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Abstract

The KAM Theory for the persistence of Lagrangean invariant tori in
nearly integrable Hamiltonian systems is globalized to bundles of in-
variant tori. This leads to globally well-defined conjugations between
near-integrable systems and their integrable approximations, defined
on nowhere dense sets of positive measure associated to Diophantine
frequency vectors. These conjugations are Whitney smooth diffeomor-
phisms between the corresponding torus bundles. Thus the geometry
of the integrable torus bundle is inherited by the near-integrable per-
turbation. This is of interest in cases where these bundles are non-
trivial. The paper deals with the spherical pendulum as a leading
example. :

1 Introduction

Integrable Hamiltonian systems, by the Liouville-Arnol'd Integrability The-
orem (1, 11}, live in phase spaces that are fibrations of invariant tori. Open
pieces of the phase space form bundles of Lagrangean tori, where these bun-
dles are not always trivial. An example in two degrees of freedom is given by
the spherical pendulum (14, 11], where the nontriviality can be measured by
monodromy. In general nontriviality of such an integrable bundle means the
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non-existence of global action angle coordinates. Moreover this nontriviality
(in particular nontrivial monodromy) turns out to be of great interest in the
study of semiclassical versions of such systems [12, 13, 21, 30]. Presently our
point of view is perturbative: how persistent is this global bundle geometry
under small perturbations of the system? On the one hand these perturba-
tions can be restricted to the world of integrable systems, on the other hand,
our main question is what can be said in the near-integrable case.

Here we drop the restriction to two-degrees-of-freedom and resort to
the classical Kolmogorov-Arnol'd-Moser Theory for the persistence of La-
grangean invariant tori in nearly-integrable systems. For a general descrip-
tion of this theory see [1, 2, 3, 4]. Sinces resonances are problematic, we
have to restrict to quasi-periodic tori with Diophantine frequency vectors.
The union of these tori is nowhere dense, but has positive measure, compare
(22]. The formulation of present interest is in terms of structural stability
[23], for the occasion called quasi-periodic stability. Indeed, following Broer
et al. [8, 7], the KAM-Theorem provides a smooth conjugation between the
integrable and the near integrable tori. Here the smoothness in the action
direction, where the domain of definition due to the resonances has no inte-
rior points, has to be understood in the sense of Whitney, see Péschel [24].
One problem we have to overcome is that this KAM-Theorem is only ‘local’
in the action directions, suitable for local trivialisations of the bundle. This
implies that the global bundle geometry is not carried over directly.

The present paper contains a globalization of these ‘local’ results to a
global KAM-Theorem, where the conjugation is glued together from the local
ones. Here we use a Partition of Unity construction [16, 26] and also the nat-
ural affine structure of the integrable invariant tori [1]. Compare with similar
constructions for creating Riemannian metrics or connections, as these oc-
cur in Differential Geometry [26]. The main result, as obtained by Broer,
Cushman and Fasso (5] is that this construction works, yielding a global dif-
feomorphism between the integrable and near-integrable torus bundle. If the
integrable bundle happens to be nontrivial, so is the near-integrable bundle.

The present paper describes the results in [5], taking the spherical pen-
dulum as a leading example. In the remainder of this section we include a
treatment of this example as far as relevant to us. Next, in Section 2 we
present a brief treatment of the standard, ‘local’ KAM-Theory as suited to
our purposes. In Section 3 we formulate and prove our main result: the
global kAM-Theorem. Finally in Section 5 we draw some conclusions, also
briefly revisiting the spherical pendulum.
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1.1 Motivation: The spherical pendulum

We describe the dynamics of the spherical pendulum, compare (2, 11, 14, 25].
The spherical pendulum, as suited to oyr purposes, is a unit mass particle,
the motion of which js restricted to the unit sphere §2 C R, where gravity
with unit acceleration points vertically downward. The configuration space
is the 2-sphere §2 = {7 e R | (g, q) = 1} and the phase space its cotangent
bundle T*8% = {(g,p) € RS | (g,q) = 1 and {9,p) = 0}. Here ¢ = (¢;, g5, )
and p = (p;, py, p3), while (-,.) denotes the standard inner product.

The spherical pendulum is a classical integrable system. The rotational
symmetry by Noethers Theorem (1] gives rise to a second integral of motion,
next to the energy E(q, p) = 3(p,p) + g5 this is the angular momentum
I(g,p) = 91P2—2p1, With respect to the vertical axis. The energy-momentum
map

1
EM: TS, R, (9,p) ~» (I,E) = (lez — Q2pi, 5(1%1’) +‘I3)

has an invariant Lagrangean fibration, where most of the fibers are diffeo-
morphic to the 2-torus. To be more precise, the image B of EM is the

E

Figure 1: Range of the énergy-momentum map of the spherical pendulum.

closed part of the plane lying in between the two curves meeting at a cor-
ner, see Figure 1. The set of singular values of &AM consists of the two
boundary curves and the points (1, E) = (0, +1). The latter correspond to
the equilibria (g,p) = (0,0, +1,0,0,0). The boundary curves correspond to
the horizontal periodic motions of the pendulum as discovered by Christiaan
Huygens. The set B of regular £ M-values therefore consists of the interior
of B minus the point (I,E) = (0,1), corresponding to the unstable equilib-
rium point (0, 0,1,0,0,0), which is a saddle with double eigenvalues +1. The
point (1, E) = (0,1) turns out to be the centre of the nontrivial monodromy.
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The corresponding fiber £M™'(1,0) is a once pinched 2-torus. See Duister-
maat [14] and Cushman-Bates [11]. Note that the fiber EM™!(1,0) exactly
consists of the coinciding stable and unstable manifolds of the saddle point.

Passing to spherical coordinates
g1 = sin ¢ cosf, g; = sin ¢sinf and g3 = cos ¥,
energy and momentum get the form

I = sin’¢-0
E = %sin2¢-(9)2+%(q§)2+c08¢

1

= @ +Vi)

where
2

2sin? ¢
is the effective potential. This is the classical way to exploit the rotational
symmetry, or equivalently, that ¢ is a cyclic variable [1]. Thus, for I # 0
fixed, we reduce to a standard one degree of freedom system on the phase
space (0,7) x R = {#, #} with Hamiltonian function E = (¢) + Vi(¢). 1

is easy to see that the reduced energy levels are circles of the form Cr g =
{(¢,¢) € (0,7) xR | E = (gb) + Vi(¢)}. Note that the canonical 1-form is

given by sin® ¢-8-df+¢ d¢. Integration along C; g then leads to the following
classical formule for the actions:

2wl
+ J?
2/_ 2(E—cos¢)—sin2¢d¢

where ¢, are defined by 2(E — cos ¢+) — (I?/sin? ¢1) = 0.
Next consider the basis (T, (I, E), T>(1, E)) of the period lattice given by
Ty(I, E) = (2r,0) and Ty(I, E) = (To. (I, E), Tya(I, E)), where

d+ do o4 9
T, FE) = —21/ - = —2/ =d
2,1( ) \/2 — cos ¢) 112 Sln2¢ ~ ¢ ¢

¢+ %+ 1
T2(I,E) = 2 dp =2 =d¢.
22(1, E) /_ \/2(E—c°s¢)_si—r{;$ /_ ¢

Vi(¢) = + cos ¢

al(I,E) =

(12(], E)
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Proposition 1 [14] The period functions Ty and T», are single-valued, while
Ty, 1s multi-valued. The branching point is (a1, a2) = (0,0), or equivalently
(I, E) = (0,1) and the monodromy matriz is given by

< ; "} ) € SI(2,R). (1)

Taking the appropriate quotients of the period functions yields frequencies
wi(ay, az) and ws(ay, az). The frequency function w is single-valued, whereas
wy 1s multi-valued.

Already by the Liouville-Arnol’d Integrability Theorem [1] it follows that
locally ~ with respect to the actions (a1, az) - we have canonical action-angle
variables (a1, as, @1, @) in which the motions of the spherical pendulum are
given by

a = 0

a = 0

& = way,a) (2)
G2 = wa(a,an).

The actions a; and a, have replaced the integrals I and E as constants of
motion. Fixing a; and a, gives an invariant 2-torus, parametrized by «,
and az, on which the motion is parallel with frequency vector w(a;, a). The
nontriviality of the 2-torus bundle means that the angle variables in (2) can
not be extended over the whole domain: global action angle variables do not
exist.

Remark The monodromy matrix (1) indicates a certain shift in the period-
or frequency lattice when moving in a circle around the branching point,
see Figure 1. Such a lattice also occurs in the spectrum of the Schrodinger
operator in a semiclassical version of the spherical pendulum, where a similar
shift is observed. Compare with [12, 30].

1.2 Perturbative point of view; setting of the problem

The spherical pendulum is an example of an integrable system in the sense
of Liouville-Arnol'd 1], where the torus bundle is nontrivial. It is natural
to ask whether this property is persistent for perturbations of the system.
Let us first consider the case where the perturbations do not lead us out of
the class of integrable systems. The following result largely characterizes the
integrable cases in two-degrees-of-freedom.
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Theorem 1 [19, 29] Given a four dimensional symplectic manifold M fibered
by level sets of an energy momentum map EM : M — R?. Assume that

1. €M has only one critical value;
2. FEach fiber of EM 1is compact and connected;

3. The singular fiber has k singular points, all real or complez saddle points
(also named focus-focus points).

Then the singular fiber is a pinched torus and the Liouville-Arnold 2-torus
bundle is nontrivial, where in a suitable basis the monodromy matriz takes

the form
1 -k
( 0 1 > € Sl(2,R).

It directly follows that the monodromy of the 2-torus bundle related to the
spherical pendulum is persistent for small integrable (say rotationally sym-
metric) Hamiltonian perturbations of the system.

A next question is whether this geometry also is persistent for non-
integrable Hamiltonian perturbations. Think of applying a non-symmetric
magetic field to the spherical pendulum. This question and related issues
form the motivation for the present paper.

First, we drop the restriction to two-degree-of-freedom systems and turn
to the general Hamiltonian setting with n degrees of freedom. Second, we
aim to use Kolmogorov-Arnol'd-Moser Theory [24, 8, 7] in its quasi-periodic
stability format, comparing near-integrable systems to their integrable ap-
proximation. In [5] it is shown that this approach is succesful: below we
shall explain these results further. As we shall see it will be possible to
construct a global Whitney smooth diffeomorphism between the integrable
and near-integrable n-torus bundle with an Whitney extension that respects
the geometry. We note that this approach is independent of the particular
geometry of the integrable approximation.

2 ‘Local’ kAM Theory

In this section we review the standard, ‘local’ Kolmogorov-Arnol'd-Moser
Theory (24, 8, 7] for nearly-integrable Hamiltonian systems in n degrees of
freedom, also compare [10, 18]. As said before, this theory deals with the
persistence of invariant Lagrangean n-tori, that are quasi-periodic.
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2.1 Conditions on the integrable approximation

The phase space we consider is T" x A, where A C R" is a bounded, open
and connected subset. The adjective ‘local’ to KAM-Theory refers to the fact
that the theory deals with local trivializations of the whole n-torus bundle.

Let (o, a) = (ai,...,an,0a1,--.,a,) be a set of action angle coordinates
([)n T" x A, where the symplectic form is given by } 7, da; A da;. Compare
1, 11].

Let A : T" x A — R be a smooth Hamilton function, integrable, in the
sense of not depending on the angles a. This leads to a Hamiltonian vector
field X,

. 9 Oh
X = (@), Withw,; = 2% j=1,2,... n.
h(aaa) jglw](a)aaj) Wl UJ] 6(],]‘ J n

Note that X}, has the 2n-dimensional system form
a =0
a = w(a), (3)

compare with the spherical pendulum example (2). We say that the system is
nondegenerate whenever the frequency map w : A - R is a diffeomorphism.

We now need to consider the non-resonance condition on the frequency
vectors. Given a fixed constant 7 > n—1 and a ‘parameter’ v > 0, we define

D;(RY) = {w € R* | |{w, k)| > 7|k|™", Vk € 2™\ {0}}

We say that the frequency vector w is Diophantine if for some 7 > n — 1
and vy > 0 we have w € D, (R"). Observe that Diophantine frequency vectors
surely are non-resonant. The set D, (R") is nowhere dense set and of positive
measure, which tends to full measure as y | 0. Compare (24, 8, 7]. For general
background on such sets compare (22].

2.2 Formulation of the ‘local’ kAM Theoren

We need to specify some domains in the frequency and in the action space.
ForI' = w(A) C R" let

D,(T,) = {w € T | dist(w, T) > 7} N D, (R*)
also define D,(A,) C A by D,(4,) =w™ (D,(T,)). It follows that
measure (A\ D,(4,)) =O0(y)asy | 0.
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Next we perturb the integrable Hamiltonian A to h -+ f:T"x AR,
where we assume both h and f real-analytic. Introducing a complexified

domain
Dy = (T" + &) x (4 + g),

¢ <1, we assume h + f is holomorphic here. Here we abbreviated
A+po={z€C" ||z -4 < o for some a € A4},
and similarly for T* + x C C/(27Z)".

Theorem 2 [24, 8] Under the above circumstances, assume that the inte-
grable Hamiltonian system defined by h is nondegenerate. Then there erists
a constant 6 > 0, independent of A, v and o with the Jollowing property. For
| f1Den < 726 there ezists a map ®: TP x A —T" x A such that

1. @ 1is C* diffeomorphism, analytic in o;
2. & —1d is small in the C®-topology;
3. Abbrem'ating (S = ¢|’ﬂ"nxD1(A7) we have ‘3.Xh = Xh+f.

The star-notation just abbreviates ZI;.X,,(q) = D,,@(X,,(p)), where ®(p) = ¢,
which indeed amounts to smooth conjugation of the corresponding flows.
Theorem 2 is the stability formulation of the standard KAM Theorem. In
this format the map ¢ generally is not symplectic. Since ® is near-identity
diffeomorphism, it preserves the topology (geometry) of the bundle. For
more details see below. Note that outside T" x D,(A,) the diffeomorphism
® generally is no conjugation. The ‘parameter’ 7 in the ‘local’ KAM Theorem
2, for all practical purposes, should be as small as perturbation allows. In
particular, when writing the perturbation as k + ¢ f, we take v = O(v/€). In
general y may depend on system parameters.

For simplicity we formulated Theorem 2 in the world of real analytic sys-
tems, endowed with the compact-open topology on holomorphic extensions.
We note that this setting can be relaxed to can be relaxed to C*, endowed
with the Whitney C*-topology, when £ is sufficiently large. For details see
[24, 8]. Also see [9].

3 The global kAM Theorem

Here we give the main result of this paper, the global KAM Theorem. We
start with a section that introduces all the necessary ingredients.
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3.1 Ingredients

We start out from a real analytic symplectic manifold (M ,0), with dim M =
2n. Moreover, there exists a real analytic surjective map # : M — B, where
B is an n-dimensional affine manifold. Assume that the regular leafs of 7
are Lagrangean n-tori. Let B C B be the set of regular values of 7, then
we assume that M = #7'(B) is connected. Let 7 : M — B be both the
restriction and corestriction of #.

By the Liouville-Arnol’d Integrability Theorem [1, 11}, for all b € B we
obtain a neighbourhood U® C B and a map ¢ : 771 (U®%) — T x A of the
form

m —+ (a(m), a*(m)),
which is an action angle chart, meaning that the action functions q® —
(a%,a8,...,ab) are constant on the fibers of .

Let a real analytic Hamiltonian H : M — R be given, which is integrable
in the sense that H is constant on the fibers of #. This means that the
corresponding Hamiltonian vector field Xy is tangent to fibers of © so that
the push forward vector field ¢® X;; has the form WXy = = wi(a) 8/0cy;.
Compare with (2) and (3). As before w® : 4% — R™ is called the frequency
map. For this construction compare (27, 28].

3.2 Formulation of the global kAM Theorem

We say that H is a nondegenerate integral of 7, if for the collection (T HU®), ¢*)pe s
each frequency map w® : A* — R™ is diffeomorphic onto its image. Using
the affine structure on B the second derivative D?H can be defined intrin-
sically and this nondegeneracy condition then can equivalently be expressed
by requiring D?H to have maxima) rank everywhere.

Now consider any open, relatively compact subset B’ C B and define
M’ = z=1(B’). Our main result is

Theorem 3 (5] Let (M,0), 7: M — B and H : M — R be as above and let
F: M — R be real analytic. Then, if the restriction F‘],,ax(B:) 15 sufficiently
small in compact-open topology, there erists q subset C C B' and a map
®: M - M such that

1. C is a nowhere dense set with measure (C) large;
2. ® is a C*™ diffeomorphism, near the identity in the C™ topology;
3. For &; = q’],—x(c) we have "I;,.XH = XH+F~
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Remark It is of interest to reconsider Theorem 3 in the case where the per-
turbation H + F is integrable as well. In that case the proof below runs
completely similar, where the ‘local’ KAM-Theorem 2 is replaced by the In-
verse Function Theorem, compare with (8], §3. Therefore there is no need
of Diophantine non-resonance conditions and the map ® coincides with its
restriction ®. So ® is a real analytic diffeomorphism defined on the whole
torus bundle, which moreover is an isomorphism of torus bundles and which
is a conjugation everywhere. We conclude that if H is globally nondegenerate
and H + F is integrable, then the dynamics of H and H + F are analytically
conjugate by a global torus bundle isomorphism.

4 Proof of the global kAM Theorem

The rest of the paper is devoted to proving Theorem 3, following Broer,
Cushman and Fasso [5].

4.1 Preliminaries

First of all, for each chart domain (V?, ©*)scp, we take v® > 0 small enough
such that

V76 = ((pb)~1(Tn x Ap)
is a nonempty set of positive measure. For our relatively compact subset
B' C B we find a finite sub-covering (V)[L, of M".

Localisation For each 1 < j < N the chart map ¢’ : VI — T" x A’
leads to a local perturbation problem for h? + f7 by defining h? = H o (¢#)~!
and f7 = F o (¢)7!. For each 1 < j < N application of the ‘local’ KAM
Theorem 2 gives a smooth map &7 : T x A7 — T" x A7, such that restricted
to Dyi(A2;) we have

(I)j'th = Xn;+s;-

Therefore, each Diophantine invariant torus T of Xy, by a composition
() ooy

is conjugate to an invariant torus T of Xp, p.

The nowhere dense set C Recall the format of the chart map being
¢ Vi o5 T x A1, m — (a?(m),a?(m)). The set C C B’ is obtained by
pulling back D,;(A!;) along @’ : V7 — AJ. On the finitely many overlaps

V7".- N V7’J we just take intersections.
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Matching How do the local conjugacies (¢?) ! 0 ®’ 0’ match? By nonde-
generacy of H the correspondence between the Diophantine integrable tori T
and their near-integrable counterparts T' is uniquely determined. Moreover,
on any overlap V3 NV, the actions a' and o’ match under the transition

maps ¢' o (¢?)"1.

However, note that the angles do not necessarily match. Indeed, generally
one has of = S, ja' + ¢; 5, for S;; € Sl(n,Z) and ¢;; € T, compare [11, 15].
In the case of nontrivial monodromy the transition maps ¢' o (¢?)~! are not
all close to Id whence we do not always have S;; = Id.

4.2 Staying near the identity-map

To overcome the problem of the non-matching angles, for j =1,2,..., N, we
consider the near-identity map

U= () o (®) o : T T.

The Liouville-Arnol'd Integrability Theorem [1, 11] provides a natural affine
structure of the integrable torus T, determined by the transitive R"-action
of G:R*xT T, as

G:((t1,...,tn),m) = (gi' o---0glr(m)),

where g} is the flow of the Hamiltonian vector field Xa{, associated to action
a{, foré=1,...,n,5=1,...,N.

Lemma 1 For sufficiently small F, on any overlap T C V;} N V,”,
1. The transition maps W' o (¥7)~! are close to Id in the C®-topology

2. Wiy and V| differ only by a translation
Proof Directly from the equicontinuity conditions on the size of {f7 ;-":1. a

Glueing the ¥7 A final essential ingredient for glueing the ¥/ is
Lemma 2 Subordinate to the covering (V;’,,),,E B of M there ezists a Partition

of Unity (VA, ) aen with

7
£ : M =R, of class C®

such that
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1. £* is constant on the fibers of ;
2. supp(&*) C V;‘A as a compact set;
3. &* takes values in [0,1];

4 Yen € =1 as a (locally) finite sum.

Proof Take a standard Partition of Unity construction [16, 26] with respect
to the covering (U:,,)beg of B and pull back along =. O

Conclusion of the proof We now conclude this section by a proof of
Theorem 3. We define a conjugacy ®, as required, by setting

N

=) W

j=1

This formula has to be interpreted fiber wise as follows. In each integrable
T the maps ¥* and ¥/ only differ by a translation. The finite convex com-
bination therefore is globally well-defined on the nowhere dense set 7' (C).
That the map is near-identity in the C'*°-topology follows by Leibniz’ rule.
This proves the global KAM Theorem 3. a

Remark The affine structure of 7T also is determined by its quasi-periodic
flow. The KAM conjugations transport this to T'. Moreover, the global con-
jugation @ is an isomorphism of bundles, which preserves this affine structure.

5 Conclusions

In this section we first come back to the spherical pendulum example and
then draw some further conclusions from our general approach, pointing at
a few open problems.

5.1 The spherical pendulum revisited

In any application of Theorem 3 it is important to verify global nondegener-
acy of the Hamiltonian. In the case of the spherical pendulum this fact was
established by Horozov [17]. This means that one can apply Theorem 3 to
any open, relatively compact subset B’ C B. Here the smallness condition
on the perturbation depends on B’. Compare Figure 1. However, near the
boundary lines corresponding to Huygens’s horizontal periodic solutions and
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near both equilibria, we can send 7 | 0, so obtaining Lebesque density points
of quasi-periodicity. Compare (8, 7] also compare the problem of small twist
as treated in [24].

Suitable Whitney extension of the map & allows the definition of mon-
odromy in non-integrable, small perturbations of the spherical pendulum.
Compare with Rink [25], who establishes this same fact near general focus-
focus singularities in two degrees of freedom.

5.2 General remarks

Observe that the present approach works in arbitrary many degrees of free-
dom and is independent of the integrable geometry one starts with. Suitable
Whitney extension of the map @ allows to conclude that near-integrable n-
torus bundles are diffeomorphic to their integrable approximations, implying
that the geometries are identical. Thus all kinds of obstructions against triv-
iality, like monodromy, Chern classes, etc., can also be defined for the near-
integrable case. For a topological discussion of the corresponding n-torus
bundles, see Duistermaat [14]. As we saw, the main tool is that near—identity
torus-automorphisms are translations {11, 15].

A direct generalization of this approach is possible to the setting of Broer
et al. (8, 7], where a general unfolding theory of quasi-periodic tori is de-
veloped, based on [20, 24]. Within the world of Hamiltonian systems this
leads to applications at the level of lower dimensional tori. However, this
approach also works for, e.g., dissipative, volume preserving, or reversible
systems. Also compare [6].

An open problem is how to define such obstructions by a more direct ap-
proach that tries to take appropriate sections in appropriate bundles. Indeed,
remaining with the monodromy example for a while, we see that Si(n,Z)-
elements play role when jumping over larger gaps in ‘Cantor’ set C. Thus
more monodromy seems to be ‘collected along the way’ ...
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