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Abstract. In the present article we give new techniques for proving general
identities of the Popoviciu type for discrete cases of sums Y2, Z?’:l piif Vi 2))
for two dimensions using higher-order V-divided difference. Also, integral cases
[[ P(y,2)f(y,z)dydz are deduced by different methods for differentiable
functions of higher order for two variables. These identities are a generalization
of various previously established results. An application for the mean value
theorem is also presented.
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1 Introduction

In many fields of mathematics several types of differences are used: finite
difference, A-divided difference, V-difference etc. From the point of view of
application there are various implementations of these differences in fields such
as numerical analysis, statistics, vector calculus and physics [3,5,6,19]. We
chose the V-operator due to its wide application. In Section 2, we obtain
discrete identities for function f(y;,z;) and sequence a;; involving V-divided
differences. In Section 3, we state general integral identities by different
methods for differentiable functions of higher order for two variables of the
Popoviciu type. These identities are a generalization of various established
results; their application is also given. The present article is related to our
previous article [1].

Let us recall some useful definitions and significant results from [1,8,10,11,16].
Throughout this article, I is an interval in R. Also, we use the following
notations for R = (—o0, ), R, = [0, ) and R, = (0, ).

Definition 1 The m-th order divided difference of a function f:I - R, at
distinct elements y;, yiy1, -, Yi+m € [ = [a,b] € R, where i € N, is stated as:

[yj;f] =f(yj), where je{i,i+1,..,i + m}
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— Wity-Yiems f1=Vi-YViem-1:f]

[Vis Vists ooor YViems f] I—— -

This can be written as:

. . fl=§ym _ fOi+k)
[yu = Yiems f] k=0 H;'ZTL'Z':HI( (Yi+k_3’j).

Remark 2 Some important remarks:

1. Let us denote [y, ..., Yiem: f1 BY Aanyf (i) The value [y;, ..., Yigm: f] IS
independent of element order y;, ¥i+1, -, Vi+m-

2. We can extend this definition by including a case in which some elements or
all elements coincide by supposing that y; < -+ < y; .., (see [16]) and letting

m)y,.
[Yi' ""Yi+m;f] = &’

m!
provided that £ (™ (y;) exists.

Definition 3 A function f:1 — R, is called m-convex or m-th order convex if
the inequality 4, f (y;) = 0 holds ¥V (m + 1) different points y;, ..., Y;4m € I.

Further, if an m-th order derivative of the function exists, then the function is
convex of order m if and only if f(™ > 0.

Definition 4 Any function f:1 — R is known as V-convex of order m or m-V-
convex if v (m+ 1) different points y;,yit1,--,Yi+m €1 and we have

Veyf ) = (=)™ Ay f (vi) = 0.
Further, if an m-th order derivative of the function exists, then the function is V-
convex of order m if and only if (=1)™f(™ > 0.

Definition 5 Let E = {y;, 5, ..., yu} € R. Any function f:E - R is called a
discrete m-convex function if inequality [y;, ..., ¥ism; f1 = 0 holds V (m + 1)
different points y;, ..., ¥iym € E.

We extend the aforementioned definitions up to order (m,n). For this purpose,
let us denote I X | = [a, b] X [c,d] € R?.

Definition 6 Let f: 1 X /] = R be a function, then the divided difference of order
(m,n) of f at different elements y;, ..., ¥iym € I, Zj, ..., Zj1n, € ] for some i,j €
N is stated as A(m,n)f()’i'zj) = [yi' v Yivms [Zj, ...,Zj+n;f]].

Definition 7 A function f:1 x J - R is known as (m, n)-convex if v different
elements y;, ..., yitm € I and zj, ..., zjp, € ], and we have 4, oy f (3, 7)) = 0.
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Further that function f is (m,n)-convex iff f,,y =0, given that a partial

am+n

fn denoted by f(, ) EXists.

derivative 3y79%

Definition 8 Let E = {yy,y,, ..., yu}, F = {21,273, ..., 2y} € R. Any function
ftEXF — R is known as a discrete (m,n)-convex function if inequality
Vis eoor Viems [Zy o Zjans f1] =0 holds V. (m+1) different points
Yi» - Yi+m € E and (n + 1) different points z;, ..., zj,, € F.

Definition 9 The finite difference of the function f:1 x J — R of order (m,n),
where h,k € Randy €1, z € ], is stated as:

A f,2) = AR (ARf (v, 2)) = A (AR f (v, 2))
= 3 Xo (<D™ (1) (7) F O + k2 + i),

where y +ih,z+ jk €1,] respectively and i€{0,1,2,..,m} and j€
{0,1,2, ...,n}. Moreover, a function f:I1xJ — R is called (m,n)-convex if
A fz)20vVvyel ze].

Definition 10 The finite difference and divided difference of (m,n) order of a
sequence (a;;) are stated as A™"a;; = A7 f(iz) and Agpnaij =
Amnyf Vi, 2j), respectively, where i € {1,2,3,...,m}, j € {1,2,3,...,n}. If y; =
i, zi=j, then f:{1,..,m}x{1,..,n} >R is a function f(i,)) = a;.
Moreover, a sequence (a;;) is called (m,n)-convex if A™™"q;; > 0 for m,n =
Oandi,j€{1,23,..}.
Further, in the present article we use the following notation for some real
sequence (a,,), m € Nandn € {2,3, ... }.

VDa, =Va, = ay — ame1, VPa, =70 Va,,).
Also for m distinct real numbers y;, i € {1,...,m}and n = 0.

Wk — J/i){n+1} = Wk = YD) k-1 = Vi) - Ok—n — V1),

=y =1,

Definition 11 We say the function f:1 x]J — R is (m,n) —V —convex if
inequality V(m,n)f(yi'zj) = (—1)m+nA(m'n)f(yi,Zj) >0 holds Vv different
pOin'[S Vir o Yi+m € I, Zj, ---'Zj+n € ]

Let us first give a brief explanation of the format of our article. Section 1 gave
an introduction and some preliminaries. In Section 2, we present identities for
the sums Y1, ¥, pijf (vi,z) for two dimensions using the V-operator.
Section 3 is devoted to integral case [[ P(y,z)f(y,z)dydz for higher-order
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differentiable functions of two variables using different techniques. In Section 4
we present an application of the mean value theorem and the last section
contains the conclusion.

2 Discrete Case for Function and Sequence of Two Dimensions

Under the given heading, we give the identity of ¥}, %, p;;if (71, 2) (see
[1]), which involves V divided differences. We also give the identity of a
sequence that involves V divided differences. Moreover, we split this sequence
into two as a special case by using a;; = a;b;.

Theorem 12 Let p;; € R and f:1; X J; — R be a discrete function, where i €
{1,2,3,..,M —1,M} and j € {1,2,3,---,N — 1, N}. Then the following identity
holds:

N

M=

pl]f(yl'zj)
j=1

Il
ey

i

H
E

m—-1 M-t N—

k

n—

Dsr(zy _Zr){ }(}’M
k=

o

t=0 s=1

Ys){ Weerrf -t Zn—r)

t
+ Z Z psr(ZN - Zr){k}(yt+m—1

=1 s=1

T
=

=
]
[=]
o~
=
[N

— Y)Y Vi f Oer Zy-ic) Geam — Vi) (2.1)

=
|

S
3
i

AR
<
&

Dsr (Zk+n—1 - Zr){n_l} (yM

+
M=

=
1l
[y
~
I
o
©
1l
Ju
<
1l

1
- YS){t}V(t,n)f(YM—t'Zk)(zk+n - Zk)

N-n M—-m

t kK
+ z Z Psr (Zkan—1 — Zr) " B Wram—1

1 t=1 s=1r=1
- YS){m_l}V(m,n)f(yt'Zk)
X (}’t+m - Yt)(zk+n - Zk)'

&
1l

where (y;, z;) € I; X J; are distinct points.
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Corollary 13 Let p;; € R and a;; be a sequence, where i € {1,2,3, ..., M} and
j €{1,2,3, .., N}. Then the following identity holds:

M =)' (¥ =)
- z Psr ™ PCORC
k=0 t=0 s=1 r=1 . .
+n—1 M-m zt: N-k (t—s+m— 1){m—1} (N — r){k}
Psr (m—1)! k!

) . 2.2)
\ 3, G2

t!

(k—r+n-1)""V
=1 Vie,n) At k)

oo (k—r+n-1m1
* Z Z Psr (n—1)!

(t—s+m—1)m1
v a .

Remark 14 We can easily obtain the proof of the above corollary by the same
method as was used in Theorem 12 of this article [1].

Remark 15 If we simply put a;; = a;b; in Corollary 13, then we obtain the
same result for two a; and b; sequences as follows:

Corollary 16 Let p;; € R, a:i = a; and b: j — b; be two sequences, where i €
{1,2,3,...,M}andj € {1,2,3,---, N}, then:

B (N — )k _— (M — )it}
= Psr T wWPw-l T
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Viey@m-t)

‘ (N — )i}
+ Z Psr — 3 Vaobv-i)

(t—s+m—1)m1u
Vona
(m —1)! m)“()

S (k—r+n-1PD
Z (n—1)!

M — s)18
Viwbooy —— Vwaw-o

>y g

N

N-n M—-m

)
t=1

=
Il
ey

Il
=
<
=

(t—s+m-1)m-1
Vimybiy = X Vemaeo-

3 Integral Case for a Function of Two Variables

Suppose y and z are real continuous variables defined on I X J = [a, b] X [c,d],
and m,n, M, N € N U {0}. Throughout this section we will use:

_ _of _9of
foo =1 fao = . fon =5,
f _ aZf _ aZf f _ ai+]'f _ ai+jf

D T 3yaz ~ az9y’ WD ™ ayiazi — aziayt

Let f:Ix]J—>R and P;; both be integrable functions. We introduce the
following notations:

b d
Pan(,2) = fy fz P(s,t)dtds,
b (d
P(m+1,n+1)()’: Z) = fy fz P(m,n)(S, t)dtds
and

b rd =)™ (z-)"
Pimsineny0,2) = [, [, PGS, t)%szde-

To prove our next theorem we use the two-dimensional induction method as
follows:
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Definition 17 Let G(M, N) denote a statement involving two variables M and
N. Suppose
1. G(0,0) is true.
2. If G(m,0) is true for some non-negative integer m, then G(m +
1,0) is also true.
3. If G(m,n) holds for some non-negative integers n and m, then G(m,n +
1) is also true.

Therefore, G(M, N) are true V¥ non-negative integers N and M. This process is
called two-dimensional induction.

Remark 18 Here it should be noted that in the above definition of two-
dimensional induction we used N U {0} instead of an ordinary set of natural
number N that starts from 1, see for reference [2, p.~12].

The following lemma is a special case of Theorem 20.

Lemma 19 Let f have the continuous partial derivatives f 1), f(1,0) and f(1,1
and f, P:1 X ] — R be both integrable functions, then we have:

14 12 PGL2)f (v, 2)dydz
= J; Iy P(s,©)f (s, t)dsdt
= f00) (B, P2y (b, d) + [ f1,09(S, d)P,1(s, d)ds
+fdc fo) (b, )P4y (b, t)dt + fdc fba f1,1) (8, 1) P11y (s, t)dsdt.

Now we state the main integral identity of this section using higher-order
derivatives. We prove the following result in two different ways, first by two-
dimensional induction and then by Taylor expansion, recalling Theorem 4.2
from [10].

Theorem 20 Let f have continuous partial derivatives f(; y and P, f:1 X ] - R
both be integrable functions, where i€{0,1,2,---,M,M+1}, jE€
{0,1,2,...,N,N + 1}. Then:

ja b | P, f (0, dz dy

C

AN b-nid-20 ..
=22 | | Pon T ey

(3.1)
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fa (b, d)dz dy
N

3L [ ron e e
=0 a ‘a’c : !

M 4 bt
fm+1,j (s, d)dz dy ds + Z f f f P(y,z)
i—o “¢ Ja Jc

(b—yiEt—2)" ,
i! N! (_1)1+N+1f(i,N+1)(b; t)dz dy dt

o [ [ oo S o

fou+1n+1) (S, O)dz dy dt ds.
Proof. (Method I) First we claim that:

fdc fba Py, 2)f (v, 2)dydz

M N
= Z f(i,j)(b' d)P(i+1,j+1)(b; d)

i=0 j=0

N
a
+Z_f f(M"'l.j)(S'd)P(M+1,j+1)(S,d)dS (3.2)
i Jpp
Jj=0

M
c
+Zf fan+1) (B, P 11,n+1) (b, t)dE
i=0 "4

C a
+_[ J P(M+1.N+1)(5' t)f(M+1,N+1)(5. t)dsdt
d Jp

At this stage we show this equality by applying Definition 17 of two-
dimensional induction, where first we consider a fundamental case, i.e. M =
N =0.
d b
I 1, PO 0, 2)dydz = [ [ P(s,t)f (s, t)dsdt
= f(o,o)(b: d)P(1,1) (b,d) + fba f(1,0) (s d)P(1,1)(5: d)ds

+ [ foy (B, OPan(B,Odt + [] [ fr1)(s, )Py (s, dsd,

We will prove that the above is a consequence of Lemma 19.
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Now we have to suppose that our hypothesis is true for M = m (any arbitrary)
and N =0, i.e.

C a
[ [ rorore.2ayas
d Jb
m
= Z fi,0)(b, A)P(i41,1)(b, d)
i=0
a
+f f(m+1,0)(5: d)P(m+1,1)(S, d)dS (33)
b
m c
+z_f fi,0(b, OP 11,1 (b, O)dt
i=0 "4

c a
+ j f fim+1,1)(S ) Pim1,1) (5, t)dsdt,
d b

We will show that this is also true for M =m+ 1 and N = 0, i.e., the below
identity holds:

fdc fba P(y,2)f (v, 2)dydz
m+1

= Z fi,0)(b, A)Pis1,1)(b, d)
i=0

a
+ f f(m+2,0) (s, d)P(m+2,1) (s,d)ds (3.4)
b

m+1

Cc
+ Z f fii1)(D, ) Piy1,1)(b, t)dt
i=o "¢
c ra
+-[ J f(m+2,1) (S: t)P(m+2'1) (S, t)det.
d b
To prove (3.4), we consider the second term of (3.3):

fba f(m+1,0) (s, d)P(m+1,1) (s,d)ds
= fba (f(‘m+1,0) (b’ d) + f; f(m+2,0) (9: d)d@)P(m_‘_Ll) (S, d)dS
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= fimr1,00(b, D) [, Pansa,1y(s, d)ds +
a S
fb fb fm+2,0)(0, d)Pm+1,1)(s, d)dbds,

by using the Fubini theorem and interchanging 6 < s:
= f(m+1,0) (b; d)P(m+2,1) (b» d)

+ 1y Iy fam2,0)(6, DPni,1y(s, d)dsdd
= f(m+1,0) (b; d)P(m+2,1) (b; d)

+y fams2,0( D) [} Pans1,1)(6, d)d6ds
= fm+1,0) (b, DP(m+2,1)(b, d)

+Jy fan+2,0)(S, D Pansz,1)(s, d)ds. (35)
Now consider the fourth term of (3.3):

fdc fba fom+1,1) (S )P ne1,1) (s, t)dsdt
- f; fba (fom+1,1 (b, ) + fbs fim+2,1)(6,)d0) P11 (s, t)dsdt
= fdc fam+1,1)(b, 1) fba Pmt1,1) (s, t)dsdt
+ fdc fba fbs fim+2,1)(6, ) Pims1,1) (S, t)dOdsdt
= fdc fm+1,1) (B, )P (mi21) (b, t)dt
+ 0y Iy Jo Fome2,(0, P 1y (s, t)dsdfdt
= fdc fom+1,1) (B, )P (mi21) (b, t)dt
+ fdc fba fom+2,1)(s, 1) fsa Pmi1,1)(6,t)dOdsdt
= J fans1.0 (B, PGz, (b, )dt

+ 5 [ fome21) (S, )Pz (s, t)dsdt. (3.6)

Substituting the values of Eq. (3.5) and Eqg. (3.6) in Eg. (3.3), we obtain the
equal Eq. (3.4), which means our first hypothesis is true.

Again, set the hypothesis for M = m (any arbitrary) and N = n, i.e.
Ii Iy PO, Of v, 2)dydz (3.7)
= Xi%0 Xi=0 f(i,) (B, DP(i41,j41)(b, d)
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+3%0 f, fane1,) (S DPansr jrny(s, d)ds
+Z?i0 fdc f(i,n+1) (b. t)P(i+1,n+1)(b, t)dt

c ra
+ fd fb P(m+1,n+1) (S' t)f(m+1,n+1) (S, t)det-

Now we show that it is also valid for M = mand N = n + 1:
I3 Iy PO.2)f(y.2)dydz (38)
=Y X720 fiijy(b, P it1,j1)(b, d)
+3128 Jy fomerp (S D Pnsajan (s, d)ds
+ X0 fdc fin+2)(B, OP(i41,n42) (b, t)dt

+ 0y Jy Femi1ns2)(S O)Pans1nszy(s, t)dsde.
To prove (3.8) we consider third term of (3.7):

26 Jg faneny (B OPasineny (b t)de

=3 Jy (f(i,n+1)(b: d) + [} finsz)(D, ¢)d¢)
P(iy1n+1) (D, t)dE

=3 (fansn B D) [ Piirimen (b, t)dt +
I3 Iy Fans2y(b, ®)Pieineny (b, O)ddt)

=37 (Fimen) (B DPi41nezy (b d) +
I3 Iy fans2) (b $)Passnen (b t)dtdop)

=370 (fintn (B APis1nsay (b, d) +
c c
Ji fimsy (0,1 [, Pisrnsn) (b, @)depdt)

=220 (f i+ 1) (D DP(ir1042)(b, d) +

fdc fin+2) (B OPs1n42)(b, £)dE). (3.9

Now we consider the 4th term of (3.7):
I3 Iy fomeaneny (S OOPonssneny (s, O)dsde

= [ [ font1nen) (S OPaniinen) (s t)dtds
b Jd
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= fba fdc (f(m+1,n+1) (s,d) +
t
Iy foms1ne2) (S $)dD) Panss neny (5, t)dtds

= fba fm+1ne) (s, @) fdc Pims1n+1) (S, t)dtds

+Jy I3 Ja Famsrnea (5,0 Panasnany (5, ) depdeds
= fba fom+1.n41) (S, DPmy1ne2)(s, d)ds

+ fba f; f; fom+1n+2)(S, D) Pan+1,n+1) (S, ) dtddds
= fba f(m+1,n+1)(SJ d)P(m+1,n+2)(S: d)ds

1y S fams1ne2) (5.0 J; Paneanen(s ¢)depdtds
= fba f(m+1,n+1)(SJ d)P(m+1,n+2)(S: d)ds

+ [ L5 Fonsins) (S OPansansz) (s, )dtds. (3.10)

Substituting Eq. (3.9) and Eq. (3.10) in Eq. (3.7), we obtain (3.8), which proves
our result by induction.

To complete our proof, we have to apply the notations that were introduced at
the beginning of this section. In Eq. (3.2), we consider the terms and find the
values one by one, i.e.

Yo X0 fai (b AP (ia,j41) (b, d)
= S S0 I 5 fau (b PG, 2) O gy
= S T [7 15 (-1 fuy (b, P, 2) L LD gy,
7=0 fb fon+1,) (S, ) Pa41,j4+1) (s, d)ds
= S0 [ farsp (D) ([0 [} PO,y S22 dzay ) ds
i i 02 18 G0N fara (5, PGy, 2) S22 gy,
Yo fd fan+ (B OPiv1n+1) (b, B)dE
Di= of fan+1 (b t) (f f P(y,z) (y.b) G t) dz dy)dt

b rd ,t i b— t—
= 3o [ 1 Jy (GO f iy (b, DP, z)%%dzdyda
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and

fba fdc P+1,n+1) (S t)f(M+1,N+1)(S, t)dsdt
= fba fdc fomrin+) (S, 0) (f f P(y, (Z t) () S) dzdy) dsdt

b pd t - t—
= [0 L DM frsaneny (S, PG, 2) %%dzdydtds.
Put all these values in (3.2) to get identity (3.1).

Proof. (Method I1) Let F(z) = f(y,2), i.e., we consider f(y,z) as a function
of z, where y is fixed. Then F may be written as a Taylor expansion:

f,2) =F(2)

—LoﬂW®“”

+ [ D) &0 t) dt

(d Z)

=Xi0 1 fron . d)
[ D" foneny 00 ¢ NZ,) dt,
where we use FU)(d) = fio (v, d) and FV*D (&) = fio vy, ).

Multiplying the above equation by P(y, z) and integrating it by z over the limit
ctod, we get:

[£ PG, 2)f (v, 2)dz

=30 D fiop@.d) [ P(,2)

(d_.f i dz

12 PO D DM foman 0,6 25 dt) da. (3.11)

Now we represent the functions y = fo n(y,d) and y = fion+1)(y,£) by
using Taylor expansion:

fop@d)

= SM o (—D)ifjy (b, d) L2 ” + [, CDM iy (s, ) (S'My!)M ds,
foon+n (3 t)
= B (<D fan (b, E2L 4

£ (DM gy (5, 0) S22 ds

Using the above formulae in Eqg. (3.11), we have:
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[ PO 2f (v,2)dz
=3, (-1 (B, (—1)if(i,j)(b'd)w;—zy)i

b —y)M d d—2z))
L) GO fr (s, d) SR ds) [ Py ) S dz

L PO DM (T (~D) fnany (b ) 22

b - t-
40y DM e (5,0 52 ds) 2 dt) dz

it b-y)H\ d d-z)J
= 2% (o G fup B, )T [P, 2) S dz

b i d—z))
F 200 (J) DM iy s, d) S22 ds) [ Py 2) 2

d rd . b— i _ AN
+[ 10 PG,2) (T (—1)1+N+1f(i,,v+1)(b,t)( D) D gt dz

d cd (b —_y)M t—n\N
101 (1) PODED N faria ey 5,6 2 ds) 2 de dz.

Now integrate P(y, z)f (y, z) by y over the limit a to b to obtain:
b pd
Jo I PO, D)f (v, 2)dz dy

= [Zﬁy:o( o () f (b, d) 2 y))f P(y, (d;!z)jdz] dy

b b ; - d d—z)J
I Z (I COM I gy, ) 25 ds) [ PO, 2) €5 da] dy

b d rd . b— i —ZN
+ L[ P2 (Sho (“DF NV fmany (0,0 E2E) 2=t dz dy

b d cd b _\M _ N
+ 1[0 0 (1) PO D DM farsaan (s, ) 2= ds ) 2= de dz] dy.

We change the order of summation in the first summand and use linearity of
integral to obtain:

b— d—
Mo X [0 PO, () f (b, d) S22 D Z) dz dy.

The second summand is rewritten as:

(200 (1 1M fara 5, ) S22 ds) [ Py, 2) 2 ]y

= 17 (200 () £ PG 2 2 (- 1)1 gy 5, ) S22 dz ds )| dy
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d—
of f f P(y,z)(- 1)M+1+]f(M+1])(S d)(s n" @-z) Z) dz ds dy

d—
of ff P(y,2) (=DM farn,j) (s, d)(s " (@2 Z) dz dy ds.

We use the Fubini theorem for variables s and y in the last step. Let us first
change variable y from a to b and then change the variable s from y to b. After
changing the integration order, s is changed a to b while y is changed a to s. In
the same way the third summand is rewritten as:

b[rd rd : =)\ (t—z)N
o [0 07 P02 (Zho (DM fuany (0,0 O5%) 52 dt de| dy
b rd d i =) (t—)V
=310 [0 PO (D v () 2 ar az dy
b rd t . b— it_ N
=3 [, PO D o (0,0 T 0= dz de dy

d b (ot i b—y)t (t-2)N
Mo [ LT PO, (DN gy (b, ) 2z dy .

In the above, use the Fubini theorem twice, first changing t and z, then
changing t and y. Therefore, the last summand is rewritten as:

b[pd cd (b )M =N
fa [fc fz (f P(y, Z)(—l)M+Nf(M+1,N+1)(S, t) € yi) ds)( NZI) dt dz] dy
—f f f f P, 2)(=D"" frranin (s 6) Sa y) i Z) ds dtdz dy

t—
= 12 PO DM fpa ey (5 0) S22 D 4y i ds.

In above, use the Fubini theorem various times, but first change t and z, then z
and s, then s and t, then s and y, then t and y. We obtain the required identity
by using all the above results:

12 (8P, D) f v, 2)dz dy

b ~d iy b—y)t (d—2z))
=20 X0 S, J. PO 2) (=D fi 5y (b, d)%%dz dy

d—
S [0S PR (DM gy (s, ) 2T 02 Z) dz dy ds

d b (t ; b— t—
o I I3 PO D iy (0,0 %%dz dy dt

b rd ps pt N (s—y)M(t—z)N
+L£L£P(}’rz)(_1)M Nfrin+1)(S,t) M N dz dy dt ds.
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We present the necessary and sufficient conditions by using the results of the
previous theorem, where A(f) >0 holds V (M +1,N + 1) — V —convex
function (see [1]).

Theorem 21 Let the suppositions of Theorem 20 be true. Then the following
inequality holds:

b ~d
A=, |, P0,2)f(y,2)dzdy = 0, (3.12)
forall (M + 1,N + 1) — V —convex function f on I X J, iff

b d b—y)t (d-z)/ . ,

) P(y,z)%%dzdyzo, i €{0,..,M}; j€{0,..,N} (3.13)
M (d—7\]

f;fcdp(y,z)%ﬂdzdy=o, jE€{0,..,N}; Vs€[ab] (3.14)

2Py, 22 ” -z Z) dzdy=0, i €{0,..,M}; Vte[cd (3.15)

LI Pe,n 2D 4rdy >0, v s€[ab]; ¥ teEcd] (3.16)

Remark 22 We may also obtain a corollary of Theorem 20 for I? by changing
the variables on the right side: y & s, z & t.

Corollary 23 Let P, f:I?> — R be functions such that f € C(M+LN+1(]2) and P
is integrable, where i € {0,1,2,--,M,M + 1}, € {0,1,2, ..., N,N + 1}. Then

122 P, 2)f (v, 2)dz dy

=M 2o J, J, PG

b— b—t)/
( S)( t) (1) fy; 1y (b, b)dt ds

b b — b—t .
o Jy 1 J; PG t)%%(—l)“*lﬂfwﬂ,j)(y, b)dt ds dy

b b b-s)t (z—t)N .
Mo 2 [0 17 P(s, ) o2 E0 (—yiN L f L (b, 2)dt dsdz

b b =M @-oN
+ L P T ()M N ey (7, 2)dt ds dz dy
holds.

Remark 24 We have obtained the necessary and sufficient conditions by using
the results of the previous theorem, where A(f) = 0 holdsv (M +1,N + 1) —
V —convex function (see [1]).

Now we recall a result from [10].
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Theorem 25 Let f have continuous partial derivatives f; y and P, f:1 X ] = R,

which are both integrable functions, where i€ {0,1,2,---,M,M + 1}, j €
{0,1,2,...,N,N + 1}. Then:

L1 PGrDf (0, 2)dydz (3.17)
=210 X0 f: fcd fa (@ c)P(s,t) (S_,—fl)iLf)jdtds
o 2T fanen 0 )P (s ) S22 C) dtdsdy
Yo fcd f: fzd fan+n (@ 2)P(s, t)ﬂﬁdtdsdz

f f f f fm+1n+1) (Y, 2)P(s, 1) —2— S y) Lalid Z) ——dtdsdzdy.

Remark 26 This above result can also be proved by using two-dimensional
mathematical induction as given in the proof of Theorem 20.

4 Application to Mean Value Theorem

It is known that the mean value theorem is a valuable tool for obtaining
interesting and important results in classical real analysis. In the field of
differential calculus, the most demanding theorem is Lagrange and Cauchy’s
mean value theorem. Here, we provide a generalized mean value theorem of the
Lagrange and Cauchy-type.

Theorem 27 Let P:I1x]— R, be an integrable function and f €
CMFLN+ (I x ), be a (M + 1,N + 1) — V —convex function on the interval
I X J. Let A be a linear functional as stated in (3.12) and the conditions (3.13),
(3.14), (3.15) and (3.16) be true for function P in Theorem 21, then
A(n,{) € Ix],3

A(f) = A(GO)f(M+1'N+1) (T], (), (41)

where

ZN+1

— (_1\M+N yM*
Go(v,2) = (-1) M+ (Nt D)

Proof: Let
U= (yTgl)CgCX]( M+ f(M+1,N+1)(y' z),

L= (yYZYSEYle](—l)M+Nf(M+1,N+1) v, 2).

Then the function
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G — y(—pMv 2 A =UG —
0 2) = UDMHN 2 e — f(3,2) = UGo (v, 2) = (v, 2),
gives us

(_1)M+NG(M+1,N+1)(y' z)=U- (_1)M+Nf(M+1,N+1)(yr z) =20,

i.e. G is a V-convex function of order (M + 1,N + 1) on I x J. Hence, A(G) >
0 using Theorem 21 and we summarize that A(f) < UA(Gy). Similarly,
LA(Gy) < A(f). Now, we can write the above two inequalities as: LA(Gy) <
A(f) < UA(Gy), which gives the required result (4.1).

5 Conclusion

This article first gave identities for the sums Y, Z?Ll pijf Vi, Z;) involving a
function and a sequence of two dimensions using Vdivided differences and we
also obtained a similar result for two a; and b; sequences by considering a;; =
a;b; in the obtained identity. Secondly, we obtained the integral case
[f P(y,2)f(y,z)dydz for differentiable functions of higher order with two
variables by using two methods: the first method used was two-dimensional
mathematical induction and the second was Taylor expansion. Further, we also
gave a similar result for the above integral case in the interval I2. At the end of
article, we presented an application to a mean value theorem.
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