. In today’s biomechanics parameter estimation
is still done by educated trial and error, therefore we want to find an algorithmic
optimization approach. The available models might be improved by including
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physiologically observed effects such as eccentric force—velocity relation, force
depression, force enhancement and fatigue, see [21,33,34].

Eventually regarding modern biomechanical simulations we have to face huge
multi-body systems with a multitude of muscles and boundary conditions
performing a variety of movements such as walking, jumping or scoring a
soccer goal, see [2,4,35,36]. Solving an optimal control problem for each
muscle would be too expensive to perform within reasonable time. As an
alternative optimal control strategy, the technique of space-mapping could be
used. Developed for the use of microwave filter designs, see [37], the optimal
control algorithm is based on the idea of two given models: an accurate but
complex model and a simpler but inexact model. The optimization is done
exclusively on the level of the simple model, whereas the crucial part is to find a
mapping of the complex model to the simple model, the so-called space-
mapping. This idea could be used to control a complex multi-body system with
several hundreds of components.
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Appendix A. List of Symbols

Symbol

Meaning

Value / Remark

arel,O/ bre1,0

B

Dsg
AW,
AWes
AFsggo

AUsgg,nn
AU,
Fe
Fisom
Finax

F PEE

Hill-parameters of contraction dynamics
corresponding deactivation boost

maximal Ca?*-concentration in Hatze (1977)
damping parameter

width of ascending limb of Fis,m,-Curve
width of descending limb of Fjsop,-Curve
reference force of SEE

relative width of non-linear branch in SEE
relative width of linear branch in SEE

limit factor for eccentric Force

isometric muscle force

maximum isometric force of the CE
normalization factor of Fpgg W.r.t. Fnax
representation of free Ca?*-concentration
contractile element length

contraction velocity

optimal CE length

root of Fpgg at Lpge?cropt

pole in Hatze’s length dependency function
slack length of SEE

activation frequency constant in Hatze
exponent in Hatze’s formulation

exponent of ascending limb of Fis,m,-Curve
exponent of descending limb of Fs,,-curve
exponent of Fpgg-curve

muscle activity (bound Ca?*-concentration)
basic activity according to Hatze (1977)
activation dynamics from Hatze

damping parameter

length dependency of Hatze’s activation
factor in van Soest (1992) and Hatze (1977)
ratio of derivatives of F¢g at #cg = 0
neural muscle stimulation

activation time constant

0.1 resp. 1Hz (muscle-specific)
0.8 (muscle-specific)
1.37-10"*mol - 171

0.3 (muscle-specific)
0.57 (muscle-specific)
0.14 (muscle-specific)
60N (muscle-specific)
0.1825 (muscle-specific)
0.073(muscle-specific)
1.8 (muscle-specific)
length-depending

30N (muscle-specific)

1 (muscle-specific)
time-depending
time-depending

first time derivative of €5
0.015m (muscle-specific)
0.9 (muscle-specific)

2.9

0.045m (muscle-specific)
10 Hz (muscle-specific)
3 (muscle-specific)

4 (muscle-specific)

3 (muscle-specific)

2.5 (muscle-specific)
time-depending

0.005

time-depending

0.01 (muscle-specific)
length-depending

5.27 - 10* mol 1= (muscle-specific)
2 (muscle-specific)
time-depending

1
here: — s
40
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