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LIMITING BEHAVIOR OF A SEQUENCE OF DENSITY RATIOS
Sunardi Wirjosudirdjo
Department of Mathematics

ICHTISAR

Misalkan Xy, X,, . ... ialah borisan variabel random dan P = { Py € @} Sfamili distri-
busi dari barisan tersebut. A,, adalah lapangan G terketjil terhadap mana X5, ...., Xp
terukur. Djika 8, dan 0, dari O, kita tentukan Ry (0,, Q,) sebagai rasio fungsi kepadatan dari
Py, dan Py, pada A,.

Maksud dari karangan ini menjelidiki sifat? limit dari barisan { Ra } terhadap setiap
Pq. Hal ini mempunjai aplikasi dalam sequential analysis, dimana kita ingin mengetahui
apakah sequential probability ratio test berhienti dengan berkemungkinan satu. Djika barisan
Ry, konvergen ke O (atau lim inf Rp = 0) atau konvergen ke = (atau lim sup Ry = &)
hampir tentu (h.t) revhadap Py, maka wnuk O ini setiap sequential probability ratio test
berhenti dengan  kemungkinan sat. Konklusi jang samia dapat diambil untuk generalized
sequential probability rctio test dengan batas pemberhentiannja jarg bergantung dari n.

Djika X; saling bebas dan mempunjai distribusi jang identik, maka in R, dapar dituliskan
n
der:gan 2 Y: dimana barisan variabel random Y: saling bebas dan berdistribusi identik.
1=
7
Sehingga X Y; konvergen h.t. ke o atau ke
i=1
< 0. Untuk G = 0, dimana Eo, {Yi } =0 kiia dopet lim inf Ry = 0 dan lim sup Ry =

o terganzung devi En {Y: } > 0 atau

co At Poo .

Pada barisan dari variabel random { Xn } jarg tidak saling bebas maupun tidak ber-
distribusi identik, seringkaii 1imbul daium tes hipotesa komposit dengan adanja parameter
whuisance” . Sebagai tjourol adalali sequential t — rest atau jang djuga disebut WAGR test.
Dalam hal mara kesimpulan kwalitatip sama dengan helvja dalam X; jang saling bebas dan
berdistribusi identik.

Tjontoh jang terachir ini memberikan saran untuk problem jang lebih umum sbb.: Dengan
Assumptions A dan B kita dapar menghasilkan skb.: Djika 6, < O, maka R, konvergen h.t.
ke 0 djika O < 0, dan ke v diiica G 2 0, Untade O anzara Oy dan €, ketjuali barangkali un-
tuk satu Qo , maka lim inf adalah 0 atau lim sup adalah < h.t. Sehingga sequential probabi-
lity ratio test berhenii dengan berkemungkinan satu ketjuali barangkali untuk satu havga
0. Apakah betul ada § untuk mana Ry mempunjai lim inf positip dan lim sup jang terhingga,
belumlah ada tjontoh jang dapat dipertundivklkan.

ABSTRACT

Let X, Xy oovnn. be a sequence of random variables and ® = { Py, 0 € O} be a
familiy of distributions of the sequence. For each n, A, s the G-field generated by X, .. .,
X If 04, 0, € @, we define Ry (0, 0,) as the density ratio of Py, and Py, on B
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The main purpose of the paper is to investigate the limiting behavior of the sequence Ry
with respect to any Pgo. This has applications in sequential analysis, where it is desired to know
whether a sequential probability ratio test terminates with probability one. If the sequence Ry
conve:zes 10 0 (or the lim inf is 0) or convergesto on (or the lim sup is o) a.e. with respect
10 Py, then for this §) any sequential probability ratio test terminates with probability one.
The satne conclusion can be drawn in the case of a generalized sequential probability ratio test,
under sone restrictions as to how the stopping bounds vary with n.

If the X; are independent and identically distributed, then we can write In Ry as
n n

> Y; where the Yi are independent and identically distributed. We have then that z
i=1 i=1
Y; converges to oo or to — <~ a.e. according as E6 Yiy > O or < O. For any 9, say O,

Sor which Eg, { Y,} = 0 we have liminf Ry = 0 and lim sup Rn = w» a.e. Py, |

A sequence of non-independent nor identically distributed random variables{ Xi }may
arise in tests of composiie hypothieses in the presence of nuisance parameters. An example
of the situation is the sequential t-test, by some authors called the WAGR test. In this example
we have the same qualitative result as if the X; are independent and identically distributed.

The foregoing example suggested the more general problem with the Assumptions A and
B (see Chapters 2 and 3). The result can be described as follows: If 0, < 0, then Ry conver-
ges ae. 10 0 if0 = 0, and to s if 0 > 8,. For O berween 6, and 0,, except perhaps for
one Gy, then lim inf is 0 or lim sup is o> a.e. So that a sequential probability ratio test ter-
minates with probability one, except perhaps for one value of 0. There is no example
known to show that there may exist a O, for which the sequence of density ratios has a
positive lim inf and a finite lim sup.

1. DEFINITIONS AND PRELIMINARY RESULTS.

Let (Q, A, P) be a probability space, where () is a space of points w,
A is a o-field of subsets of (3, and P is a family of probability measures on A
indexed by 0, which is a member of an indexed set © : P={P;, 0 € 0}. © will
sometimes be called a parameter. If a statement holds except possibly on a
set of P, measure 0, we shall follow the statement by : a.e. Pg. If A, is a sub
o-field of A we shall write A, € A and, for short, call A, a subfield of
A. If A, C A and u some probability measure on A, that dominates P,,
for some 6 € O, we define the density of Py on A  with respect to u, written

A

Dy ‘o, as a non-negative A — u — integrable function such that for any
set AE€A,

(1.1) P, (A) = /pDAO du

A

Note that if u is a probability measure on A dominating P, on A, it is also
a probability measure on A, dominating Py on A,. The converse is not true,
i.e. a probability measure on u on A may dominate P, on A without domi-
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nating it on A. If A, C A and fis an A — P, —integrable function,
shall denote the conditional expectation of f given A, with respect to P,
by E, {f| A,}. Sometimes the conditional expectation will be taken with
respect to some probability measure u that is not necessarily a member
of P, and will then be written E, {f | A}

Definition 1.1: Let {B,, n > 1} be a nondecreasing sequence of subfields
of A, and let {f,, n>1} be a sequence of functions on Q such that for
some 9 € O and every n, f, is B, — P, — integrable. The stochastic process
{f» B,, n>=1} will be called:

(1)  a martingale with respect to Py if for every n,

E, {fn+1an} =/, ae. P,
(iiy- an upper martingale with respect to P, if for every n,
Ey{f,,1]|B,} =/, a.e. P,
(ii)) a lower martingale with respect to Py if for every n,
EB {-fn+l‘Bn} <f;; a.c. PB
Let X, X,, .... be a sequence of random variables on Q. Denote by

A, the subfield generated by X;, ...., X,, n=1, 2, .... written A, =

B (X, ...., X,), and A_ as the smallest subfield of A containing A
n=1,2, ...... ’

Let A, C A*C A and let u be a probability measure on A that
dominates P, on A, then we have the following relation:

n ?

N .
(1.2) pOA" =E, ; peA |Ao; ae. u
Indeed, if A € A, and therefore A € A*, we have
~ ~ *
(1.3) /pQA" du = / pnA du
4 a

because both sides are equal to Py(A). By taking in particular A* = A
we have:

A A
(1.4) p e =E,

u' a

| A, : ae. u

. . A, .
Consider the stochastic process : pOA", A,nz=t : where p .~ " is the

density of P, on A, with respect to w. By (1.2) it is a martingale and

. - A
Pe Ao is its last element. Since for every n, E, % py " )< =1 and E,
} peA‘” - 1, by a well known martingale convergence theorem [21,

! |

A

=p, 7 ae u

Chap. VH, we have lim __ . p "
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Let 6;, 8, € ®. There is always a probability measure u that dominates
both Py and Py, on A, and therefore on A, for every #, including n = ¢».

For instance, we can take 1 = } (P, + Pg,). For any choice of u, let pelA"
be the density of Py on A, i = 1, 2. The ratio

(1.5) R, (6 09 = 5, Pripe P 1 <n< on

will be called the density ratio of Py, and Py on A, It is defined only up to
a set of Py, and Py measure 0. We shall sometimes suppress the depen-
dence of R, on 6, and 0,. It is easy to see that R, does not depend on the
particular choice of u. We may even let # depends on .

Lemma 1.1 : Ler A, € A and u be a probability measure on A. Let f be
a non-negative A — u — integrable function and define f, =E, {f l A
Then {f> 0} C {f, >0} ae. u

Proof: Let N, = {f, = 0}. Since f, is defined as an a.e. u A, — measu-
rable function, there is N * € A  such that u {N, A N *} = 0, where A
denotes the symmetric difference, ie. Ny A N* = (N,—N* N (N* — N ).
Let I, denote the indicator of aset A € £, i.e. it is a function which has a
value 1 on 4 and 0 otherwise. We compute:

EASIn| A} = ELfIn* | A} ae. u

= f Ixn* ae. u
=1 In, a.e. u
== () a.e. u

Since fix, > 0 we must have f/x, -= 0 a.e. u, which means that except for
a set of u-—measure zero f, (w) =0 implies flw) =0 or {f,=0} C
{f=0} ae u

Theorem 1.1: Let 6, and 8, be in ©, and let u be a probability measure on
A that dominates Py and Py, on A . The stochastic process {R, (6,,0,),
A.n>=1lis
(i) a lower martingale with respect to Py .
If, for every n, Py, is absolutely continuous with respect to Py on A, then itis
(ii) @ martingale with respect to Py,.
(ii1) an upper martingale with respect to P,
Furthermore, lim, 5., R, (6,,0) = R ” (0,,9,) ae. Py, and a.e. Py,
Proof: To show (i), let A € A,_, and denote B, = A N % PelA" >0 : .
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A
By Lemma 1.1 wehaveép8 ">0;C3pe'"1>0; a.e. u, so that B, C

B, _, ae. u. Since P, , (B) = fR (61,0,) dPy, and Py, (B, _ ) ==

) ==
J’R"~ 1 (01,0,) dPy we have f R (64,9, dPgy, jRn_l (6,,9,) dPy

Wthh means: E, {R, (61,92) l A, _ 3 <R, _,(6,0) ae. Py
To show (ii), if Py, is absolutely continuous with respect to Py on A,
we have: fR (01,80 dPy = Py, (A) = f Ry 1 (8,8) dPy if AcA

7 —1
so that Ey {R, (0,9 | A, _,} =R, _, (9,9, a.e. Py

To show (iit), apply Jensen’s inequality applied to the convex function 1 /x
for x > 0, we have

Eez{Rn (61762) I An -— 1} 2 1/E92 {Rn (62’61) l An —_ 1} a.e. P62
= 1/R, __;(0,,0)) ae. Py,
=R, 18,6y

To show the assertion about the limit, let M = gPelAm >0 ! ,
: . A, A
lim,» R, (0,0, = lim, , Po, Talpg, " ae. Py
. A, A
=lim, , Py, "lim, o Toilpg, " ae. Py
A A
=Py, © Lyl ae. Py
= R_, (9,,6,) ae. Py

We have then also lim, 5 R, (0,,6,) = R, (65,0) a.e. Py . By inter-
changing 6, and 6, we have the limit with respect to Py, .

Definition 1.1: Two probability measures Py, and Py, are called orthogonal
on A, if there is a set A € A such that Py, (4) = 1 and Py, (4) = 0.

The following theorem is an immediate consequence of Theorem 1.1,
since R (0,,0,) =0 ae. Pg, if and only if Py, and Py, are orthogonal
on A

Theorem 1.2 : The following three conditions are equivalent:
() Py, and Py, are orthogonal on A
(i) lim, s R, (0,0, =0 ae. Py,

iy limn R (0,8,) = o» ae. Py,
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In other words, the convergence R,—>0 a.e. Py and R,—>wae. Py
happens if and only if the measures Py and P, are orthogonal on A . We
would like to find conditions under which R,— 0 or R,—>co a.e. P, for 0
not necessarily equal to 0, or 6,, and for any choice of 6,, 6,. We see then
that these conditions should at least imply that any two members of P are
orthogonal on A__.

2. MONOTONICITY PROPERTIES IN A MONOTONE LIKELIHOOD
RATIO FAMILY

Let P={P,, 6 €0} with © an ordered set with ordering” < . If A, C

A, the notation peA" was introduced in Chapter 1, meaning the density
of P, on A, with respect to some probability measure « that dominates P,
on A, In the following, the measure u will usually not be mentioned ex-
plicitly. If A, is a subfield generated by a random variable X, we shall
denote the density of Py on A, by p;.

The density ratio R,(0,0,), introduced in Chapter 1, is A, —measurable,

where A, = B(X], ...., .X). Therefore, there exists a Baire function ¢ *
mapping Euclidean n-space E” into the real line R, where r * satisfies
2.1 rXXL - X000y = R (6,0,

If fis a real valued function on £”, we shall call it a nondecreasing fune-
tion if it is nondecreasing in each argument separately. We shall call f on E*
nonincreasing if —f is nondecreasing.

The following definitions are taken from [6} and [3]:

Definition 2.1: A dominated family P is called a monctone likelihood
ratio (MLR) family on A, if for every 0, <2 0, there exist versions of the
densities such that r*(xy, . ..., X,:9.8,) is a nondecreasing function of
Xiy «ovos X

nt

Defirnition 2.2: Let A, C A* C A. The subficld A, of A* is called
sufficient jor the fumily P on AX*, if for any bounded A¥-measurabie function
1 E, { f le} can be chosen free of U. A random variable X is a sufficient
statistic for P on A* if X is A*-measurable and the o-field generated by X
is a sufficient o-field for P on A*.

Definition 2.3: The family of probability measures P is homogenecus
on A, if for every 8 and 07 in 0 P, is absolutely continous with respect 1o
P on A,

[t
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If P is homogeneous and a statement holds a.e. with respect to Pg, for
some O, €O, then it holds a.e. with respect to P, for all 6 € ®@. We shall
then write "a.e. P”.

Since the family P will remain fixed, for simplicity we shall say that X
is sufficient on A* rather than X is sufficient for P on A¥*.

From a well known factorization theorem [3], if A, is sufficient on A*

*
and a o-finite measure # dominates P on A*, the density peA of P, with
respect to ¥ can be factorized as follows:

A* A, A*
(2-2),‘ Dy =&y
A ] *
where, for every 6 € 0, g, ° is an A -measurable function and A is an

A*-measurable function that does not involve 6.

Lemma 2.1: If, for some n, X, is sufficient on A, and Py, is absolutely con-
tinous with respect to Py on A, then

An ! Aﬂ X" X”
(2.3) Py, i Pyy = Pey / Poy a.e. Pel

Proof: Let Ax,, be the subfield generated by X,. Applying (2.2) with

A*=A, A =A, , we find that ps "/ pell\ " is A, -measurable. Fur-
thermore, for any 4 € A, :

A, A, X, X,
/ De, /pBI )({P%: /(pez i Poy )dP91’
i i
the common value being Py, (4). Thus (2.3) follows.

Remark. By redefining the various densities on a set of P, measure
0, if necessary, we can make the two sides of (2.3) equal everywhere. We
shall assume throughout that this has been done. Furthermore, since the
right hand side of (2.3) is Axn-measurable, there is a Baire function r (. ; 0,,0,)
mapping R— R, such that .

“(n Xn

24) Po," 1 Po," = r{X, 5 00,0y
With the notation (2.4) we can express (2.3) as
2.5) R(04,9,) =r (X, ;0 ( )s)

Suppose X is a random variable and P a probability measure on A. If f
and g are Baire functions of a real variable, either both nondecreasing or both
nonincreasing such that f(X) and g(X) are P-integrable, then:
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(2.6) Ep{f(X)g(X)} = Ep{fIX)} Ep{g(X)}

To show (2.6), let X; and X, be random variables defined on a proba-
bility space (', A’, P'), such that X, and X, are independent and have the
same distribution as X. By the monotonicity assumptions on f and g we have

{ /(XD — (X} {g(Xy)) —8(Xp)} =2 0
Taking on both sides the expectation with respect to P’ we obtain
2.7) Ep{fiX) &(XD} + Ep{f(Xy) g(Xy)} = Ep{fX1) g(Xy)} +
Ep{f(Xy) g(XD}
Since each term on the left hand side is equal to Ep { f(X) g(X)} and each

term on the right hand side is equal to Ep {f(X)} Ep {g(X)}, after dividing
both sides of (2.7) by 2 we have (2.6).

Inequality (2.6) can be generalized as follows

Lemma 2.2: Let X be a random variable on A, P a probability measure
on A, and let A, C A.

() If fand g are Baire functions of a real variable, either both nondecreasing
or both nonincreasing, such that f(X) and g(X) are P-integrable, then:

28) Ep{fiX)e(X)| A} = Ep{fAX)| A} Ep{a(X)|A,} ae. P
(i) If, on the other hand, f and g are monotonic in opposite directions, then:
29 EXDX|A)<E{X)|A}E{aX) A} ae P
Proof: We only need to prove (i), since (ii) follows by applying (i) to -f
and g. In the following the sets B are understood to be Borel subsets of the

real line. Let p(B,w) be a conditional probability distribution of X in the wide
sense, relative to A, (see {2], p.29), i.e.

(a) for each linear Borel set B, p(B,.) is a version of P(X ! (B) | A);

(b) foreachw €Q, p(.,w) is a probability measure on the o-field of linear
Borel sets.

The existence of such a conditional distribution in the wide sense was shown
by Doob [2], Chap. I, sect. 9, and also that for any real valued function 4
such that A(X) is integrable we have

(2.10) Ep (h(X) | A} = Th(x) p(dx, . ) ac. P

Now apply (2.10) to h = fg, h = f and h == g, successively, then use (2.6)
with P replaced by p(. . , w) for every fixed w. This leads immediately to (2.8).

Corollary 2.1: Under the same conditions as in Lemma 2.2 (i),
211) Ep{f(X)g(X) 14} P{4} > Ep{f(X) I;} Ep{g(X) L} for any A € A
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Proof: (2.11) follows from (2.8) by taking A, = {Q, 4, 4%, &} where
A° is the complement of 4. We can also derive (2.11) from (2.6) immediately
by applying (2.6) to the space 4 with probability measure P/P(4).

In order to avoid repetition we make the following assumption:

Assumption A:
(i)  For every finite n, P is a MLR family and homogeneous on A,
(ii) For every finite n, X, is sufficient on A,

Lemma 2.3: Let Assumption A be satisfied, let A, © A, for some n, and
let ©', 6" € ®, with O’ < 0". If f is a nondecreasing function of a real variable
such that f(X,) is integrable with respect to Py’ and Py, then:

(2.12) Ey (X)) | A} < Eg (XD | A} ae. P
Proof: We shall need the following equation:
N Ao Aa
(2.13) Eg {R0,0)| A} = py° | Py ae. Py

This was shown in Theorem 1.1 (ii) for the case A, = A, _ . The proof of
(2.13) goes in exactly the same way, and will not be repeated here.

Now let 4 € A, and, for short write f instead of f(X,). From (2.5):

R (0,0")y =r (X,; 0',0”) ae. Py. Using Lemma 2.2 (i) and (2.13), and
noting that r, is nondecreasing, we have:

’ rr AO AO

EO’ {fRn(ﬁ ’6 ) | Ao} 2 EH‘ {f‘ Ao} (pt)" /pB' ) ae. PO'
Since JEy {/| A} dPy. = [fdPy. = [fR(0,0") dPg

4 a 4

A A A

and [Eg {f{A,)} dPy = [ Eg {[IA} (pg-° | P ) dPy.,

4 A
we have [ Eg {f|A,} dPy. = [ E, {f| A} dPy. for every 4 €A,

i B
or:
(2.14) E,. {fIA) = E, (| A} ae. Py,

Since P is homogeneous on A, (2.14) is true a.e. P. This concludes the
proof of Lemma 2.3.

The following theorem follows from Theorem 1.1 and Lemma 2.3 by
taking f{x) = r (x; 0,,0,) and A, = A, _ .

Theerem 2.1: Let Assumption A be satisfied. If 9,8, € O with 6; < 6,,
then the stochastic process {R,(0.,9,), A,, n > 1} is:
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(i) a lower martingale with respect to P, for 6 < 6,
(i1)  a martingale with respect to Py,
(i) an upper martingale with respect to Py for 6 > 6,
The following two definitions are due to Lehmann [6]:

Definition 2.4: A4 set S € A, is called an increasing set if for any two
n-tuples of real numbers (ay,. ..., a,) and (by,. ..., b)) witha, < b,, k=1,. ., n,

n X, 'a)CS implies X, ')CS
k=1 k=1
Definition 2.5: A dominated family of probability measures P whose
index set © is ordered, is said to have the increasing property on A, if for every
increasing set S € A, : Py (S) < Py (S) whenever 6" < 0.

It is easy to see that Definition 2.5 is equivalent to: every nondecreasing
Baire function f on E" has the property E, {f(X;, ...., X))} <E,.
{fLXy, ..., X,)} whenever 0" < 0", provided the expectations exist.

It was shown [6]), if X, ...., X, are mutvally independent with respect
to every member of P and if P is a MLR family, then it has the increasing
property. There were examples in [6] that in general a MLR family does
not have the increasing property. We are going to show that under Assum-
ption A, the increasing property is true.

Lemma 2.4: Under Assumption A, P has the increasing property on A.

Proof : We know from Lemma 2.3 that P has the increasing property on
A,. Suppose the increasing property is true on A, _ ;, we are going to show
that it is true on A,. Let f, be a nondecreasing function of xi, . ..., x, such
that f(X;, ...., X)) is Py and Py -integrable. Remembering r(x,; 6',0")
is nondecreasing in x,, let a be a number such that r (a; 6°,0") > 1 and for
every x, << a:r/(x,; 0'6”) < 1. Since f,, is also nondecreasing in x,, we have:
Lo e x) {rx s 00 — 1} =1 (v, o, a) {r(x, 00,07) — 1)
Wed define f, _,(xy,. ..., x, 1) = f,(xs,. ..., X, 1, @). If is easy to see that
J— 1 is a nondecreasing function of x,,...., x,__;. So we have the following:

Ep {f( Xy, ..., X))} —Eg {f(Xy, ..., X))}

= Ey {f (X, ... XD (R, — D}

= Ly {fu— Xy oo X, ) (R(0,07) — D}

= Ep o dlXyy oo X, ) —Eg{f, (X, e, XD}
which is == 0 because we suppose P has the increasing property on A, _ ;.

~.
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Lemma 2.5: Let, for every finite n, P be homogeneous and having the
increasing property on A, Lt f be a non-negative and nondecreasing Baire
Junction on E” such that ¥ | = f(A,, ..., A, is P-integrable.

Then for any 8" < §"';

(2.15) Ey {lim inf Ey. {Iiminf 5, V)

n

Yoy <
(2.16) Ey {lim sup, .  V,} < E,. {lim SUp,»>., ¥,}

Proof: Define V, = inf V. For fixed k, we have

E5n=m

(217) EO' {Ykm} < EB” {}rkm}

which follows from the Increasing property hypothesis. By letting m— ¢
and using Lebesque’s monotone convergence theorem, we have:

(2.18) Ey {infy<, ¥,} < Eg{inf,<,V,}

Now let k— ¢ and use once more the Lebesque’s monotone convergence
theorem, we have (2.15). Note that the inequality (2.15) is always true, whe-
ther Eg. {lim inf,, ¥} is finite or infinite, because of the Lebesque'’s
monotone convergence theorem. For (2.16) the proof proceeds in the same

-t -

way, by counsidering Y, = SUPL< < Y

We are going to state two martingale convergence theorem from [2]
Chap. VII, Theorem, 4.1. (i) and 4.s. .

Statement 2.1: Let {f,, B, n>1} be a martingale. If lim,» . E{| f,|}
<w thenlim, .  f, exists with probability one and is finite.

Statement 2.2: Let {f, B s n =1} be an upper martingale. If su
Jn n ) /4 P n

E {l j;,l} <o, then lim, 5. f, exists with probability one and is finite.

In particular, if the £,/ s are non positive, the condition is always satisfied.

By considering —, from Statement 2.2, we have:

Statement 2.3: Ler {fi B, n> 1} be a lower martingale. If sup,
E{l]'} <, then lim, 5 _ f, exists with probability one and is finite.
In particular, if the f,'s are non negative, the condition is always satisfied.

Theorem 2.2: Ler Assumption A be satisfied and let G, < 6,. Then Jfor
every 0 << 0y 1 lim,5 R (0,,0,) exists a.e. Py and is finite. Furthermore:
EQ {Hmn‘>c1: Rn(61902)} */‘ EG]{Hmn"> 72 RU(OHGQ)}

Proof: By Theorem 2.1 the stochastic process {R(0,0,), A, n>=1)
is a martingale with respect to Pq,. Since lim,,  Ey { IR,I(Gl,Gg) ' b =1,
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by Statement 2.1 we have that lim . R, (0,,5,) exists a.e. Py and is finite.
With respect to Py, 0 < 0, the sequence is a lower martingale by Theorem
2.1. Applying Statement 2.3, it has limit a.e. P, and is finite. Finally, (2.5)
and Lemma 2.5 give the second conclusion of the theorem.

Theorem 2.3: Let Assumption A be satisfied, and let 0, << 0,, then the
Jfollowing three conditions are equivalent:

(iy Py, and Py, are orthogonal on A
(i) lim, >, R(0,8) =0 ae. Pq for

(iii) lim,— , R(0.,0,) = o ae. Py for

Proof: By Theorem 1.2, £y and P, are orthogonal if and only if
lim,5 , R,(0,,8)) =0 a.e. Py. Applying Theorem 2.2, the latter condition
is equivalent to lim, R, (6,,8,) =0 ae. Pyfor 6 <6, (iii)is equivalent
to (ii) by interchanging 6, and 0,.

So the orthogonality is a necessary and sufficient condition for the sequence
of density ratio going to 0 or to ¢» with respect to Py for 6 << 6; and 6 < 6,
respectively. However, with respect to P, for 0, << 06 < 0,, it is not known
whether in general the limit exists or whether at least the limit infimum is 0
or limit supremum is ¢», even though Assumption A and orthogonality of
Py, and Py, are satisfied.

3. LIMITING BEHAVIOR OF THE SEQUENCE OF DENSITY RATIOS
ON A SYMMETRIC SPACE

Let P’ be a family of probability measures on A, where P’ = {‘PS’ TAYS

/A an abstract set. Consider a sequence of random variables Z,, Z,, . ... such
that with respect to every member Py of P’, the Z, s are mutually independent

and identically distributed. For each n > 1, let there be given a Baire function
f,on E”, such that f,(z,, z,, . .. ., z,) is invariant under all permutation of z,,. .,
z,. Define X, = f(Z,,....,Z,), and suppose that the distribution of X,
depends on § only through a certain function of 3, say § = 6(3), where 6 lies
in an ordered set 0. The family of distributions of Xj,. ..., X, is denoted by
P = {P,, 0 € ®} as in the preceding chapters. For example, let the Z;’s be
normally distributed with mean £ and variance o2 If we let:

U

"

n

A, =0, X, 1L- Y (Z, L) =

n—1 i

5
~
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1 "

(the choisce f1(z) == 0 for all z is purely arbitrary), where U, = > X Z, we
i-1

have a family of noncentral s-distributions, with parameter 0 = £ /5. In our

example A could be considered as a set of pairs (€, 6) and O as the real line.

Note that in our example X, is sufficient on B (X, ...., X).

Let us make a new assumption which will be used in this chapter.

Assumption B:

W X,=Sf{Z,. ..., Z), where Z,, Z., . ... are independent and identically
distributed, and f, is a Baire function of n real variables that is invariant

n

under all permutations of these variables
(i) X, is sufficienton B (X, ...., X))

The reason we make the sufficiency assumption of X, twice, once in 4
and once in B, is that Assumption 4 and B are not always used-at the same
time. As usual we write A, == B(Y, ...., X)) etc.

In [4] Hewitt and Savage have shown that if Z;, Z,, . ... are independent
and identically distributed, and if f is a Baire function of the real variables
7y, Zay - ... that is invariant under every finite permutation of the z’s then
f(Zy, Z,,. .. .) is constant a.e. This theorem is sometimes called the Hewitt-
Savage 0—1 law, because it imuvlies that a set, invariant in the sense described
above, has probability O or 1.

Let us assume throughout the dicussion that corresponding to different
parameters, the probability measures are different.

Theorem 3.1: Let Assumption B be satisfied and let 9, 0" € ©) where
0" 528", Then
lim, . R(0,0") =0 a.c. Py
aird

lin,—», RMB,0) = ae Py

Proof: We need to show only the convergence with respect to P, , since
the convergence with respect to P follows then by interchanging 6" and 6.
The stochastic process {R,, A, n>1} is a lower martingale with respect
to Py, (Theorem 1.1). From Statement 2.3 the limit exists and is finite a.e.
P,. By sufficiency we have (2.5), and then it follows from the Hewitt and
Savage 0—1 law that the limit is a constant a.e. P, say ¢. Wehave 0 << ¢ < 1
which follows from Fatou’s lemma:

Ey flim,y R0 <lim 5 Eg {R(0,07) < 1
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Furthermore, we know from Theorem 1.1 that

lim, ., R(0',8") = R (6,6) ae P, , or
3.1 R, ®,07) = ¢ ae. P
We shall show now that 0 << ¢ <{ 1 leads to a contradiction. Suppose first
¢ =1, then (3.1) is the same as Py {R_, (6',0") =1 } =1, so that Py and
Py. agree on a set of Py measure 1, which is therefore also of Pg. mea-

sure 1. Hence Py = Py, but this is excluded since 6’ 4 0”. Suppose now
0 <e¢<1, then

(3.2) Py {R,, 0,0)=c}=1

Let u be the probability measure on A dominating Py, and Pg., with respect
to which the densities have been defined. Then

PB,,gpeA"’>0;\= fpeA,wdu= | oo du—c<1

ool el
which implies | | \

(3.3) P, ngAW >O,p$°”>0%= c>0
From (3.2) we have l

(3.4) P, §p£”>0,pﬁ<”>0§=l

On the other hand, by interchanging 6" and 0” we have R  (6”,6) = ¢" ae.
Py. where 0 < ¢’ < 1. Since we exclude Py = Pg. which is equivalent to
¢ =1, we must have ¢’ < 1. If ¢/ = 0 we have

(3.5) P, :pf‘w>o : =0
and if 0 < ¢’ << 1 we have
(3.6) P, :jp(e"’ >0,p9"’>0§.=c'<1

Since (3.5) contradicts (3.3) and (3.6) contradicts (3.4), 0 < ¢ << | is impos-
sible. The only remaining conclusion is ¢ = 0, as was to be proved.

Consider two fixed parameters 8, and 0, with 6, < 6,. Let | <a < w
and define:

B M= {o:lja<r (X );0,0) <a}
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(38) mya) = {x:1/la<<r(x;0,08,) < a}
(3.9)  Ba:h) = Py{M (a)}
(3.10) v (a; 0,07y =8 (a; 6"/ B (a; 0)

Note that M (a) is a subset of (3, whereas m,(a) is a subset of the real line.
One sees immediately from the definitions that M (a) is the inverse image
of m,(a) under the mapping X,. In the applications in this chapter, r, will be a
monotonic function of x, and consequently m,(a) will be an interval. In the
remainder of this chapter P will be assumed to be homogeneous on A, for
every finite n. If for some S € A, we write P(S) > 0, we mean this to be
true for some P € P, and therefore, by homogeneity, for aj] P € P. If S and

S’ are two sets, we shall often write P{S,S"} instead of P{S ) .S'}.

We shall frequently make use of the following two statements: If P is
liomogeneous on A, if S € A, with P(S) > 0, then for any 0,6, € O:

n

(3.11) P {S, R(8,0)) = Py (S)/Py(S)} >0
and
(3.12) P S, R(0,0,) <Py (S)/Py(S)} >0
For suppose (3.11) to be false, then
SC {R0,0) < Py (S)Pg (S)} ae P

which implies
Py (S) = g R (0,0)) dP, <SfP01 (S)Py(S)dPy = Py (S), leading to a con-

tradiction. The proof (3.12) is analogous.

Lemma 3.1: Ler 0, << 0,0' << 8, and let Assumption A be satisfied. If
1 <Ca < co and for some n, B,(a; ) > 0, then

1
(M) x €mya) =>—v,(a;0,0) <rlx; 0,0, <av,a;9,0)

1
(i) x €mfa) => - vila; 8,8 < r(x; 0,80 < @y, (a;6,0)

Proof: To show (i), take § = M (a) in (3.11) and (3.12). We get
(3.13) P {M(a), R(0,0) = v,(a;0,0)} >0
(3.14) P {M(a), R(0,0)) <v,(a;0,0)} >0
From (3.13) and (3.14) it fellows that there are real numbers x, and x, both
in m (@}, such that
(3.15) rx; 0,0) = v (a:8,0) , x, €ma),
(3.16) 1 (x5 6,0y < ~ (a; 0,9, , X, €m,fa),
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Now 0 > 6; so that r (x; 6,0,) is a nonincreasing function of x, or r (x; 6,0,)

= r(x; 0,0) if x < x,. From (3.15) it follows then that
(317 r(x; 0,00 = v, (a; 6,0) if x < x,

n

Now suppose x € m,(a) so that r,(x; 9,,6,) == 1/a. We have then

1
r(x; 0,05) = r (x; 04,0,) r (x;0,0) > 2 r(x; 0,8, . Using (3.17) we get

1
(3.18) rx;0,0,) = " v (a; 0,6 if x €m, (a)

provided x < x,. However, it also holds for x > x/, because r,(x; 0,0,) is

n

a nondecreasing function of x since 8 < 0,. Since r (x; 0,0,) is a nonincreasing
function of x,r(x;6,0) < r(x;0,0,) if x > x. From (3.16) it follows that

(3.19) r(x; 6,00 < v,(a; 0,6,) ifx>=x

Supposing x € m,(a) so that r (x; 0.,0,) <{a, we have

rx; 0,00) = r(x; 00,0y) r(x50,0) < ar(x;0,0)

Using (3.19) we get

(3.20) r, (\ 0,8,) << av,(a; 0,0 if x €m,(a)

provided that x > x,. Since r (x; 6,6,) is nondecreasing in x, it also holds
for x << x,. From (3. 18) and (3. 20) we have (i). To show (ii) we apply (i) to
6 and 0’; we have

1
(3.21) x €mya) = " vla; 0,6)) < r(x; 0,0,) <ay(a;6,0)
and
1
(322) x€m(a)=> — % L (@5 0,00 < r(x; 0,00 < avy, (a; 0,0)

Remembering r (x; 0,0,) r(x; 6,,0") = r (x; 6,0) and
v la; 0,0) v, (a; 0,00 = v (a; 0,07, (3.21) and (3.22) give (i1).

in i

Lemma 3.2: Let Assumption A be satisfied and let 1 < a < co. If there is
an integer N such that for all finite n withn > N, p (a; ;) << 0 and if 0, < 0 <0,

s iy

then the following two conditions are equivalent:
() lim inf, 5  5.(a;0) >0
(ii) there is a finite number d such that for all n > N,

1
x €myfa) =, — 1 B (a; 0) < r(x;9,0,) < dB(a;0y)

Proof: We shall first show (i) implies (ii). From (3.10) we have 8 (a; 6;)
< v la; 0,0,); then applymg Lemma 3.1 (i)

(3.23) x €ma) —» ; B.(a; 8 < r(x; 6,0,
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Since for all n > N, B,(a; 6) > 6, and since lim inf,_,, B,(a; 6) > O there
is a number ¢ >0 with inf, > y 8,(a; 0) = ¢ > 0. As a result, we have by

1
(3.10), v, (a;6,0) < = 8, (a; 0,) . Using Lemma 3.1 (i) we have:

(24 xEma) = 1 6,8) <= £,(a; 6)

Taking d == a/c, (3.23) and (3.24) give condition (ii) of the lemma. To show
(i1) implies (1), let d satisfy:

1 i
(325) X e ’nn<a) =T —(—1— Bn(a; Ol) < rn(x; U962) < d Bn (a’ 61)

for all n = N. Now R,(6,9,) = R,(0,6)) R (0,,0,) and remembering the defi-
nition (3.7) of M (a) we derive from (3.13):

(3.26) PIM (@), R (6,0,) > - v (a; 0,0} >0

so that there exists a number x, € m“(a) such that

1 .
(327) ’ (X", ’ 9) =z (n(a 0 ’ xnemn(a)

Combining (3.25) and (3.27) we have
1
= v,(a; 0,0) < r(x);0,0,) < dB(a;6)

for all n 2> N, s0 that
vala; 8,6)) < ad B(a; 9y) forall n =z N

Dividing both sides by £,(a; ) and using (3.10) gives the desired result p (a; 0)
= Yad for all n = N.

Suppose we have lim sup, _ 8.(a; 0) > 0, then there is a subsequence
such that lim, ., B"k(a; 0) > 0, so we have the following corollary which

tfollows immediately from Lemma 3.2

Corollary 3.1: Let Assumption A be satisfied and let 1 << a < n ., If for
all n 2 N, B(a; ) >0 and if O, << 6 <0, then the following conditions are
equivalent.

() lim sup,»  B.(a;8) >0

(ii) there is a finite number d and a subsequence {n,} of positive integers such
that for all k

1
YEm,(a) = =8, (a1 ) < r, (x5 6,0, < dB,, (a5 6y)
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Theorem 3.2: Let Assumptions A and B be satisfied. If there is 0, 6; <
6, < f,,and a,> 1 with lim inf,_, _8.(a,0,) >0, then for every 8 #86,,
8, < 8 <0, and all a < w», we have: lim,» _ B,(a; U) = 0.

Proof: Let N be an integer such that for all n > N, 8 (a; 6;) > 0.

From Lemma 3.2, there is a finite number d such that

1
(3.28) x €m(a,) =" = B(a,; 0;) << r(x; 0,00 <dBfa,; ) forall n=N.
Since r(x;8,,0,) == r,(x; 6,05)r (x;:0,0)), (3.28) becomes:

1
3.29) x€mya)=, . Ba,: ) rx:0,8,) < r(x;6,6)

) < d ten(ao; 01) rn(x; 6’60)

Suppose for some § 70, and 0, < 0 < B,:
(3.30) lim sup,—» ., £.a,:0)>0.
On the other hand, from Lemma 3.1 (i) and remembering v (a ; 6,0)) =

8,(a,; 6)) we have:

Pn

! .
(3.31) x€myfa,) =, by Bala,; ) < r(x:0,0,)

From (3.29) and (3.31) we have:

1
(3.32) x€myfa)=> py B (a0 < rx; 0,05 < dBa, 8) rix;0,0)
so that

o1
(3.33) x€myfa,)=, 5 Byt < d 8 (a0 r(x;6,0)

i“n
o

and after dividing by 3,(a,: ;) on both sides we have:
(3.34) x€myfa)=> la,d<r(x:88)

which is equivalent to

(3.3%) . Ma) C {lla,d < R(5,0)}
so that by (3.30):
(3.36) lim sup,.» , Pilia, d <<r(x,:0,0)) 0

which contradicts Theorem 3.1 that states lim 5 R 0,0) - 0 ae. P
Therefore (3.30) is impossible, which means that for all 0 =0,

lim,»  £,a,: 0) = 0, which implies also

(3.37) lim,»  8,(a:0)=0 for a =  a,,
On the other hand lim inf, . _ £(a,; 0) >~ 0 implies

lim inf, £,{(a:6,)) >0 for all @ = a,. Thus we have (3.37) for all a < .
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Theorem 3.3: Ler assumptions A and B be satisfied.
() If there is 8,,0, <7 0, <C 8y, with lim sup, >, R (B,8)) =0 ae. P,
d<b< @, then:
m, 5, Rf(0,0) =0 ae Py if 00, and
lim sup,—»  R(0,0:) = «» ae Py if 6>0,.
(i) If there is 9©,,0, <7 0, < 0, withliminf _ R (0,,0,) =b ae. Py
0<b< w,then.
lim inf, 5 , R(68,8,) =0 ae Pgif 629, and
lim, 5 R(0.,8,) = oo ae Py if 0>0,.

Proof: We need to show only (i), since (ii) is obtained from (i) by inter-
changing 6; and 0,. By (2.5) we have R, (91,8 = r(X,; 0,,0,) and it follows
from the Hewitt and Savage 0—1 law that lim sup, , R,(6,,8,) is con-
stant a.e. with respect to any member of P. Suppose 0 < 0, applying
Lemma, 2.5 we have:

{im sup,— ., R(0,,0p)} < Eo,{ lim sup, 5 , R,(0,,6)}.

We have then. lim sup,— , R (0,,8,) = c, say, ae. Py, where ¢ < b.
Suppose ¢ > 0, we are going to show that it leads to a contradiction.

Choose a, > 1 with lja, < ¢ <b < a, Applying Lemma 3.1 (ii) with
8,8" replaced by §,, 8}, we have

|
(338)  Mfa) C{ 5 7.a,; 0,0 < R(0,0) < a2 v,(a,; 6,0}

for all finite n. Since by assumption l/a, < lim sup,, . R (6,8, < g,
a.e. P, we have

{3.39) Py {lim sup,» M (a)} = L
We know that lim,» , R,(0,,0) = oo a.e. P, so (3.38) and (3.39) give
(3.40) im sup, ., v.(a,; 0,,0) = »»

Choose any positive number d, and let {n,} be the subsequence of integers
such that
(3.41)

(@0, =2d>0

't

bnk

Note that by (3.40), this subsequence is not empty. Let {n_} be the set of

positive integers such that {n,} = {n,} = {n}. We have then

(3.42) Py{lim sup,» M, (a)} < P {lim sup,.» Mnk(ag)} -+ Pof{lim
SUP,, > o M"m(ao)}.

In view of (3.41) we havery, (a,; 8,,0) < d. Furthermore, lim R (6,5

= » ae. P, It follows, applying (3.38) to the subsequence {n,}, that

n> o

INSTITUT TEKNOLOG!{ BANDUNG



172 SUNARDI WIRJOSUDIRD]O

(3.43) Py {lim sup,» M, (a)} =0
Substitution of (3.39) and (3.43) into (3.42) yields
(3.44) Py {lim sup, , M, (a,)} =1

As a consequence we have
(3.45)  lja, <lim sup,_, R,,k(01,92) < a, ae. P,
for lim sup, ., Rny(0,,0;) is a constant a.e. Py according to the Hewitt and
Savage 0—1 law, and is bounded above by lim sup,.,  R,(6,,8,), which
establishes the right inequality of (3.45). If the left inequality were false, we
would have lim supk_,mRnk(Gl,f)z) < 1/a, ae. Py and the left hand side

of (3.44) would be 0 instead of 1.

On the other hand, using (3.41) and since lim .  R(0,,0) = 0 a.e. P%’
(3.38) gives
(3.46) Po {lim sup,» . M, (a)} =0
Applying Lemma 2.5 to the subsequence {n,} we have
(3.47) Eeo{]im SUP,> o Rnk(el,ﬁz)} = Eg {lim sup,—» R,,k(el,ez)}.
By the Hewitt and Savage 0—1 law lim sup,» Rnk(el,f)z) is a constant, say
b, ae. Py From (3.47) and (3.45) it follows then that b" = 1/a,. If 1/a, < b’
< a, the left hand side of (3.46) would be 1 instead of 0. Hence we have

lim sup,—» . R, (0,,8,) > a, ae. Py
which contradicts the fact that
lim supy—» Rnk(ﬁl,(?z) < lim sup,» o, R(U,8) < a, ae. Py

Thus we conclude ¢ = 0. This proves the first part of (i).

The second part of (i) is proved analogously, by putting
lim sup,.» , R(0,8,) = ¢, say, ae. Py, where b < ¢’. Supposing ¢ < v»
will lead to a contradiction.

Theorem 3.4: Under Assumptions A and B, we have lim inf, . _ 8,(a; 0)
= 0 foralla>1 and all 0, except perhaps for one parameter 9, where 6; <
8, << 6,

(i) In case there is a, > | and 8,8, < 8 <Yy, such that

(3.48) 0<liminf, 5 B4, 0) <1
we have
(3.49) lim inf, 5 o R(H.,8,) == 0 ae P, if <l
and
(3.50) lim sup, 5 . R (V) = & ae Pt =0,
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(ii) In case there is a,> 1 and 9, 0, < 0, < 0,, such that
(3.51) lim,_,  8,(a,;0,) =1
we have
lim, 5 R (0,0,) =0 ae Py, if 00,
and
lim, 5 o R,(0,,0) =00 ae P, if 6>0,.
Proof: The first statement of the theorem follows immediately from
Theorem 3.2. To Show (i), the left inequality in (3.48) implies
(3.52) lim inf, .  R(0.,6,) <a, ae. Py
because it is constant a.e. Peo- If the constant is 0, applying Lemma 2.5 we

get (3.49) and if the constant is > 0, we apply Theorem 3.3 (ii) to get (3.49).
The conclusion (3.50) is proved analogously by interchanging 6, and 6,. To
show (ii), note that (3.51) implies

la, <lim inf, 5  R(8;,8,) < lim sup,, R (6,,0) < a, ae. Py

Using Theorem 3.3 we have the desired result.
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