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Abstract. This paper presents a method of finding a continuous, real-valued,  

function of two variables ( , )z u x y
 
defined on the square 2: [0,1]S  , which mi- 

nimizes an energy integral of fractional order, subject to the condition (0, )u y   

(1, ) ( ,0) ( ,1) 0u y u x u x    and ( , )i j iju x y c , where 10 ... 1Mx x    , 

10 ... 1Ny y    , and 𝑐𝑖𝑗 ∈ ℝ are given. The function is expressed as a 

double Fourier sine series, and an iterative procedure to obtain the function will 

be presented.  

Keywords: 2-D interpolation; energy-minimizing surfaces. 

1 Introduction 

In [1], A.R. Alghofari studied the problem of finding a sufficiently smooth 

function on a square domain that minimizes an energy integral and assumes 

specified values on a rectangular grid inside the square. In particular, he 

discussed the existence and uniqueness of a solution to the problem, using tools 

in functional analysis and calculus of variations. The problem is related to the 

analysis of satellite data, which is important and useful from the application 

point of view. 

In this paper, we shall discuss a method of finding a continuous, real-valued, 

function of two variables = ( , )z u x y  defined on the square 2:= [0,1]S , which 

minimizes the energy integral  

 
1 1

22

0 0
( ) := | ( ) | ,E u u dxdy



    

subject to the condition 0=,1)(=,0)(=)(1,=)(0, xuxuyuyu  and ( , ) =i j iju x y c , 

where 1<<<<0 1 Mxx  , 1<<<<0 1 Nyy  , and  𝑐𝑖𝑗 ∈ ℝ are given. Here 

the integral is the Lebesque integral,   denotes the positive-definite 
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Laplacian on ℝ2, and 2)(



  (with 0  ) is its fractional power --- which will 

be defined soon. For 2= , )(uE  represents the (total) curvature or the strain 

energy on S  (see [2]). 

Using real and functional analysis arguments, we show that such a function 

exists and is unique if and only if 1> . The function may be expressed as a 

double Fourier sine series. As in [3], we also provide an iterative procedure to 

obtain the function, and explain how it works through an example. 

Related works may be found in [4,5]. Applications of energy-minimizing 

surfaces may be found in [6-8] and the references therein. 

2 The Existence and Uniqueness Theorem 

We shall here show that given M N  points ( , )i jx y  with 

1<<<<0 1 Mxx  , 1<<<<0 1 Nyy  , and NM   values 𝑐𝑖𝑗 ∈ ℝ, 

there exists a function ),(= yxuz  such that (i) (0, ) = (1, ) =u y u y

( ,0) = ( ,1) = 0u x u x , (ii) ijji cyxu =),(  for Mi ,1,=  , Nj ,1,=  , and 

(iii) the energy integral )(uE  is minimum. The continuity of the function will 

depend on the value of  , which we shall see later. 

As we are working with functions u on 2[0,1]=S  
that vanish on the boundary, 

we may represent u  as a double Fourier sine series  

 
, =1

( , ) = sin .sin .mn

m n

u x y a m x n y 


  

Since the boundary condition (i) is already satisfied, we only need to take 

care of the other two conditions. 

 

The fractional power of   is defined as follows. Computing 
2 2

2 2
=

u u
u

x y

 
  

 
, we obtain 2 2 2

, =1

( , ) = ( ) sin .sin .mn

m n

u x y m n a m x n y  


   

As in [9], for 0 , we define the fractional power 2( )


  by the formula  
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ynxmanmyxu mn
nm










 sin.sin)(:=),()( 222

1=,

2

 

Thus, if u  is identified by the array of its coefficients [ ]mna , then 2( ) u


  is 

identified by the array 
2 2 2[ ( ) ]mnm n a


  . One may observe that the formula 

matches the computation of the nonnegative integral power of  , that is, 

when = 2 , = 0,1,2,k k . [Note also that 2 2 2( ) ( ) = ( )
   

    for 

every , 0   .] 

With the above definition of 2)(



 , the energy integral )(uE  may now be 

given by the sum  

 

2
2 2 2

, =1

( ) = ( ) .
4

mn

m n

E u a m n






 


 

Thus our problem can be reformulated as follows: find a continuous, real-

valued, function of two variables ( , )z u x y  defined on the square 
2: [0,1]S 

, which minimizes the energy integral  

 

2
2 2 2

, =1

( ) = ( ) .
4

mn

m n

E u a m n






 


 

subject to the condition (0, ) (1, ) ( ,0) ( ,1) 0u y u y u x u x     and 

( , )i j iju x y c , where 10 ... 1Mx x    , 10 ... 1Ny y     and 𝑐𝑖𝑗 ∈ ℝ 

are given. Here u  is identified by ][ mna , and the problem is to determine the 

value of mna 's such that the prescribed values ijc  are assumed at ),( ji yx  and 

the latest sum is minimized. 

Note that the value of   corresponds to the smoothness of the solution. For 

example, if  =2, then the solution u  must be twice differentiable and u  is 

continuous almost everywhere on S . The larger the value of   , the smoother 

the solution u . As we show later, the continuity of the solution u  is guaranted 

for  >1. In this case, the Fourier series represents u  pointwise on S . This 

means that obtaining the Fourier series of u  is the same as obtaining u  itself. 
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Let us now turn to how to solve the problem. Denote by =W W
 the space of 

all functions 
, =1

( , ) = sin sinmn

m n

u x y a m x n y 


  for which 2 2 2

, =1

( ) <mn

m n

a m n 


  -

-- our admissible functions. On W , we define the inner product ,  by  

 
2 2

, =1

, := ( ) ,mn mn

m n

u v a b m n 


    

where mna 's and mnb 's are the coefficients of u  and v  respectively. Its 

induced norm is  

 

1

2
2 2 2

, =1

:= ( ) .mn

m n

u a m n 
 

 
 


 

Then we have the following fact, whose proof is routine, and so we leave it to 

the reader. 

Fact 2.1 ),,( W is a Hilbert space. 

For 1> , we have the following result. 

Theorem 2.2  Let 1> . If )( ku  converges to u  in norm,  then 2( ) ku




converges to u2)(



  uniformly, whenever 0 < 1   . In particular, if 

)( ku  converges to u  in norm, then )( ku  converges to u  uniformly. 

Proof. Let 
( )k

mna 's and mna 's be the coefficients of ku  and u  respectively, and 

0 < 1   . Then, for every ( , )x y S , we have  

 

   

   

   
 

2 2

2 2 ( )2

, 1

1
1

2
2 222

2 2 ( )

2 2
, 1 , 1

( , ) ( , )

sin sin

sin sin
.

k

k

mn mn

m n

k

mn mn

m n m n

u x y u x y

m n a a m x n y

m x n y
m n a a

m n

 







 

  

 






 


 

  

  

 
 

    
   
 



 
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Let us now have a closer look at the last expression on the right hand side. The 

first sum is nothing but 
2

ku u . The second sum is dominated by 

2 2
, =1

1

( )m n m n  




 . Since 1> , this sum is convergent (by the integral 

test). Hence, we find that  

 
2 2| ( ) ( , ) ( ) ( , ) | ,k ku x y u x y C u u
 

    
 

where C  is independent of ( , )x y . This shows that 2( ) ku


  converges to 

2( ) u


  uniformly, as desired.                                                                        □ 

 

Corollary 2.3 Let 1> . Then, every function Wu is continuous on S . 

Proof. If Wu , then u  is a limit (in norm), and hence a uniform limit, of the 

partial sums ynxmau mn

k

n

k

m
k  sinsin:=

1=1=

. Since the partial sums are 

continuous on S , then u  too must be continuous on S .                                  □ 

To prove the existence and uniqueness of the solution to our problem, we define  

:={ : ( , ) = , =1, , , =1, , }i j ijU u W u x y c i M j N    

and  

:={ : ( , ) = 0, =1, , , =1, , }.i jV u W u x y i M j N    

Then, as in [1], we have the following fact. 

Fact 2.4  U  is a non-empty, closed, and convex subset, while V  is a closed 

subspace of W . 

Proof. We shall only prove that U  is non-empty, and leave the others to the 

reader. Consider the system of linear equations  

 =1 =1

sin sin = , =1, , , =1, , .
M N

mn ij

m n

a m x n y c i M j N   
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The system will have a solution if the matrix  

1 1 1

1 1 2

sin [sin ] sin 2 [sin ] sin [sin ]

sin [sin ] sin 2 [sin ] sin [sin ]
:= ,

sin [sin ] sin 2 [sin ] sin [sin ]

i i i

i i i

N i N i N i

y m x y m x N y m x

y m x y m x N y m x
A

y m x y m x N y m x

     

     

     

 
 
 
 
 
 





   



 

is non-singular. The matrix A  is the Kronecker product of the nn  matrix 

njjj ynyn ,]sin[:=]sin[   and the mm  matrix [sin ]:=im x
 ,[sin ]i i mm x

 
. 

Hence, we obtain  

 det = (det[sin ]) (det[sin ])m n

j iA n y m x   

(see [10]). Since [sin ]jn y  and [sin ]im x  are both non-singular (see, for 

example, [11]), we conclude that the matrix A  is non-singular too. Therefore 

the above system of equations has a solution, which means that U  is non-

empty.                                                                             □ 

 
The existence and uniqueness of the solution to our problem follows from the 

best approximation theory in Hilbert spaces. 

Theorem 2.5  The problem has a unique solution in W , and the solution is 

given by 

 0 0:= proj ( )Vu u u  

for any choice 0u U . Furthermore, for 1> , the function u  is continuous 

on S . 

Proof. Take an element 0u  in U . Then, for any v V , 0u v  is also in U . 

Since U  is a convex subset of W , there must exist a unique element 0v V  

such that 0 0u v  is minimum [12]. Thus 0 0:=u u v  is the unique solution in 

W  for our minimization problem. By the best approximation theory in Hilbert 

spaces, the element 0v V  that minimizes 0 0u v  must be the orthogonal 

projection of 0u  on V , that is, 0 0= proj ( )Vv u . The solution is independent of 

the choice of 0u U . Indeed, if 0 1,u u U , then 0 1u u V  , and so 

 0 1 0 1projV u u u u   , where 0 0 1 1proj ( ) proj ( )V Vu u u u   . To end the 

proof, for >1 , the continuity of u  follows from Corollary 2.3.              □  
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In the next section, we shall discuss how we actually find the solution to our 

problem. 

3 The Procedure to Find the Solution 

To find an element 0u  in U  is easy, we only need to solve the system of linear 

equations  

 =1 =1

sin sin = , =1, , , =1, , .
M N

mn ij

m n

a m x n y c i M j N   
 

Here 0u  can be thought of as an initial approximation to the solution we are 

looking for. Once we have 0u , we just have to compute its orthogonal 

projection on the subspace V . 

To do so, we first determine an orthogonal basis of V . We note that every 

element of V  must satisfy  

 
=1 =1 ,

sin sin = sin sin ,
M N

mn i j mn i j

m n m n

a m x n y a m x n y      

for ,,1,=,,1,= NjMi   where the sum on the right hand side is taken 

over m  and n  with “ 1 Mm   or 1 Nn ”. From this, we may basically 

express mna  for NnMm ,1,=,,1,=   in terms of mna  with “ 1 Mm   

or 1 Nn ”. Thus, every element of V  may be written as  

 
,

= ,mn mn

m n

v a v  

for some elements mnv  in V . [For 1> , one may check that the subspace V  

has co-dimension NM  .] 

For example, for 1=1,= Nnm , the element 
1, 1Nv 

 is identified by the array  
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* * 1

0

,* * 0

0 0 0

 
 
 
 
 
 
  

 

   

 

 

    
 

where the entries marked by an asterisk comes from ,mna

=1, , , =1, ,m M n N  , and all others are 0 except for the entry in Row 1, 

Column 1N  --- which is equal to 1. To be concrete, see the example below. 

For similar ideas in the one dimensional case, we refer the reader to [3]. 

From the mnv 's, we can get an orthogonal basis for V , call it }{ *
mnv . We can 

then compute the orthogonal projection of our initial approximation 0u  on V  

iteratively, by projecting it on the 
*
mnv 's. Each time the projection is computed, 

the energy is reduced, and we stop the iteration up till the reduction is no longer 

significant.  

We shall now give an example to explain how the procedure really works. 

Suppose we wish to find the function u  such that 1=(0.5,0.5)u  and the energy 

)(1.5 uE  is minimized. [In this example, 1== NM , 0.5== 11 yx , and 1=11c ; 

while 1.5= .] 

Our initial approximation is yxyxu  sinsin=),(0 , which is identified by the 

array  

 

1 0 0

0 0 0
.

0 0 0

 
 
 
 
 
 







   
 

Next, to find the basis of V , we note that if ][:= mnav  is an element of V , then 

we have  

 , =1

sin 0.5 sin 0.5 = 0.mn

m n

a m n 



 

In other words, the sum of the entries of the array  
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11 13 15

31 33 35

51 53 55

0 0

0 0 0 0 0

0 0

0 0 0 0 0

0 0

a a a

a a a

a a a

 
 
 
  
 
 
 
 
 











     
 

is equal to zero. Hence 11a  may be expressed as the sum of the entries of the 

array  

 

13 15

31 33 35

51 53 55

0 0 0

0 0 0 0 0

0 0

0 0 0 0 0

0 0

a a

a a a

a a a

 
 
 
 
 
 
  
 
 











     
 

Therefore, v  may be written as  

11 12 13

21 22 23

12 22

31 32 33

21 13

23

0 1 0 0 0 0

0 0 0 0 1 0
=

0 0 0 0 0 0

0 0 0 1 0 1

1 0 0 0 0 0

0 0 0 0 0 0

0 0 0

0 0 1

0 0 0

a a a

a a a
a a

a a a

a a

a

     
     
     
     
     
     

   
   
    
   
   
   








  

  

  

           

 

 

 

       







   

33

12 12 22 22 21 21 13 13 23 23 33 33

1 0 0

0 0 0

0 0 1

= .

a

a v a v a v a v a v a v

  
  
   
  
  
  

     








   


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In this case, the set },,,,,,{ 332313212212 vvvvvv  forms a basis for V . Note 

that each element of this basis has zero entries except for finitely many entries. 

This feature is one among others that makes the computation handy. 

Starting from the initial approximation 0u , we compute the next 

approximations 
1 0 * 0

12

= proj ( )
v

u u u , 
2 1 * 0

22

= proj ( )
v

u u u , 
3 2 * 0

21

= proj ( )
v

u u u , 

and so on, where 
*{ }mnv  is an orthogonal basis obtained from }{ mnv . Associated 

to each approximation, we compute the energy 1.5( )kE u , which is a multiple of 

2

ku . As k  grows, the energy decreases (as explained earlier), and we stop the 

iteration when the decrease is less than a treshold. Figure 1 shows the resulting 

surface, within a treshold of 
410
. Note that u  is like „one and a half‟ times 

differentiable almost everywhere on S , so that the surface ( , )z u x y  is not 

that smooth at (0.5,0.5,1) . 

 

Figure 1 The surface passing through (0.5,0.5,1) with minimum 1.5( )E u
.
 

Figures 2-5 are obtained for different order   and/or different points 

),,( ijji cyx . In Figures 2-3, the energy being minimized is the curvature (that 

is, 2  ). Here the solutions u  are twice differentiable on S , so that the 

surfaces are smoother than the surface obtained from the previous problem. In 

Figures 4-5, the energy being minimized is of order 1.5  . Here the surfaces 
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are not that smooth at the prescribed points. The symmetry follows from the 

fact the prescribed points are of the same height and distributed evenly on S . It 

is interesting to observe that as the four points spread away, the surface shows 

four peaks. This relates to the fact that the solution is a linear combination of 

four functions whose graphs look like that in Figure 1 (but with different 

locations of the peak). 

 

Figure 2 The surface passing through (0.5,0.5,1) with minimum curvature. 

 

Figure 3 The surface passing through (0.5,0.25,0.25) and (0.5,0.75,1.25) with 

minimum curvature. 
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Figure 4 A surface passing through four prescribed points with minimum 

1.5( )E u
.
 

 

Figure 5 Another surface passing through four prescribed points with minimum 

)(1.5 uE
.
 

4 The Case 10   

Suppose that 10   and we are trying to find a function u  on S  that 

minimizes the energy )(uE  and satisfies 1=(0.5,0.5)u . The existence and 
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uniqueness of such a function is guaranteed by Theorem 2.5, but as we shall see 

now the continuity is lost. 

Recall that if ][:= mnav  is an element of V , then  

 , =1

sin 0.5 sin 0.5 = 0.mn

m n

a m n 



 

This implies that the only element that is orthogonal to V  is 

2 2

sin 0.5 sin 0.5
:=

( )

m n
u

m n 

  
 

 
 or its multiples. But then we have  

 

2 2 1 2 2 2
2 1 ...

5 9 13 17 25

1 1
2 1 3. 5. ...

9 25

.

u 

    



 

 
       

 

 
    

 

   

Thus {0}=V  or WV = , the whole space. This tells us that, starting from any 

initial approximation 0u , we will end up with 
0 0= proj ( ) = 0Vu u u , that is, 

0=),( yxu  almost everywhere on S . Since we wish to keep the value 1 at 

(0.5,0.5) , the function u  cannot be continuous on S . For instance, if we start 

from yxyxu  sinsin=),(0 , then we will end up with  

 



.0,

(0.5,0.5),=),(1,
=),(

therwiseo

yx
yxu

 

This result is actually predictable in the case 0= , that is, when we minimize 

the volume under the surface ),(= yxuz , subject to the condition 

0=,1)(=,0)(=)(1,=)(0, xuxuyuyu  and 1=(0.5,0.5)u . 

To sum up, to have a continuous solution to our minimization problem, the 

condition 1>  is not only sufficient but also necessary. 
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