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Abstract. Zinc(II) and nickel(II)-complexes of 5-methoxyisatin 3-[N-(4-

chlorophenyl) thiosemicarbazone] (H2MICP) were synthesized and characterized 

by infrared, ultraviolet and 
1
H-NMR spectroscopies as well as elemental 

analysis. Model of H2MICP and its zinc(II) and nickel(II)-complexes were 

optimized with B3LYP method using 6-31G(d,p), 6-311G(d,p), 6-311++G(d,p), 

6-311++G(2d,2p) basis sets. The calculated 
1
H-NMR, UV and IR spectra data 

were compared with experimental results. In addition to the Natural Bond 

Orbital (NBO) analysis of H2MICP and its Zinc(II) and Nickel(II) complexes, 

Fukui functions of H2MICP were also reported. 

Keywords: DFT; isatin thiosemicarbazones; Zn (II) and Ni (II)-complexes. 

1 Introduction  

Isatin 3-thiosemicarbazone derivatives and their metal complexes have a broad 

range of biological activities namely antimicrobial [1], antiviral [2,3], 

antitumor, anti-inflammatory and antibacterial activities [4]. The investigation 

of the structure-activity relationships of isatin -thiosemicarbazones for 

antiviral chemotherapeutic activity revealed that the substitution at the C=O 

position of the side-chain by another atom or group should result in loss of 

activity [2]. Recently, structure-activity relationship of 5-fluoro-1H-indole-2,3-

dione-3-thiosemicarbazones and 5-fluoro-1-morpholino/piperidinomethyl-1H-

indole-2,3-dione-3-thiosemicarbazones were evaluated for in vitro 

antituberculosis activity against Mycobacterium tuberculosis H37Rv and 

studied using ETM–ANN method [5,6]. Antimicrobial activity of Schiff and 

Mannich bases derived from isatin derivatives has been reported. N-[4-(4-

chlorophenyl) thiazol-2-yl] thiosemicarbazide and 1-[N,N-

dimethylaminomethyl]-5-bromo isatin-3-{1-[4-(p-chlorophenyl)thiazol-2-
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yl] thio semicarbazone showed the most favorable antimicrobial activity [1]. 1-

(1-((Substituted)methyl)-5-methyl-2-oxoindolin-3-ylidene)-4-(substituted 

pyridine-2-yl)thiosemicarbazide has been reported to show significant anti-

inflammatory and analgesic activity [1]. 

There are a number of studies on the synthesis of isatin -thiosemicarbazone 

derivatives. We have reported synthesis, characterization and mechanistic of 5-

methoxyisatin 3-[N-(4-chlorophenyl)thiosemicarbazone] [7]. In the present 

study, zinc(II) and nickel(II)-complexes of 5-methoxyisatin 3-[N-(4-

chlorophenylthiosemicarbazone) have been synthesized. The structures of 

complexes have been determined by 
1
H-NMR, IR and UV spectra and 

elemental analysis (C, H, N, S). Moreover, electronics parameters of H2MICP 

and its zinc(II) and nickel(II)-complexes have also been calculated using 

B3LYP with the basis set of 6-31G(d,p), 6-311G(d,p), 6-311++G(d,p), 6-

311++G(2d,2p). Natural Bond Orbital (NBO) analysis is also reported. 

2 Experimental 

2.1 Material and Methods 

5-methoxyisatin was purchased from Sigma Aldrich. Metal salts were 

purchased from E. Merck and used without further purification. Infrared 

spectrum of 5-methoxy isatin and its complexes were measured using KBr 

pellet on Shimadzu FT-IR 8201 spectrometer. The elemental analysis was 

carried out on CHNS-932 (LECO) and 
1
H-NMR spectra were measured at 400 

MHz on a BRUKER DPX-400 spectrometer at the TUBITAK ATAL 

instrumental analyses laboratory. The electronic spectra of UV–visible zone 

(200–600 nm) of all the compounds were measured (1 cm quartz cell, 0–2.5 

absorbance values range) using Shimadzu UV-1601PC spectrophotometer. 

2.2 Synthesis  

H2MICP ligand molecule was synthesized according to literature procedure [7]. 

Bis{5-methoxyisatin-3-[N-(4-chlorophenyl)thiosemicarbazonato]}zinc(II) 

[Zn(HMICP)2.H2O] 

[Zn(HMICP)2] were synthesized by dissolving 1 mmol  (0.361 g) H2MICP and 

0.5 mmol  (0.106 g) zinc(II)  acetate in warm ethanol. Subsequently, the 

solution was refluxed for 3 hours. Brown solid was isolated by filtration and 

washed with 95% ethanol, diethylether and dried in vacuum at room 

temperature. [(calc. (%): C = 48.95, H = 3.08, N = 14.27, S = 8.16, found. (%): 
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C = 49.09, H = 3.18, N = 14.24, S = 8.84). 
1
H-NMR (DMSO-d6, ppm): 3.55 (s, 

CH3-methoxy), 6.85-7.66 (aromatic C-H), 10.65 (, NH), 10.81 (s, indole-NH)]. 

Bis{5-methoxyisatin-3-[N-(4-chlorophenyl))thiosemicarbazonato]}nickel(II) 

[Ni(HMICP)2.H2O] 

[Ni(HMICP)2] were synthesized by dissolving 1 mmol (0.361 g) H2MICP and 

0.5 mmol (0.088 g) nickel(II) acetate in warm ethanol. Subsequently, the 

solution was refluxed for 2 h, and stirred for two days at room temperature. A 

brown solid was isolated and washed with 95% ethanol and diethylether [(calc. 

(%): C = 48.26, H = 3.29, N = 14.07, S = 8.05, found. (%): C = 48.13, H = 3.22, 

N = 13.86, S = 7.31)]. 

3 Theoretical Calculations 

All calculations were carried out by employing density functional theory (DFT) 

with the basis set levels [8-10] of B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), 

B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p) for the ligand and 

B3LYP/6-31G(d,p), B3LYP/6-311G(d,p) for the zinc(II) and nickel(II)-

complexes. UV calculation for H2MICP ligand was also performed by DFT at 

the level of BP86/CEP* using 3/76=1000003000, 3/77=0720007000, 

3/78=0810010000, 3/74=406 iop values. 

4 Results and Discussion 

The B3LYP/6-311G(d,p) optimized structures of H2MICP and its zinc(II) and 

nickel(II)-complexes were shown in Figure 1. 

The possible tautomeric structures for H2MICP were calculated using 

B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p) and 

B3LYP/6-311++G(2d,2p) basis sets. There is no negative imaginary frequency 

observed for possible tautomeric forms, indicating that all structures are true 

minima. The B3LYP/6-311G(d,p) optimized structures of possible tautomeric 

forms were shown in Figure 2. As summarized in Table 1, the A form was 

found to be most stable than the other forms with all calculation methods like 

the study in [11]. 

The energy differences between most stable and unstable tautomeric forms were 

found as 34.78 kcal/mol; 21.21 kcal/mol; 32.50 kcal/mol; 31.16 kcal/mol at 

B3LYP method with 6-31G(d,p), 6-311G (d,p), 6-311++G(d,p) and 6-

311++G(2d,2p) basis sets respectively. The dipole moment of A form is the 

highest of all calculated basis sets while EHOMO of A form is the lowest one. 



38 Fatma Kandemirli, et al. 

 

 

 
H2MICP [Zn(HMICP)2] 

 
[Ni(HMICP)2] 

Figure 1 The structures of H2MICP and its zinc(II) and nickel(II)-complexes 

optimized with B3LYP/6-311G(d,p). 

 

 

Figure 2 The possible tautomer structures of H2MICP optimized with 

B3LYP/6-311G(d,p). 
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Table 1 The sum of the zero point and electronic energies (au), polarizibility 

(), dipole moment (µ), EHOMO, ELUMO, hardness () and softness () for the 

possible tautomer structures of H2MICP. 

Tautomer 6-31G(d,p) 6-311G(d,p) 6-311++G(d,p) 6-311++G(2d,2p) 

structures 

 Sum of the zero point and electronic energies (au) 

A -1845.119402 -1845.396917 -1845.414918 -1845.451098 

B -1845.092834 -1845.370541 -1845.389447 -1845.425976 

C -1845.087848 -1845.342684 -1845.387149 -1845.423678 

D -1845.087842 -1845.371603 -1845.391259 -1845.429274 

E -1845.063968 -1845.342684 -1845.363113 -1845.401429 

F -1845.067024 -1845.345660 -1845.366705 -1845.404319 

 EHOMO (au) 

A -0.21650 -0.22428 -0.22803 -0.22688 

B -0.21305 -0.22142 -0.22558 -0.22430 

C -0.19856 -0.21499 -0.21096 -0.20994 

D -0.19856 -0.21901 -0.22329 -0.22234 

E -0.20648 -0.21499 -0.21967 -0.21868 

F -0.19656 -0.20484 -0.20951 -0.20844 

 ELUMO (au) 

A -0.09655 -0.10433 -0.10921 -0.10823 

B -0.09932 -0.10701 -0.11173 -0.11031 

C -0.08034 -0.09519 -0.09371 -0.09308 

D -0.08039 -0.09331 -0.09911 -0.09872 

E -0.08754 -0.09519 -0.10075 -0.09992 

F -0.08412 -0.09166 -0.09695 -0.09575 

 

  (au)  (au-1)  (au)  (au-1)  (au)  (au-1)  (au)  (au-1) 

A 0.060 8.337 0.060 8.337 0.059 8.416 0.059 8.428 

B 0.057 8.793 0.057 8.740 0.057 8.783 0.057 8.773 

C 0.059 8.459 0.060 8.347 0.059 8.529 0.058 8.557 

D 0.059 8.462 0.063 7.955 0.062 8.053 0.062 8.089 

E 0.059 8.408 0.060 8.347 0.059 8.409 0.059 8.420 

F 0.056 8.894 0.056 8.835 0.056 8.884 0.056 8.874 

  

 µ (D)  µ (D)  µ (D)  µ (D) 

A 282.02 9.22 294.54 9.22 316.48 8.98 324.25 8.85 

B 285.15 5.64 297.80 5.68 320.43 5.36 327.28 5.19 

C 284.49 4.22 289.70 4.75 317.05 4.14 324.34 4.03 

D 284.58 4.22 286.02 7.52 307.21 7.27 314.30 7.22 

E 279.10 4.64 289.70 4.75 311.12 4.49 317.38 4.39 

F 287.68 0.98 298.93 1.01 320.54 1.22 326.97 1.20 

Fukui functions of H2MICP were calculated using AOMix program [11,12]. 

Fukui functions give information about the reactive regions for nucleophilic and 

electrophilic attack.    1k k kf N N      measures the changes as the 

molecule gains electrons which indicating the reactivity for nucleophilic attack, 

while    1k k kf N N      measures the changes as the molecule losses 
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electrons which indicating the reactivity for electrophilic attack. Table 2 

summarizes the Fukui functions for the HOMO and the LUMO of the 

molecules. 

Table 2 Neutral and protonated Fukui functions for the HOMO and the LUMO 

of the H2MICP using the different basis sets. 

H2MICP 6-31G(d,p) 6-311G(d,p)
 

6-311++G(d,p)
 

Atoms 

kf  

k
f  

kf  
k

f  
kf  

k
f  

C2 - - - - 1.05 - 

C5 3.40 - 3.71 - 2.90 - 

C6 11.86 5.68 12.13 5.86 11.06 5.81 

N7 8.07 1.64 8.35 1.57 6.61 1.63 

S8 15.07 8.37 13.40 8.55 19.78 9.01 

O10 6.82 8.12 6.75 7.65 5.95 7.45 

C11 14.66 3.10 14.98 3.01 13.25 2.79 

O12 9.03 - 9.31 - 7.32 - 

C13 9.97 - 10.29 - 8.93 - 

C14 1.73 8.22 1.88 9.07 1.80 10.03 

C17 6.26 3.43 6.32 3.77 5.66 3.58 

C18 - 5.86 - 5.76 1.04 5.13 

C19 - 6.31 - 6.61 - 6.86 

C20 2.18 13.97 2.15 14.25 2.31 14.09 

N21 - 1.83 - 1.75 1.62 1.95 

N22 4.38 4.14 4.32 3.96 1.95 4.11 

N23 1.76 25.01 1.73 24.47 1.55 24.30 

Although the compositions of the HOMO and the LUMO for H2MICP depend 

on the basis set, the changes are not significant. For the HOMO, the 

contributions are mainly from thiosemicarbazone group (S8: 19.78%, N22: 

4.32%, N23: 1.73%) and isatin group (C5: 3.71%, C6: 12.13%, C11: 14.98%, 

C13: 10.29%, C14: 1.73%, C17: 6.32%, C20: 2.15%, N7: 8.35%, O10: 6.75%, 

O12: 9.31%). 

The NBO program performs the analysis of a many-electron molecular 

wavefunction in terms of localized electron-pair bonding units. The program 

carries out the determination of natural atomic orbitals (NAOs), natural hybrid 

orbitals (NHOs), natural bond orbitals (NBOs), and natural localized molecular 

orbitals (NLMOs). These parameters are applicable to perform natural 

population analysis (NPA) [13]. Bond orbital coefficients as well as the hybrids 

(percents of s and p character) for H2MICP, Zn(II) and Ni(II)-complexes are 

summarized in Tables 3 and 4. 

As shown in Table 3, C6-C13, C5-C11, C17-C19 bonds belonging to the 

benzene ring of isatin group of H2MICP  have double bond character and the 

NBO bonds calculated with B3LYP/6-311++G(2d,2p) are 0.7054 C6 (sp
1.86

) + 
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0.7088 C13 (sp
1.60

) + 0.7249 C6 (p) + 0.6889 C13 (p) for C6-C13 bond; 0.6966 C5 

(sp
1.85

) + 0.7175 C11 (sp
1.53

) + 0.7087 C5 (p) + 0.7055 C11 (p) for C5-C11 bond; 

0.7196 C17 (sp
1.62

) + 0.6943 C19 (sp
1.80

) + 0.7187 C17 (p) + 0.6953 C19 (p) for 

C17-C19 bond. While the calculations which carried out using B3LYP/6-

311G(d,p) basis set is 0.7074 C6 (sp
1.81

) + 0.7068 C13 (sp
1.60

) + 0.7252 C6 (p) + 

0.6885 C13 (p), 0.6986 C5 (sp
1.79

) + 0.7156 C11 (sp
1.55

) + 0.7090 C5 (p) + 0.7052 

C11 (p) and 0.7163 C17 (sp
1.64

) + 0.6978 C19 (sp
1.75

) + 0.7195 C17 (p) + 0.6945 C19 

(p). It was shown that there are no significant changes in the calculation results 

using both the 6-311++G(2d,2p) and 6-311G(d,p) basis sets. Therefore, further 

calculations were then performed by only the 6-311G(d,p) basis set for the 

Zn(II) and Ni(II)-complexes. From the NBO analysis, C6-C13, C5-C11, C17-

C19 bonds of the benzene ring of isatin group of H2MICP have same character 

for pair bond (Table 4). 

NBO bonds of C6-C13, C5-C11, C17-C19 which calculated by B3LYP/6-

311G(d,p) basis set are 0.7072 C6 (sp
1.81

)  + 0.7070 C13 (sp
1.61

) + 0.7220 C6 (p) + 

0.6919 C13 (p), 0.6893 C5 (sp
1.79

)  + 0.7158 C11 (sp
1.55

) + 0.7147 C5 (p) + 0.6994 

C11 (p), 0.7162 C17 (sp
1.65

) + 0.6979 C19 (sp
1.78

) + 0.7242 C17 (p)  + 0.6896 C19 

(p), respectively for [Zn(HMICP)2] complex and 0.7078 C6 (sp
1.80

) + 0.7065 C13 

(sp
1.61

) + 0.7210 C6 (p) + 0.6930 C13 (p), 0.6988 C5 (sp
1.78

) + 0.7153 C11 (sp
1.56

)  

+ 0.7165 C5 (p) + 0.6976 C11 (p) and 0.7175 C17 (sp
1.63

) + 0.6965 C19 (sp
1.80

) +  
0.7310 C17 (p) + 0.6824 C19 (p), respectively for [Ni(HMICP)2]. There are no 

significant changes in these bonds for either Zn(II) nor Ni(II)-complexes. C20-

N23 NBO of the thiosemicarbazone group of H2MICP  ligand, and its Zn(II) 

and Ni(II)-complexes are 0.6326 C20 (sp
2.00

) + 0.7745 N23 (sp
1.30

) + 0.6778 C20 

(p) + 0.7353 N23 (p), 0.6254 C20 (sp
1.99

) + 0.7803 N23 (sp
1.34

) + 0.6363 C20 (p)  + 

0.7714 N23 (p) and 0.6370 C20 (sp
2.02

) + 0.7794 N23 (sp
1.35

) + 0.6370 C20 (p) + 

0.7708 N23 (p), respectively. The percentage of C20 atom for H2MICP ligand 

and its Zn(II) and Ni(II)-complexes is 40.02, 39.11 and 39.26. In the formation 

of , s% character of C20 for them is 33.32, 33.40 and 33.13 respectively. s% 

character of C20 atom for H2MICP ligand does not change significantly in the 

formation of Zn(II) and Ni(II)-complexes. C20% of  NBO bond for H2MICP 

ligand, and its Zn(II) and Ni(II)-complexes is 45.94, 40.49 and 40.58, while 

those of N23 are 54.06, 59.51 and 59.42, respectively. In the complex 

formation, bond is polarized (about 59.51% for Zn(II)-complex and about 

59.42% for Ni(II)-complex) toward N23. S8-C18 bond having double bond 

character in the H2MICP ligand calculated with B3LYP/6-311++G(2d,2p) 

method, however it shows single bond character in the Zn(II) and Ni(II)-

complexes (NBO bond of S8-C18 is 0.6353 S8 (sp
4.38

) + 0.7723 C18 (sp
1.57

) + 

0.8278 S5 (p) + 0.5611 C18 (p) for H2MICP, 0.6994 S8 (sp
4.80

) + 0.7429 C18 

(sp
2.04

) for Zn(II)-complex, and 0.6638 S8 (sp
4.96

) + 0.7479 C18 (sp
2.02

) for Ni(II)-

complex) 
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Table 3 Calculated NBO analysis data for H2MICP calculated with 6-

311++G(2d,2p) and 6-311G(d,p) basis set. 

 H2MICP 

Atom Hybrids 

numbers B3LYP/6-311++G(2d,2p) B3LYP/6-311G(d,p) 

C3-C15 0.6991 C3 (sp
1.85

) + 0.7151 C15 (sp
1.83

)  0.7005 C3 (sp
1.80

) + 0.7137 C15 (sp
1.84

)  

C15-C16 0.7183 C15 (sp
1.66

) + 0.6957 C16 (sp
1.95

) 0.7163 C15 (sp
1.64

) + 0.6978 C16 (sp
1.75

)  

0.7125 C15 (p) + 0.7017 C16 (p) 0.7195  C15 (p) + 0.6945 C16 (p)  

C1-C3 0.7068 C1 (sp
1.80

) + 0.7074 C3 (sp
1.73

) 0.7071 C1 (sp
1.78

) + 0.7071 C3 (sp
1.72

)  

0.6978 C1 (p) + 0.7163 C3 (p)  0.6975 C1 (p) + 0.7166 C3 (p)  

C9-C16 0.7080 C9 (sp
1.79

) + 0.7062 C16 (sp
1.80

)  0.7084 C9 (sp
1.77

) + 0.7058 C16 (sp
1.78

)  

C1-C2 0.7048 C1 (sp
1.84

) + 0.7094 C2 (sp
1.60

) 0.7068 C1 (sp
1.78

) + 0.7075 C2 (sp
1.58

)  

C2-C9 0.7109 C2 (sp
1.58

) + 0.7033 C9 (sp
1.83

) 0.7109 C2 (sp
1.56

) + 0.7033 C9 (sp
1.78

)  

0.6978 C2 (p) + 0.6806 C9 (p) 0.7338 C2 (p) + 0.67.94 C9 (p)  

C2-Cl37 0.6766 C2 (sp
3.42

) + 0.7363 Cl37 (sp
4.68

)  0.6997 C2 (sp
3.52

) + 0.7426 Cl37 (sp
4.40

)  

C6-C13 0.7054 C6 (sp
1.86

) + 0.7088 C13 (sp
1.60

)  0.7074 C6 (sp
1.81

) + 0.7068 (C13sp
1.60

)  

0.7249 C6 (p) + 0.6889 C13 (p)  0.7252  C6 (p) + 0.6885 C13 (p)  

C13-C19 0.7100 C9 (sp
1.73

) + 0.7042 C19 (sp
1.88

)  0.7066 C9 (sp
1.75

) + 0.7076 C19 (sp
1.84

)  

C5-C6 0.7087 C5 (sp
1.78

) + 0.7055 C6 (sp
1.77

)  0.7056 C5 (sp
1.78

) + 0.7056 C6 (sp
1.76

)  

C5-C11 0.6966 C5 (sp
1.85

) + 0.7175 C11 (sp
1.53

)  0.6986  C5 (sp
1.79

) + 0.7156 C11 (sp
1.55

)  

0.7087 C5 (p) + 0.7055 C11 (p)  0.7090  C5 (p) + 0.7052 C11 (p)  

C17-C19 0.7196 C17 (sp
1.62

) + 0.6943 C19 (sp
1.80

)  0.7163 C17 (sp
1.64

) + 0.6978 C19 (sp
1.75

)  

0.7187 C17 (p) + 0.6953 C19 (p)  0.7195 C17 (p) + 0.6945 C19 (p)  

C11-C17 0.7060 C11 (sp
1.97

) + 0.7082 C17 (sp
2.27

)  0.7054 C11 (sp
1.95

) + 0.7088 C17 (sp
2.24

)  

N7-C11 0.7849 N7 (sp
1.80

) + 0.6196 C11 (sp
2.77

)  0.7850 N7 (sp
1.77

) + 0.6195 C11 (sp
2.75

) 

N7-C14 0.7910 N7 (sp
1.88

) + 0.6118 C14 (sp
2.33

)  0.7919 N7 (sp
1.86

) + 0.6107 C14 (sp
2.322

)  

C14-C20 0.6984 C14 (sp
1.86

) + 0.7157 C20 (sp
2.16

)  0.6975 C14 (sp
1.85

) + 0.7166 C20 (sp
2.17

)  

C17-C20 0.7106 C17 (sp
2.21

) + 0.7036 C20 (sp
1.84

)  0.7088 C17 (sp
2.20

) + 0.7054 C20 (sp
1.86

)  

O10-C14 0.8010 O10 (sp
1.51

) + 0.5987 C14 (sp
1.94

)  0.8045 O10 (sp
1.44

) + 0.5939 C14 (sp
1.96

)  

0.8415 O10 (p) + 0.5402 C14 (p)  0.8376  O10 (p) + 0.5463 C14 (p)  

O12-C13 0.8010 O10 (sp
1.99

) + 0.5987 C14 (sp
3.03

)  0.8213 O12 (sp
1.97

) + 0.5705 C14 (sp
3.00

)  

C4-O12 0.5605 C4 (sp
3.54

) + 0.8281 O12 (sp
2.47

)  0.5846 C4 (sp
3.42

) + 0.8254 O12 (sp
2.56

)  

C20-N23 0.6328 C20 (sp
2.07

) + 0.7743 N23 (sp
1.32

)  0.6326 C20 (sp
2.00

) + 0.7745 N23 (sp
1.30

)  

0.6791 C20 (p) + 0.7341 N23 (p)  0.6778 C20 (p) + 0.7353 N23 (p)  

N22-N23 0.7233 N22 (sp
2.27

) + 0.6906 N23 (sp
2.93

)  0.7202 N22 (sp
2.25

) + 0.6938 N23 (sp
2.80

)  

C18-N22 0.6138 C18 (sp
2.45

) + 0.7723 N22 (sp
1.65

)  0.6153 C18 (sp
2.41

) + 0.7883 N22 (sp
1.62

)  

S8-C18 0.6353 S8 (sp
4.38

) + 0.7723 C18 (sp
1.57

)  0.6349 S8 (sp
4.02

) + 0.7651 C18 (sp
1.63

) 

0.8278 S5 (p) + 0.5611 C18 (p)  0.8291  S5 (p) + 0.5591 C18 (p)  

C18-N21 0.6144 C18 (sp
2.10

) + 0.7723 N21 (sp
1.69

)  0.6146 C18 (sp
2.05

) + 0.7888 N21 (sp
1.67

)  

C15-N21 0.6126 C15 (sp
2.70

) + 0.7904 N21 (sp
1.66

)  0.6133 C15 (sp
2.68

) + 0.7899 N21 (sp
1.64

)  

O12 1.96357 O12 (sp
1.63

)  Unpaired electrons 

1.84823 O12 (p)  1.96232 O12 (sp
1.61

)  

S8 1.98378 S8 (sp
0.22

)  1.84485 O12 (p)  

1.86980 S8 (sp
99.99

)  1.98517 S8 (sp
0.24

)  

O10 1.97581 O10 (sp
0.66

)  1.87217 S8 (sp
99.99

)  

1.85808 O10 (sp
99.99

)  1.97502 O10 (sp
0.70

)  

N7 1.66393 N7 (p)  1.85401 O10 (sp
99.99

)  

N23 1.92026 N23 (sp
2.15

) 
 

1.66484 N7 (p)  

N22 1.58580 N22 (p)  1.92038 N23 (sp
2.29

) 
 

N21 1.63011 N21 (p)  1.58989 N22 (p)  

Cl37 1.99201 Cl37 (sp
0.21

)  1.62631 N21 (p)  

 1.97125 Cl37 (p)  1.99224 Cl37 (sp
0.22

)  

 1.93017 Cl37 (p)  1.97100 Cl37 (p)  

  1.93049 Cl37 (p)  
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Table 4 Calculated NBO analysis data for Zn(II) and Ni(II)-complexes 

calculated with 6-311G(d,p) basis sets. 

Atom 

numbers 
[Zn(HMICP)2] [Ni(HMICP)2] 

C3-C15 0.7007 C3 (sp
1.80

) + 0.7134 C15 (sp
1.84

)  0.7004 C15 (sp
1.80

) + 0.7137 C16 (sp
1.82

)  

C15-C16 0.7177 C15 (sp
1.65

) + 0.6963 C16 (sp
1.94

)  0.7153 C3 (sp
1.69

) + 0.6988 C15 (sp
1.88

)  

0.7183 C15 (p) + 0.6957 C16 (p)  0.7070 C15 (p) + 0.7072 C16 (p) 

C1-C3 0.7072 C1 (sp
1.78

) + 0.7070 C3 (sp
1.72

)  0.7074 C1 (sp
1.78

) + 0.7068 C3 (sp
1.73

)  

0.6981 C1 (p) + 0.7160 C3 (p)  0.6967 C1 (p) + 0.7174 C3 (p)  

C9-C16 0.7095 C9 (sp
1.77

) + 0.7047 C16 (sp
1.82

)  0.7083 C9 (sp
1.77

) + 0.7059 C16 (sp
1.77

)  

C1-C2 0.7069 C1 (sp
1.78

) + 0.7073 C2 (sp
1.58

)  0.7066 C1(sp
1.78

) + 0.7076 C2 (sp
1.58

)  

C2-C9 0.7095 C2 (sp
1.55

) + 0.7047 C9 (sp
1.79

)  0.7086 C2 (sp
1.56

) + 0.7056 C9 (sp
1.78

) 

0.7347 C2 (p) + 0.67.84 C9 (p)  0.7354 C2 (p) + 0.6777 C9 (p)  

C2-Cl37 0.6881 C2 (sp
3.55

) + 0.7441 Cl37 (sp
4.38

)  0.6990 C2 (sp
3.53

) + 0.7432 Cl37 (sp
4.40

)  

C6-C13 0.7072 C6 (sp
1.81

) + 0.7070 C13 (sp
1.61

)  0.7078 C6 (sp
1.80

) + 0.7065 C13 (sp
1.61

)  

0.7220 C6 (p) + 0.6919 C13 (p)  0.7210  C6  (p) + 0.6930 C13 (p) 

C13-C19 0.7055 C9 (sp
1.75

) + 0.7087 C19 (sp
1.86

)  0.7078 C9 (sp
1.74

) + 0.7064 C19 (sp
1.87

)  

C5-C6 0.7084 C5 (sp
1.78

) + 0.7058 C6 (sp
1.76

)  0.7083 C5 (sp
1.79

) + 0.7059 C6 (sp
1.76

)  

C5-C11 0.6893 C5 (sp
1.79

) + 0.7158 C11 (sp
1.55

)  0.6988 C5 (sp
1.78

)  + 0.7153 C11 (sp
1.56

)  

0.7147 C5 (p) + 0.6994 C11 (p)  0.7165 C5 (p) + 0.6976 C11 (p)  

C17-C19 0.7162 C17 (sp
1.65

) + 0.6979 C19 (sp
1.78

)  0.7175 C17 (sp
1.63

) + 0.6965 C19 (sp
1.80

) 

0.7242 C17 (p) + 0.6896 C19 (p)  0.7310 C17 (p) + 0.6824 C19 (p)  

C11-C17 0.7042 C11 (sp
1.97

) + 0.71.00 C17 (sp
2.26

)  0.7050 C11 (sp
1.96

) + 0.7092 C17 (sp
2.27

) 

N7-C11 0.7833 N7 (sp
1.74

) + 0.6216 C11 (sp
2.71

)  0.7837 N7 (sp
1.76

) + 0.6212 C11 (sp
2.71

)  

N7-C14 0.7940 N7 (sp
1.88

) + 0.6079 C14 (sp
2.29

)  0.7933 N7 (sp
1.88

) + 0.6088 C14 (sp
2.27

)  

C14-C20 0.6946 C14 (sp
1.85

) + 0.7194 C20 (sp
2.18

)  0.6928 C14 (sp
1.85

) + 0.7211 C20 (sp
2.41

)  

C17-C20 0.7103 C17 (sp
2.17

) + 0.7039 C20 (sp
1.85

)  0.7099  C17 (sp
2.18

) + 0.7043 C20 (sp
1.68

)  

O10-C14 0.8056 O10 (sp
1.38

) + 0.5925 C14 (sp
1.91

)  0.8046 O10 (sp
1.41

) + 0.5939 C14 (sp
1.93

)  

0.8298 O10 (p) + 0.5581 C14 (p)  0.8319 O10 (p) + 0.5549 C14 (p)  

O12-C13 0.8207 O12 (sp
1.98

) + 0.5713 C14 (sp
2.98

)  0.8214 O12 (sp
1.98

) + 0.5703 C14 (sp
3.01

)  

C4-O12 0.5643 C4 (sp
3.42

) + 0.8255 O12 (sp
2.55

)  0.5655 C4 (sp
3.40

) + 0.8247 O12 (sp
2.56

)  

C20-N23 0.6254 C20 (sp
1.99

) + 0.7803 N23 (sp
1.34

)  0.6370 C20 (sp
2.02

) + 0.7794 N23 (sp
1.35

)  

0.6363 C20 (p) + 0.7714 N23 (p)  0.6370 C20 (p) + 0.7708 N23 (p)  

N22-N23 0.884 N22 (sp
2.85

) + 0.7253 N23 (sp
2.60

)  0.6870  N22 (sp
3.02

) + 0.7266 N23 (sp
2.77

) 

C18-N22 0.6369 C18 (sp
1.81

) + 0.7709 N22 (sp
1.60

)  0.6368 C18 (sp
1.85

) + 0.7711 N22 (sp
1.60

)  

 0.5880 C18 (p) + 0.8089 N22 (p)   

S8-C18 0.6994 S8 (sp
4.80

) + 0.7429 C18 (sp
2.04

)  0.6638 S8 (sp
4.96

) + 0.7479 C18 (sp
2.02

)  

C18-N21 0.6125 C18 (sp
2.17

) + 0.7904 N21 (sp
1.61

)  0.6132 C18 (sp
2.16

) + 0.7899 N21 (sp
1.62

)  

C15-N21 0.6125 C15 (sp
2.71

) + 0.7904 N21 (sp
1.63

)  0.6154 C15 (sp
2.67

) + 0.7883 N21 (sp
1.65

)  

O12 1.96168 O12 (sp
1.61

)  1.96204 O12 (sp
1.60

)  

1.84425 O12 (p)  1.84653 O12 (p)  

S8 1.97855 S8 (sp
0.35

)  1.97355 S8 (sp
0.33

)  

1.77965 S8 (sp
32.32

)  1.75694 S8 (sp
94.52

)  

1.75906 S8 (sp
15.72

)   

O10 1.97489 O10 (sp
0.72

)  1.97486 O10 (sp
0.71

)  

1.84876 O10 (P)  1.84603 O10 (sp
99.85

)  

N7 1.67306 N7 (p)  1.67574 N7 (sp
99.99

)  

N23 1.86726 N23 (sp
2.38

) 
 

1.74252 N23 (sp
2.22

) 
 

N22 1.89774 N22 (sp
1.70

)  1.90168 N22 (sp
1.71

)  

N21 1.62448 N21 (p)  1.65347 N21 (sp
99.99

)  

Cl37 1.99230 Cl37 (sp
0.23

)  1.99228 Cl37 (sp
0.23

)  

1.97162 Cl37 (p)  1.97125 Cl37 (p)  

1.93191 Cl37 (p)  1.93215 Cl37 (p)  
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4.1 UV Studies 

H2MICP ligand was optimized at the basis set levels of B3LYP/6-31G(d,p), 

B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p). 

Excitation energies were obtained with time-dependent B3LYP (TDB3LYP 

TDHF) with the basis set of 6-31G(d,p), 6-311G(d,p), 6-311++G(d,p) and 6-

311++G(2d,2p). Excitation energies of it is Zn(II) and Ni(II)-complexes 

optimized with B3LYP/6-311G(d,p) were obtained at the level of TDB3LYP/6-

311G(d,p). The experimental and theoretical UV data of H2MICP ligand and its 

Zn(II) and Ni(II)-complexes are summarized in Table 5, while the excitation 

energies (eV) and oscillator strengths (f) are summarized in Table 6. Using 

calculation with the 6-311G(d,p), 6-311++G(d,p), 6-311++G(2d,2p) basis set, 

the peak which observed experimentally at 370 nm were obtained at 366, 367, 

373 and 378 nm, respectively. This absorption is due to 1(HOMO) -1(LUMO) 

and 4-1 electronic transition. HOMO(1) is composed of + 9.6% (S8) 3pz - 9.2%  

(C11) 2pz + 6.7%  (C6) 2pz - 6.4%  (O12) 2pz + 6.3%  (C13) 2pz + 5.4%  (S8) 

4pz, while LUMO(1) is composed of + 16.6% (N23) 2pz + 8.4% (N23) 3pz - 

7.4%  (C20) 2pz - 6.0%  (C20) 3pz + 5.4% (O10) 2pz - 5.1%  (C14) 2pz, and 

HOMO-3(4) of + 10.7%  (N22) 2pz - 9.7%  (S8) 3pz + 9.3%  (C19) 2pz - 6.9%  

(C20) 2pz + 6.4%  (C19) 3pz + 5.4% (N22) 3pz atomic orbitals. 

Table 5 The experimental and theoretical UV data of H2MICP ligand and its 

Zn(II)-complex. 

 UV-visible spectrum data (nm) 

 H2MICP 

Experimental - - 258 - 270 370 - 

B3LYP/6-31G(d,p) 247 - 262 

260 

- 264 366 - 

B3LYP/6-311G(d,p) 247 

241 

- 263 264 267 367 - 

B3LYP/6-311++G(d,p) 245 - 265 267 

267 

270 373 - 

B3LYP/6-311++G(2d,2p) 248 - 238 269 

267 

272 378 - 

B3LYP/6-31G(d,p) (DMSO) 256 - - - 263 

261 

370 397 

B3LYP/6-311G(d,p) 

(DMSO) 

248 - - - 269 376 

327 

- 

CEP 250 - - - 256 350 - 

 [Zn(HMICP)2] 

Experimental 261 - - - - - 425 

B3LYP/6-31G(d,p) 248 

245 

243 

274 

265 

251 

- - - 428 

409 

405 

475 

470 

455 

B3LYP/6-311G(d,p) 248 

246 

275 

256 

252 

251 

- - - 434 

409 

408 

476 

473 

450 
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4.2 NMR Studies 

B3LYP/6-31G(d,p), B3LYP/6-311G(d,p), B3LYP/6-311++G(d,p) and 

B3LYP/6-311++G(2d,2p) proton chemical shift calculations at both gas phase 

and DMSO solution were performed for H2MICP, while B3LYP/6-31G(d,p), 

and B3LYP/6-311G(d,p) proton chemical shift calculations at gas phase were 

conducted for [Zn(HMICP)2] (Table 7). The peak due to N22-H36 in the 
1
H-

NMR spectrum of H2MICP disappears in the spectrum of [Zn(HMICP)2], both 

in experimental measurement and theoretical calculation. The correlation 

between theoretical and experimental data was calculated as minimum 97% 

without chemical shifts of H31 and H35 which are N-H protons. The calculated 

chemical shifts have increased with basis set, and minimum values were 

observed with 6-31G(d,p), while maximum values were observed with 6-

311++G(2d,2p) methods. The chemical shift values have increased in DMSO 

phase. 

Table 7 Experimental and theoretical proton chemical shifts for H2MICP, and 

[Zn(HMICP)2]. 

Atoms  Gas phase  DMSO 

 Exp.
a
 6-31G 

(d,p) 

6-311G 

(d,p) 

6-311++ 

G(d,p) 

6-311++ 

G(2d,2p) 

 6-31G 

(d,p) 

6-311G 

(d,p) 

6-311++ 

G(2d,2p) 

H2MICP* 

H34 7.35 7.20 7.39 7.51 7.59  7.38 7.58 7.59 

H30 6.80 6.56 6.56 6.77 6.87  7.00 6.98 7.19 

H29 6.90 6.58 6.70 6.66 6.81  7.18 7.32 7.14 

H25 7.51 6.64 6.82 6.98 7.15  7.22 7.70 7.50 

H33 7.51 9.79 9.90 9.95 10.31  9.62 7.74 8.76 

H24 7.45 7.19 7.34 7.50 7.60  7.67 7.88 7.75 

H32 7.45 7.28 7.44 7.52 7.61  7.64 7.86 7.79 

H35 12.82 9.38 9.41 9.70 10.00  9.53 9.02 9.96 

H36 11.05 12.66 12.44 12.63 13.18  12.98 12.90 13.24 

H31 10.76 6.06 6.07 6.36 6.66  8.04 8.10 7.32 

H26 3.75 3.58 3.59 3.66 3.74  3.70 3.66 3.84 

H27 3.75 4.01 4.08 4.14 4.09  4.04 4.07 4.11 

H28 3.75 3.58 3.59 3.66 3.74  3.69 3.67 3.84 

Regr. - 0.97 0.97 0.97 0.97  0.98 0.99 0.98 

[Zn(HMICP)2] 

H34 6.85-7.66 7.14 6.88 - -  - - - 

H30 - 6.37 6.14 - -  - - - 

H29 - 6.38 6.27 - -  - - - 

H25 - 6.50 6.45 - -  - - - 

H33 - 10.20 10.03 - -  - - - 

H24 - 7.11 7.01 - -  - - - 

H32 - 7.50 7.42 - -  - - - 

H35 10,81 6.87 6.92 - -  - - - 

H31 10.65 6.03 5.86 - -  - - - 

H26 3.70 3.62 3.46 - -  - - - 

H27 3.62 3.28 3.04 - -  - - - 

H28 3.30 3.25 3.00 - -  - - - 

*without H31 and H35 for H2MICP, a: in [14] 
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Table 8 Experimental and theoretical vibrational assignments of H2MICP 

carried out with B3LYP method and 6-31G(d,p), 6-311G(d,p), 6-311++G(d,p), 

and 6-311++G(2d,2p) basis sets. 

1
Intensity,

 2
combination 

 

Exp. 6-31G(d,p) 6-311G(d,p) 6-311++G 

(d,p) 

6-311++G 

(2d,2p) 

Assignments 

 Freq. Int.1 Freq. Int. Freq. Int. Freq. Int.  

3284 3663 75 3644 75 3642 78 3648 77 (N7H)indole 

3254 3513 100 3500 108 3504 104 3517 98 (N21H)thio 

3230 3426 104 3422 98 3421 96 3431 100 (N22H)thio 

- 3252 16 3236 14 3232 16 3238 18 (C15-H)ringC, (C9H)ringC 

- 3200 12 3182 12 3181 10 3187 10 (C6-H)ringA, (C5H)ringA 

- 3178 10 3162 9 3161 9 3168 8 (C1-H)ringC, (C3H)ringC 

- 3153 22 3136 21 3137 19 3142 17 (CH3)met 

- 3078 41 3058 42 3062 37 3071 33 (CH3)met 

- 3016 69 3000 68 3004 69 3015 64 (CH3)met 

1697 1789 252 1773 284 1758 325 1747 307 (C-O), δ(N22H) 

1621 1690 8 1678 10 1674 9 1671 8 (CC)ringA com.
2
, δ(N7H), 

δ(OCH3)met, (N20C23) 

- 1654 9 1640 4 1636 4 - - (CC)ringC com., δ(N14H), 

(N20C23) 
1595 1649 98 1636 112 1633 99 1636 14 (CC)ringA com., δ(N8H), 

(OCH3)met, (N20C23) 

1573 1644 133 1635 199 1633 174 1632 188 (CC)ringC com., δ(N21H) 

1541 1641 232 1626 196 1620 218 1630 65 (CC)com., δ(N7H), 

(N20C23), δ(N22H) 
- - - - - - - 1610 213 (CC)ringA com., δ(N7H), (N20C23) 

1487 1590 771 1582 675 1578 680 1577 634 (CC)ringC com., δ(N21H), 

(N21C18) 

1481 1536 154 1527 186 1524 172 1529 178 (CC)ringC com., δ(N21H), 

δ(N22H) 

1430 1532 97 1521 218 1518 213 1517 38 (CC)ringC com., δ(N21H), δ(N22H) 

1397 1527 240 1518 166 1514 157 1516 221 (CC)ringA, δ(N22H), 

s-cis-methoxy, (C18S8) 

1383 1516 270 1504 215 1502 246 1508 304 (CC)ringA ,δ(N22H), 

s-cis-methoxy 
- 1505 6 1493 8 1493 10 1500 9 s-cis-methoxy 

1308 1500 31 1489 30 1487 31 1488 30 -isatin, δ(N22H), s-cis (CH3)met 

1293 1485 91 1475 77 1472 63 1476 67 (CC)ringA com., s-cis-methoxy 
- 1446 13 1437 7 1433 6 1436 7 (CC)ringC com., 

δ(N21H),  δ(N22H) 

1273 1436 32 1427 34 1424 32 1420 35 (CC)ringC com., δ(N7H) 

1240 1405 323 1394 383 1391 385 1388 414 δ(N21C18), (N22C18N21) 
- - - 1339 7 1338 8 1341 10 (CC)ringC com. 

1195 1339 176 1327 164 1325 148 1327 151 (CC)ringC com., 

δ(N7H), s-cis-OCH3 
- 1330 3 1324 5 1322 8 1320 28 (CC)ringC com. 

1155 1324 83 1311 61 1309 57 1310 35 Δ-isatin 

1112 1306 77 1293 73 1290 78 1289 65 -isatin, δ(N22H), s-cis-OCH3 
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4.3 IR Studies 

Experimental and theoretical vibrational assignments of H2MICP were carried 

out with the aid of B3LYP method and 6-31G(d,p), 6-311G(d,p), 6-

311++G(d,p), and 6-311++G(2d,2p) basis sets as shown in Table 8. For studied 

basis sets, correlation coefficients were found as 0.971, and 0.969. Absorption 

bands at 3650, 3294 and 3192 cm
−1

 were identified. B3LYP results showed that 

the vibrational modes of (N7H)indole, ν(N22H)thio, and (N21H)thio, are as follow: 

3663, 3513, and 3426 cm
−1

 for 6-31G(d,p); 3644, 3500, and 3422 cm
−1

 for 6-

311G(d,p); 3642, 3504, and 3421 cm
−1

 for 6-311++G(d,p); 3648, 3517, and 

3431 cm
−1

 for 6-311++G(2d,2p). The band at 3294 cm
-1

 belonging to (N22H) 

disappears in its zinc(II) and nickel(II)-complexes. The other two bands nearly 

remained unchanged in both zinc(II) and nickel(II)-complexes. According to 

theoretical result, the absorption between 3252 and 2936 cm
−1

 can be assigned 

to the vibrational modes of ν(C-H)ringC, ν(C-H)ringA, ν(CH3)met. In the infrared 

spectrum of C=O for H2MICP, we observe the band at 1697 cm
−1

. By means of 

the DFT procedure with B3LYP/6-31G(d,p) (1789 cm
-1

), B3LYP/6-311G(d,p) 

(1773 cm
-1

), B3LYP/6-311++G(d,p) (1758 cm
-1

), and B3LYP/6-31G(2d,2p) 

(1747 cm
-1

) basis sets, we can assign the band experimentally observed at 1697 

cm
−1

 (IR) is the ν(C= O) vibrational mode. The band observed at 1697 cm
-1

 for 

H2MICP appeared at 1694 cm
-1

 for its zinc(II)-complex, indicating that the C=O 

group is not involved in coordination and at 1670 cm
-1

 for its nickel(II)-

complexes indicating that C=O group is involved in coordination. The 

absorption at about 850 cm
-1

 for H2MICP is assignable to the vibrational modes 

involving the C=S group. This absorption is assigned at about 820 cm
-1

 for its 

Zn(II)-complex and 818 cm
-1

 for its Ni(II)-complex due to transfer of charge 

from sulfur atom to the metal. 

5 Conclusions 

New Zn(II) and Ni(II)-complexes of H2MICP heve been synthesized, and its 

theoretical study has also been conducted. For the HOMO, it was found that the 

main contributions due to the thiosemicarbazone group and isatin group. 

Vibrational study using B3LYP calculations showed that the disappearance of 

the (N22H) band of H2MICP ligand indicates the deprotonation of the group in 

coordination. Anaysis of experimental and theoretical UV, IR and NMR data of 

H2MICP ligand and its Zn(II) and Ni(II)-complexes showed that theoretical 

calculations are in line to supporting the experimental results. 
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