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Abstract. This paper presents a method of finding a continuous, real-valued,
function of two variables z =u(x,y) defined on the square S :=[0,1]?, which mi-
nimizes an energy integral of fractional order, subject to the condition u(0, y) =
u@y)=u(x,0)=u(x,)=0 and u(X,y;)=C;, where 0<x <..<xy <1,
O<y <..<yy <1, and ¢; € R are given. The function is expressed as a

double Fourier sine series, and an iterative procedure to obtain the function will
be presented.
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1 Introduction

In [1], A.R. Alghofari studied the problem of finding a sufficiently smooth
function on a square domain that minimizes an energy integral and assumes
specified values on a rectangular grid inside the square. In particular, he
discussed the existence and uniqueness of a solution to the problem, using tools
in functional analysis and calculus of variations. The problem is related to the
analysis of satellite data, which is important and useful from the application
point of view.

In this paper, we shall discuss a method of finding a continuous, real-valued,
function of two variables z =u(x,y) defined on the square S:=[0,1]*, which
minimizes the energy integral

£, =18 7u P aay,

subject to the condition u(0, y) =u(1,y) =u(x,0) =u(x,1) =0 and u(x,y,) =c;,
where 0< X <---<Xy <1, 0<y; <---<ypy <1,and c; € R are given. Here
the integral is the Lebesque integral, —A denotes the positive-definite
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B
Laplacian on R?, and (-a)2 (with B >0) is its fractional power --- which will

be defined soon. For 3 =2, Eg(u) represents the (total) curvature or the strain
energy on S (see [2]).

Using real and functional analysis arguments, we show that such a function
exists and is unique if and only if B>1. The function may be expressed as a

double Fourier sine series. As in [3], we also provide an iterative procedure to
obtain the function, and explain how it works through an example.

Related works may be found in [4,5]. Applications of energy-minimizing
surfaces may be found in [6-8] and the references therein.

2 The Existence and Uniqueness Theorem

We shall here show that given MxN points (x,y;) with
0<x <-:<xy <l 0<y;<---<yy<l, and MxN values c;€R,
there exists a function z=u(x,y) such that (i) u(0,y)=u(l,y)=
u(x,0) =u(x,1) =0, (i) u(x,y;) =g for i=1,...M, j=1,...,N, and
(iii) the energy integral EB (u) is minimum. The continuity of the function will
depend on the value of 3, which we shall see later.

As we are working with functions uon S =[0,1]? that vanish on the boundary,
we may represent U as a double Fourier sine series

u(x,y)= > a,sinmrx.sinnry.

m,n=1

Since the boundary condition (i) is already satisfied, we only need to take
care of the other two conditions.

The fractional power of —A is defined as follows. Computing

~Au = _Z_ZLZ‘_Z%, we obtain —Au(x,y)=7* > (m?+n®)a,, sinmzx.sinnzy.
X m,n=1
s
As in [9], for >0, we define the fractional power (—A)? by the formula
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B - B
(-A)2u(x,y)=n" 3 1(m2 +n?)2a,,, sin mrx.sin nny
m,n=

B
Thus, if u is identified by the array of its coefficients [a,,], then (=A)2u is

B
identified by the array [z”(m?+n*)2a_]. One may observe that the formula

matches the computation of the nonnegative integral power of —A, that is,
B b4 By
when SB=2k,k=0,1,2,.... [Note also that (-A)2(-A)? =(-A) ? for

every ,7>0.]
B
With the above definition of (—=A)?2, the energy integral Eg(u) may now be

given by the sum

o0

2

V4

E,(u)= e > al (m?+n?)”.
m,n=1

Thus our problem can be reformulated as follows: find a continuous, real-

valued, function of two variables z =u(x, y) defined on the square S :=[0,1]*

, Which minimizes the energy integral

ﬂ_Zﬁ‘ ©

= > ai (m*+n?)’,
4 m,n=1

E,(u)=

subject to the condition u(0,y)=u(y)=u(x,0)=u(x,)=0 and
u(x,y;)=c¢;, where 0<x <..<xy, <1, O<y, <..<yy <1 and ¢; €R
are given. Here u is identified by [a,,,], and the problem is to determine the

value of ay,'s such that the prescribed values c;; are assumed at (X, y;) and

the latest sum is minimized.

Note that the value of £ corresponds to the smoothness of the solution. For
example, if £ =2, then the solution u must be twice differentiable and —Au is
continuous almost everywhere on S . The larger the value of /3, the smoother
the solution u . As we show later, the continuity of the solution u is guaranted
for B>1. In this case, the Fourier series represents u pointwise on S. This
means that obtaining the Fourier series of u is the same as obtaining u itself.
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Let us now turn to how to solve the problem. Denote by W =W, the space of

all functions u(x,y) = > a,,sinmzxsinnzy for which >"a’ (m*+n”)” <oo-

m,n=1 m,n=1

-- our admissible functions. On W , we define the inner product (--) by

(u,v):= i a b (m?+n?)”,

m,n=1

where ay,'s and by,'s are the coefficients of u and v respectively. Its
induced norm is

=] Satony |

m,n=1
Then we have the following fact, whose proof is routine, and so we leave it to
the reader.

Fact 2.1 (W,(--)) is a Hilbert space.

For 3 >1, we have the following result.

Theorem 2.2 Let B>1. If (Uu,) converges to U in norm, then (-A)2u,
o

converges to (—A)Eu uniformly, whenever 0<a < —1. In particular, if
(uy) convergesto u in norm, then (U, ) convergesto u uniformly.

Proof. Let a's and a,,'s be the coefficients of U, and u respectively, and
0<a < f—1.Then, forevery (x,y) €S, we have

(=A)2 U, (x, y) —(~A)z u(x, y)

=z Y (m*+ nz)% (al —a,, Jsinmzxsinnzy

m,n=1

) 1

- = 2
> s 2 2| & sin® mzaxsin®nzy

_  a 2 2 (k)

=z%| 3 (m*+n?) (amn—amn)} > e
m,n=1 m,n=1 (m +Nn )
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Let us now have a closer look at the last expression on the right hand side. The
first sum is nothing but |u, —u||2. The second sum is dominated by
Z % Since B—a >1, this sum is convergent (by the integral
m,n:l(m +n )ﬂ—a

test). Hence, we find that

[(-8)2U, (%, Y) ~ (~A)2u(x, Y) < Cu, —u],

where C is independent of (Xx,y). This shows that (—A)Euk converges to

(—A)2u uniformly, as desired. O
Corollary 2.3 Let B >1. Then, every function u €W is continuous on S .

Proof. If ueW , then u is a limit (in norm), and hence a uniform limit, of the

k k

partial sums Uy = X X aypSInmnxsinnny. Since the partial sums are
m=1n=1

continuous on S, then u too must be continuouson S . O

To prove the existence and uniqueness of the solution to our problem, we define

U={ueW :u(x,y;)=c¢;, i=1...,M, j=1,...,N}

ij?
and
Vi={ueW u(x,y;)=0, i=1,...,M, j=1,...,N}L

Then, as in [1], we have the following fact.

Fact 2.4 U is a non-empty, closed, and convex subset, while V is a closed
subspace of W .

Proof. We shall only prove that U is non-empty, and leave the others to the
reader. Consider the system of linear equations

M N
> > asinmzxsinnzy =c¢;, i=1,...,M,j=1,..,N.

m=1n=1
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The system will have a solution if the matrix

sinzy,[sinmzx,] sin2zy[sinmzx] -+ sinNzy/[sinmzx]
sinzy,[sinmzx,] sin2zy[sinmzx] -+ sinNzy,[sinmzx]
sinzy,[sinmzx.] sin2zy[sinmzx] --- sinNzy[sinmzx]

is non-singular. The matrix A is the Kronecker product of the nxn matrix
[sinnmy;]:=[sinnmy;]; , and the mxm matrix [sihmzx]:= [sinmzx],, -
Hence, we obtain

det A= (det[sinnzy,;])" - (det[sin mzx;])"

(see [10]). Since [sin nzy;] and [sinmzx] are both non-singular (see, for

example, [11]), we conclude that the matrix A is non-singular too. Therefore
the above system of equations has a solution, which means that U is non-
empty. i

The existence and uniqueness of the solution to our problem follows from the
best approximation theory in Hilbert spaces.

Theorem 2.5 The problem has a unique solution in W, and the solution is
given by
u:=u, —proj, (u,)

for any choice U, €U . Furthermore, for §>1, the function u is continuous

onS.
Proof. Take an element u, in U . Then, forany veV , u,—V isalsoin U.

Since U is a convex subset of W, there must exist a unique element v, eV

such that [u, —V,|| is minimum [12]. Thus u:= U, —V, is the unique solution in

W' for our minimization problem. By the best approximation theory in Hilbert
spaces, the element v, €V that minimizes |u, —V,| must be the orthogonal
projection of U, on V , that is, v, = proj, (U,) . The solution is independent of
the choice of u,eU . Indeed, if Uu,u, €U, then u,—u, €V, and so
proj, (uo—ul):uo—ul, where U, —proj, (u,) =u, —proj, (u,). To end the
proof, for £ >1, the continuity of u follows from Corollary 2.3. O
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In the next section, we shall discuss how we actually find the solution to our
problem.

3 The Procedure to Find the Solution

To find an element Uy in U is easy, we only need to solve the system of linear
equations

M N
> > asinmzxsinnzy =¢;, i=1,....,M, j=1,..,N.
m=1n=1
Here Ug can be thought of as an initial approximation to the solution we are

looking for. Once we have Uy, we just have to compute its orthogonal
projection on the subspace V .

To do so, we first determine an orthogonal basis of V . We note that every
element of V' must satisfy

M N
> Da,sinmzx sinnzy, =—> a, sinmzxsinnry;,
m=1n=1 m,n

for i=1,...,M, j=1,...,N, where the sum on the right hand side is taken
over m and n with “m>M +1 or n> N +1”. From this, we may basically
express @y, for m=1,...,M,n=1,...,N interms of a,, with“m>M +1
or n> N +1”. Thus, every element of V may be written as

V= Zamnvmn ,
m,n

for some elements V,, in V. [For 3 >1, one may check that the subspace V
has co-dimension M x N .]

For example, for m=1, n= N +1, the element v, ,, is identified by the array
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* .o0* 1
0

* * 0 ,

0O --- 00

where the entries marked by an asterisk comes from a_,
m=1,...,M,n=1,...,N, and all others are 0 except for the entry in Row 1,

Column N +1 --- which is equal to 1. To be concrete, see the example below.
For similar ideas in the one dimensional case, we refer the reader to [3].

From the V,,'s, we can get an orthogonal basis for V , call it {v:m}. We can
then compute the orthogonal projection of our initial approximation Uy on V

iteratively, by projecting it on the v;m‘s. Each time the projection is computed,

the energy is reduced, and we stop the iteration up till the reduction is no longer
significant.

We shall now give an example to explain how the procedure really works.
Suppose we wish to find the function u such that u(0.5,0.5) =1 and the energy
Eq 5(u) is minimized. [In this example, M =N =1, x, =y, =0.5, and ¢;; =1;
while 3 =1.5]

Our initial approximation is Uy (X, Y) =sinnxsinmy , which is identified by the
array

O O B+
- O O O
o O O

Next, to find the basis of V , we note that if V:=[a,,,] is an element of V , then
we have

> ay,sin0.5mzsin0.5n7 = 0.

m,n=1

In other words, the sum of the entries of the array
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a, 0 —a5 0 A5
O 0 0 O 0
—a5 0 Ay 0 Asgs
O 0 0 O 0
a5 0 —as3 0 A5

is equal to zero. Hence a;; may be expressed as the sum of the entries of the
array

0 0 a; 0 -a;
O 0 0O o0 O
ay 0 —ag3 0 Ags
O 0 0 o0 O
_351 0 a-53 0 _ass
Therefore, v may be written as
a, a, a; 010 0 0O
a, a, ay = a, 000 - a, 010
a; d, ag 0 0O . 0 0O
0 0 0 -] 1 0 1
a 1 0 0 -- . 0 0O
2o 0 0 - |"®]0 0 0
0 0O i -1 0 0
g oo01 - N 0 0O N
2000 | ™o 01 "

= AV T 85Vo, +85,Vyy + 8453V 5 +855V55 + 85V + 0.
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In this case, the set {Vj2,V92,Vo1,Vy3,V23,V33,+ -} forms a basis for V . Note

that each element of this basis has zero entries except for finitely many entries.
This feature is one among others that makes the computation handy.

Starting from the initial approximation Uy, we compute the next
approximations u, =u, —proj . (Up), U, = U, —proj. (Uy), u; =, —proj . (U,)
12 22 V21

and so on, where {v_ } is an orthogonal basis obtained from {v,,,}. Associated
to each approximation, we compute the energy E, .(u,), which is a multiple of

||uk||2. As k grows, the energy decreases (as explained earlier), and we stop the

iteration when the decrease is less than a treshold. Figure 1 shows the resulting
surface, within a treshold of 10™. Note that U is like ‘one and a half’ times
differentiable almost everywhere on S, so that the surface z=u(x,y) is not

that smooth at (0.5,0.5,1) .

!]“3 04 05 06 0?7 og 08
Figure 1 The surface passing through (0.5,0.5,1) with minimum E, 5 (u)

Figures 2-5 are obtained for different order [ and/or different points
(X, Y Cij) - In Figures 2-3, the energy being minimized is the curvature (that

is, #=2). Here the solutions u are twice differentiable onS, so that the

surfaces are smoother than the surface obtained from the previous problem. In
Figures 4-5, the energy being minimized is of order £ =1.5. Here the surfaces
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are not that smooth at the prescribed points. The symmetry follows from the
fact the prescribed points are of the same height and distributed evenly on S . It
is interesting to observe that as the four points spread away, the surface shows
four peaks. This relates to the fact that the solution is a linear combination of

four functions whose graphs look like that in Figure 1 (but with different
locations of the peak).

08 ~do

06~

Figure 3 The surface passing through (0.5,0.25,0.25) and (0.5,0.75,1.25) with
minimum curvature.
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Figure 4 A surface passing through four prescribed points with minimum
E 5(u)
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Figure 5 Another surface passing through four prescribed points with minimum
E; 5(u)
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4 TheCase 0<p<1

Suppose that 0<B <1 and we are trying to find a function u on S that
minimizes the energy Eg(u) and satisfies u(0.5,0.5) =1. The existence and
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uniqueness of such a function is guaranteed by Theorem 2.5, but as we shall see
now the continuity is lost.

Recall that if v:=[a,,,] is an element of V , then

> a,,sin0.5mzsin0.5n7z = 0.
m,n=1
This implies that the only element that is orthogonal to V s
| sin0.5mzsin0.5n7
' (m? +n?)”?

} or its multiples. But then we have

2 _opfq, 2, Y 2 2 2
||u|| =2 (1+5ﬂ+9ﬂ+13ﬁ+17ﬂ+25ﬁ+...

1 1
>2°1143.—+5.—+...
( of " 57 ]

= 0,

Thus V4 ={0} or v =w, the whole space. This tells us that, starting from any
initial approximation Uy, we will end up with u=u, —proj, (u,) =0, that is,
u(x,y) =0 almost everywhere on S . Since we wish to keep the value 1 at
(0.5,0.5), the function u cannot be continuous on S . For instance, if we start
from Uy (X, y) =sinxsinmy, then we will end up with

1, (x,¥)=(0.5,0.5),
0, otherwise.

u(x,y) ={

This result is actually predictable in the case 3 =0, that is, when we minimize
the volume under the surface z=u(X,y), subject to the condition
u(0,y) =u(d,y) =u(x,0) =u(x,1) =0 and u(0.5,0.5) =1.

To sum up, to have a continuous solution to our minimization problem, the
condition 3 >1 is not only sufficient but also necessary.
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