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THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

BY

MOEDOMO SOEDIGDOMARTO

ICHTISAR. Teori Rlasik dari transformasi Laplace-Stieltjes

f5) = [ e da (1)
0

%

telah diperluas oleh E. Hille [4] untuk fungsi® pada [0, w) kedalam ruang Banach
X jang mempunjai sifat bahwa untuk setiap bilangan positip R,

n
sup _ZIH «(t) — a(ry) H )
j=
dengan supermum jang diambil terhadap semua koleksi® hingga {[r;, t;1},_, dari
sub-interval® lepas dari [0, R). Setelah itu S. Zaidman [8] menjelidiki hal jang
serupa untuk fungsi® o jang bersifat bahwa kumpulan®-variasinja V ({0, R}, ) jaitu
koleksi semua elemen dari X jang berbentuk

n

E[at) —o(r)] demgan 0 <71y <<ty < ... <r, <t , <R
J=1

merupakan sub-kumpulan jang kompak di X.

Karangan ini membitjarakan kemungkinan untuk membangun teori transformasi
Laplace-Stieltjes untuk fungsi® jang sifat*nja lebih umum dari pada fungsi® jang
dipeladjari oleh Hille dan Zaidman. Ternjata bahwa banjak hukum? jang berlaku
untuk tranformasi fungsi dengan harga skalar berlaku djuga disini.

Perhitungan absis konvergensi o (o) dapat dikerdjakan serupa dengan perhi-
tungan untuk fungsi®* berharga skalar (lihat [6)), dan begitu pula hukum?® jang
berhubungan dengan analistas berlaku disini.

Suatu hal jang menarik ialah bahwa rumus inversi

o J 1 <0
. 1 9T f ()
lim _—_ s L0l 1 ) —
o Im7 /ae . sds_» | 32 (0+) t=0 '

(2e@E—0)+a(+0)] >0

dengan a > max [0,0, (o)), tidak berlaku tanpa sjarat tambahan jang harus dipenuhi
oleh fungsi «.
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MOoEDOMO SOEDIGDOMARTO 3

Demikian Hille telah membuktikan bahwa rumus nvers: diatas berlaku bila « mem-
punjai variast jang terbatas absolut pada setiap interval jang hingga, sedangkan
Zaidman mempergunakan sjarat tambahan bahwa variasi o pada setiap interval
hingga adalah kompak.

Ternjata bahwa kedua sjarat diatas dapat diperlunak mendjadi sjarat bahwa
variasi o pada setiap interval jang hingga harus kompak dalam topologi lemah dart
X. Lagi pula, rumus inversi gkan berlaku tarpa sjarat untuk «, asal ruang X ada-
lah lengkap-lemah, chususnja bila X refleksif. Hasil ini kami dasarkan atas hasil
karya Bartle, Dunford dan Schawrtz (11 '

1. Introduction. E Hille [4] has developed the theory of the Laplace-

Stieltjes transform
~00

(L1) F(s) = / e da (1)

L0
for functions « on [0, ) into a Banach space X and having the property
that for every positive R,

(1.2) sup '21“ a(t) —a(r) || < oo,
=
where the supremum is taken over all finite collections {[r;,#]}i =]
of disjoint sub-intervals of [0,R]. Recently, S. Zaidman [6] developed a
similar theory for the case where the function « satisfies the condition
that for each positive R, the collection of all elements of X which are of
the form

S{a()— ()]

with 0 <7, <t, <...<r, <t, <R, constitute a conditionally com-
pact subset of X.

This paper is concerned with giving an account of the possibility of
extending the theory of the Laplace-Stieltjes transform to include func-
tions « of more general types. In Section 2 we give a generalization of the
concept of a function of bounded variation. The variation of a function «,
defined on an interval [ to an arbitrary Banach space X, is defined as the
set V(I,a) consisting of all elements of X of the form

2 [a(t;) — a(r)]

j=1
where [r,,4]] (1 <j < n) are disjoint sub-intervals of I. A classification,
based on the properties of the set V(1,), gives rise to a number of different
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4 THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

classes of functions. Thus, we say that « is of bounded (respectively,
weakly compact, compact) variation on I if the set V{(/,a) is bounded
(respectively, conditionally weakly compact, conditionally compact) in X.
If there exists a constant M such that

é[(a(tj)_a(rj)n <M

for all finite collections of disjoint sub-intervals {[r,#]},; " ; of I, then we
say that « is of absolute finite variation on I.

The Riemann-Stieltjes integral over a bounded closed interval of a
continuous complex-valued function with respect to a vector-valued func-
tion of bounded variation is defined in exactly the same way as in the scalar
case. If o is a vector-valued function of bounded variation on [p,q], then,
the operator T, defined by

~q
Th = / h(t) du (),

v P

is a bounded operator from the space C[p,q] of all complex-valued
continuous functions on [p,q] into the Banach space X. Furthermore, the
operator defined by a function of (weakly) compact variation is (weakly)
completely continuous.

The continuity properties of vector-valued functions have been studied
by D. G. Kendall and J. E. Moyal [3], and also by D. E. Edwards [3].
In general, a vector-valued function of bounded variation does not behave
as nicely as a scalar-valued function of bounded variation. For example
there are vector-valued functions which are discontinuous everywhere.
A function of weakly compact variation however, can have at most a coun-
table number of discontinuities. Moreover, such a function takes its values
in a separable subspace of X and it can be normalized.

Zaidman has shown that a function of compact variation need not
be of absolute finite variation or vice versa [8]. However, a function of
absolute finite variation, if normalized, is necessarily of weakly compact
variation.

It is shown in Section 3, that the computation of the abscissa of con-
vergence o,(«) of the integral (1.1), where « is a function on[0, ) to X
which is of bounded variation on every bounded interval, is similar
to the scalar case (cf. [6]). The Laplace-Stieltjes transform of « is then
analytic in the half-plane Re(s) > o, (a).
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MoEDOMO SOEDIGDOMARTO 5

i The complex inversion formula does not hold, in general. Hille has
shown that if « is of absolute finite variation on every finite interval, then,
bfor ¢ > max[0,0, («)],

1.3) o (t < 0),

ra+iT !
im oL [Tl g 3004 =0,
e | st —0) + ot + O)] (¢ > 0).

pZaidman has proved that formula (1.3) also holds, provided « is of
compact variation on every finite interval. Theorem 3.5 states that the
complex inversion formula holds for ¢t > 0 if « is of weakly compact
P variation on some neighbourhood of ¢, thereby generalizing Zaidman's
‘result. The proof of this is based on the fact, proved in [1], that if C(S) is
2 compact Hausdorff space and C(S) demotes the Banach space of all
 complex-valued continuous functions on S, then any weakly completely
Feontinuous operator on (C(S) into another Banach space X maps weakly
+fundamental sequences into strongly convergent sequences. Furthermore,
f if the basic space is weakly complete, then the complex inversion
formula holds without any restriction on .

i 2. Preliminary notions. Let « be a function defined on a bounded
@ closed interval [p,q] to a complex Banach space X. We will say that « is of

¥ ({) bounded wvariation on [p,q] if the set V([p,q],«) consisting of all

& elements of X of the form

Z"] [a(t; ) — a(r; )], where p<r <t < .. <r,<t,<gq,

¥ s boéndéd in X,

Y (@) weakly compact wvariation on [p,q] if V{([p,q],») is conditionally

® weakly compact in X,

“ (i) compact wariation on [p,q] if V([p,q],2) is conditionally compact

¢ in X,

(iv) absolute finite variation on [p,q] if there exists a constant 3/ > 0
such that

£ |al) — =0 < M

ifp<n <y <. <, <1, <q

F~ For practical purposes we are going to modify the above definition
bMeplacing the set V{([p,q],x) by a larger set without changing its
boundedness or (weak) compactness. We need the following lemma.

TH. I No, 2 PROCEEDINGS 1961




6 THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

Lemma. 2.1, Let x; (1 <j < n) be elements of X and let K consist (2.1

of all elements of the form X x;, where 1 <j <mn andj, £j.if s #s' The
5= I

If e, (1 <j<mn) are complex numbers such that |g| <1, then Eex
]-1
belongs to the convex hull of the set E " K.

r=g '
com
Proof. Suppose first that 0 < ¢ <1 (1 <j < n). Without loss of
generality we may assume that 0 <, <e, < .... <¢,_;,<¢, <1 Rier
n n '
Then IZgax =g Zx+ Z(g, —sk_1)< ) the
i=1 i=1 " k=2 i=k
Hence X g x; = X 9, 2, where 2,6 K,0<3, <1, and £Z§,=¢,<1.
i=1 k=1 k=1 p=
Therefore 2 g; x; is in the convex hull of K U {0}. Now if the numbers whe
i=1
g; are complex and if |g| <1, put g = Ti"¢,, where 0<¢g;, <1 -
r=0
(1<j<n0<r<3). Then X. !
n n n n n 3 '
g =%X Xig,x=2X Zig,x=23iz, (2.2)
j=1 i=1j=0 r=0 j=1 r=0
where each z, is in the convex hull of K U {6}. Hence X gy; is in the ’ s a
i=1
convex hull of X" K. _‘ nuou
e (2.3)
TuroreMm 2.1. A function « on [p,q] to X is of bounded variation if
and only if the set W ([p,g),e), consisting of all elements of the form there
Zgla(ty)—alr)]. where p <r, <t < ....<r, <t,<gq and the secor
j=1 ;
g are complex numbers such that |e;| < 1, is bounded.
The function o is of (weakly) compact variation on [p,q] if and only {h(2)
if W ([p,q),«) is conditionally (weakly) compact. '
Proof. Let p <r, <t; < .... <r,<t, <gqand for a subset .4 of if 1
X let co(A) be its convex hull. The set K, determined by the elements
x; = a(;) —o(r,) (1 <j<mn) in the sense of Lemma 2.1, is a subset The

of V([p,ql,x), so that if |g;] <1 (1 <j <#) then

INSTITUT TEKNOLOGI BANDUNG



MOEDOMO SOEDIGDOMARTO 7

VAY Zg[a(t) —a(m)] e co(Z7K) Ceo(Zi" V([pqla)).
= r=20 r=0
The- conclusion follows from the relation

V(p.a)0) € W () S o (27 V ([pigho)

If o is a function of bounded variation on [p,g] to X, and 4 is a
complex-valued continuous function on [p,q], then one can define the

q
Riemann-Stieltjes integral / h(t)dx(t) as the strong limit of sums of

»
the type
'Ezh () [e(t) — « ()]
i=1
p=t<tH<..<t ,<t=g¢gt <7<t (1<j<n),
when max [(; —¢t,_,)] tends to 0 [4].
155 <n

THEOREM 2.2. Let o be a function of bounded variation on [p,q] to
X. Then the transformation T defined by

9
(2.2) Th = / h(t) du(2)
Jp
15 a bounded linear operator from the Banach space C [p,q] of all conti-
- nuous complex-valued functions on [p,q] into X. Moreover,

(23) N Tl < 4sup{{=|:xeV(pg) )}

Conversely, if T is a bounded linear operator from C[p,q] into X, then
there exists a function o of bounded variation on [p,q] to X**, the

]
second conjugate of X, such that Th = / h(t)do(t) for all h in C [p,g)).
Jo
Proof. If a is of bounded variation on [p,q], & ¢ C[p,q], and
h(t) <1 (p <t<g) then by (2.1)

S5 () — 2l )] W ([pa)o) S o (5 V (a2,

if p=to<t;<....<t,,<t,=qgandt_, <t <t (1<j<n)
q 3
Therefore / h(t) dx(t) is in the convex closure of X i"V ([p,g],2), so that
r=0

P
TH. T No. 2 PROCEEDINGS 1961



8 THEE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

T is a bounded operator from C[p,q] into X and
[T <4 sup {||=]| : x2V ([p.glw)}-

To prove the second statement we first let X be the space C{p,q]
itseli and 7T the identity operator of C[p,g]. If E is a Borel subset
of [p,q], then its characteristic funstion 7, may be considered as an
element of C**[p,q]. Moreover, H/EH = 1if Eis non-void. Now let
oo be detined by

(24) 2o (t) = g (0 <t <)

Clearly =, takes its values in C**[p,q] and is of bounded variation on

q
[p.q]. Turther, it can be verified easily that /h(t)doco(t) =h forall he
Jp
C[p,q]. Now let T be an arbitrary bounded from C[p,q] into X. Let a
be the function defined by

(2.5) wt) = T**a () (p=t=49)
where 7%* is the second adjoint of 7, mapping C**[p,q] into X*¥*,

Tt is clear that o is of bounded variation on [p,q]. Moreover, if 2 & C[p,q],

then
q Ki 'q
/ h{t)do(t) = / h(t) dT** oy (t) = T** / h(t) dx(t) = T**h = Th.
p . p L3 p
In general, if 7' is a bounded operator from C[p,g] into X one can
not expect to find a function « of bounded variation on [p,q] to X, such

~

q

that Th = / h(2) dx (t) for all ke C{p,q].

P

THEOREM 2.3. Let o be a function of (weakly) compact variation on
[p,q] to X. Then the operator T defined by (2.2) is (weakly) com pletely
continuous.

Conversely, if T is a (weakly) completely continuous operator from C[p,q}
into X, then there exists a function o. of (weakly) compact variation on [p,qg}

q
to X such that Th = / h{t) d= () for all heC[p,q].

o P

Proof. The first statement follows from the fact that if £ & C[p,g]

q
and [A(t) <1 (p <t <g), then / h(t)da(t)is in the convex closure of
Jp
INSTITUT TEKNOLOGI BANDUNG
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MOEDOMO SOEDIGDOMARTO 9

W([p.q),2). For, if « is of (weakly) compact variation on [p,¢], then by
theorem 2.1, the set W([p,q],«) is conditionally (weakly) compact, so that
T is (weakly) completely continuous.

If T is (weakly) completely continuous, then so is 7%* and T** maps
C**[p,q] into X, and the unit sphere of C**[p,q] into a conditionallv
(weakly) compact subset of X. Hence the function » defined by (2.5)
is of (weakly) compact variation on [p.q].

The definitions at the beginning of this section can be extended to
include the case where the interval need not be bounded or closed. Let «
be a funcition defined on the interval I, which may be half-open, finite
or infinite, to X. Then « is said to be of

(i) bounded variation on I.if the set union
Va) = U{ V([pgha) : (pgl €T — 0 <p < g <}
is bounded in X,

(ti) weakly compact wvariation on I if (F(1,2) is conditionally weak-
ly compact in X,

(itt) compact wvariation on I if V(1) is conditionally compact in .Y

(iv) absolute finite variation on I if there exists a constant 1/ >0
such that

= a(t)— )] < 1

frn<ti<....<r,<t and [riot,] €1

Instead of V(I,x) one can also take the set W(I,x) consisting of all

elements of X of the from = g [«(f}) — «(r;)], where the g; are complex
j=1

numbers of absolute value less or equal one.

Let « be a function of bounded variation on [6, 0)to X. If hisa
complex-valued continuous function on [5, %), then the improper integral
n 00 'R
/ h(t)dx(t) will be defined as the strong limit of / h(t)dx(t)as R— .
Jb .
That this limit does not always exist can be seen from the following
example. Let «(t) = %, (b, <t < ). Then « is defined and of boun-
ded variation on [5, «) to the Banach M([b, =)) of all bounded complex-
valued functions on [b, oc). In fact, the set I7([b, o), &) is contained in
the unit sphere of M([b, oc)). Now let h(t)=1( <t < ). Then

TH. I No. 2 PROCEEDINGS 1961



10 THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

-
/k(t) da(t) = % gp if R<R < . But || gzl =1, so that the
R

improper integral / h(t)du(t) does not exist in this case.
Jb

THEOREM 2.4. Let o be a function of bounded variation on [b,o0 ) to
A and let Clb, o] denote the Banach space of all complex-valued continu-
o
ous functions on [b, | then theimproper integral | h(t)de(t) exists for all
Jo

o

hin Clb,oo ), which vanish at oc. Further the integral / h(t)do(t) exists

b
for all h in C[b,0 ] if and only if lim o(?) exists.
t—- 0 ”
If h e Clb,o], |h(t)l <1 (b<t<w), and /h(t) do(t) exists, then

Jb
o
/h(t)doc(t) is in the closure of W([b, =), 2).
5
Proof. Let he C[h, <] and h( )= lim A(t)=0.If b < R< R

t—>0

< =, then by (2.3)
~R

[ / H)ds(t) | <4 Lsup [hO[) [sup{le]:xe V(b =)0}l

R
From this it follows that lim |!/ h(t)da(t) || = 0 and hence the in-
R— 0 R
%0

tegral / h(t)dx(t) exists. Now if & is an arbitrary function in C [b,c ],
Jb
put g =h— k(). For every R >0
R R
| Haas = / g(t)da(t) + h (0 )[ « (R) — x (B)].
b

b . . 5
Now lim / g (t) da (t) exists and therefore the integral / h(t)da(t)
R>x s Job
exists for all & & C[b,% ] if and only if lim «(R) exists. The last statement

R-—>0
R

is a consequence of the fact that for every R > b, [ h(f)dua(t)isinthe

closure of W ([, %), «) if he C[b,oo ] and| & (#) | 3! b < ?).
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MOEDOMO SOEDIGDOMARTO 11

The continuity properties of vector-valued functions have been
discussed by Kendall and Moyal [5] and also by Edwards [3].

THEOREM 2.5. Let o be a function defined on( — o, ) to X. If ais
of weakly compact variation on every bounded interval, then the strong
limits o« (t 4 0) exists everywhere, and they satisfy

et —0)=ua(f)=a(+0)
for all except an (at most) countable set. Moreover, the values of « lie in
a separable subspace.

For the proof we refer to [3]. Using Edwards’ methods it can be

shown that if « is of weakly compact variation on ( — o, o) to X, then

the strong limits « (4 oo ) exist. '
A function « on (— o, ) to X is said to be normalized if the strong

limits « (¢ 4- 0) exist everywhere and satisfy

26) () =3[ (t—0) + « (¢ -+ )
and if lim «(f) = 6.

t-—»0
If o is defined on [0, o) to X, then o« is said to be normalized, if

the strong limits ot 4+ 0). exist for every ¢ > 0, «(0) = 0, and if «
satisfies (2.6) for every ¢ > 0.

Functions of weakly compact variation on (— o, o) or [0, o) to
X can be normalized, and it can be shown that the same is true for
functions of absolute finite variation. However, not every function of
bounded variation has this property. For example, the function given just
before theorem 2.4 can not be normalized.

THEOREM 2.6. If « is a normalized function of weakly compact vari-
ation on (0,00 ) to X, and if

) Th — [ R(t)ds(t) (ke C [0, ),
0

then T is a weakly ;ompletely continuous operator from C[0, oc] into X.
Conversely, if T is a weakly completely continuous operator from C[0, ]
into X, then there exists a unique normalized function « of weakly compact
variation on [0, o) to X such that (2.7) holds.
Proof. The first statement follows from theorem 2.4. Now let 7" be
a weakly completely continuous operator from C [0, o] into X. Let the
function o, be defined by

(28) 2 (1) = 750 (0 < £ < o0)
TH. I No. 2 PROCEEDINGS 1961



12 THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS

Then «; is of bounded variation on [0, ) to C**[0,%0 ], For each &
in C[0,0] and R >0

R
/ W)y (2) = h. 70,5 € C**[0, oo].
Jo

R

Moreover, [ h(t)d2, (t) converges in the w* — topology to & as R— co.
Jo

Now consider the function f defined by

(2.9) B(1) = T**oy(t) (0 <2< ).

Then B is of weakly compact variation on [0, o) to X. If A & C [0, o]
and x* ¢ X*, then

x*/h(t)dp(t): /h(t)dx*(.’;(t): / h(t) dx* [T** 2, ()] =
0 )

J 0

R
(T*x*)/ h(t) doy (1), so that on letting R— %, we have
Jo

*R
a* / KE)dB(t) = (T*x*) (h) = x* (Th).
L0

Therefore Th = / h(t)dp(t) for all h e C[0, w]. Next define the
Jo

function « by

«(t) = 3B — 0) + £(t + 0)] — B(0) (¢ > 0),

2(0) = 6.
Then = is a normalized function of weakly compact variation on [0, ) to
PR )
X and Th = / h(1)dx(t) for all ke C[0,% ]. Finally, let ¢ be a func-
0

tion of bounded variation on [0,90 ) to X such that it is normalized and

oo = o]
/lz (v (t) = / h(t)do(t) for all he C [0,%0]. For each a* & X*
J 0 o 0 - o
and each he C[0, ], we have / h(t)dx* < (t) = / h(t)dx *a(2).
L0 0

Hence x%y(f) = x*2(t) for all x* e X*and ¢t > O or « =+, so that « is
uniquely determined by 7.

Zaidman [7] has given an example of a function of compact variation
on [0,1] which is not of absolute finite variation, and an example of a func-
tion which is of absolute finite variation but not of compact variation. We

INSTITUT TEKNOLOGI BANDUNG
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MOEDOMO SOEDIGDOMARTO 13

will show that a function of absolute finite variation on [0,% )}, if normal-
ized, is necessarily of weakly compact variation. We need a lemma which
is proved in [1].

Lemma 2.2, Let S be an abstract set and X be a o-field of subsets of S.
Let ca () denote the Banach space of all countably additive complex-valued
measures defined on X having finite variation. Then a subset K of ca (Z)
is conditionally weakly compact if and only if

(1) the set K is bounded, and

(2) there exists a positive w in ca () such that

lim A(E)=0
W(E) =0
uniformly for x in K.

For the proof we refer to [1].

CoroLLARY. If K is a subset of ca(Z) and if for some positive . in
(), |ME)| <u(E) Jor all EeX and all »e K, then K is condi-
tionally weakly compact.

THEOREM 2.7. Let o be a function of absolute finite variation on [0, =)
o

to X. Then / h(t)do(t) exists for all h in C[0, o). Further, if
Jo

Th = [ h(t)dx(t) (h & C [0, oc])
0

then T is a weakly completely continuous operator from C[0,00 | into X.
Hence if o is also normalized, then it is also of weakly compact varation on

[0, ) 20 X.

oe]
Proof. The convergence of/ h(t)da(t), he C[0, ], follows from the
0

fact that lim «(#) exists and by theorem 2.4. From the same theorem we
>0

see that 7' is a bounded operator from C[0, o] into X. We will show that
the adjoint 7* of T is a weakly completely continuous operator from X*
into C*[0, ], which, by the Riesz representation theorem, may be repre-

sented by ca(X), where X is the Borel filed of [0, ). Now let & be the in-
creasing bounded function defined by

\
For each x* & X* let A(x*) = T*v* ¢ ca(X), and let v e ca(X) be such

TH. T No. 2 PROCEEDINGS 1961
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14 THE LAPLACE TRANSFORM OF VECTOR-VALUED FUNCTIONS
.o
that / h(t) d&(t) = /h(t)g(dt) for all AeC [0, 0] If |]x*|| <1 and
.0 N
{0,001

0<h(t) <l (¢t>0), then / h(t) Mx*)(dt) < / h(t)u(dt), where
[0, ] < [0,00]
A(x*) is the variation of A(x*). If follows that
| () (B)] < 3. (=) (B) < o (B)
for all £ in 3. Therefore, by the corollary of lemma 2.2, the set
K = {T*x* = n (x%) : lx*]| < 1}
is conditionally weakly compact. It follows that 7* and hence T is weak-

ly completely continuous. If « is normalized, then, by theorem 2,6, «
must be of weakly compact variation on [0, o).

Remark. In a similar fashion one can show the existence of a one-
to-one correspondence between the weakly completely continuous opera-
tors from C[— oo, oo]into X and the normalized functions of weakly compact
variation on (— o, ) to X, the correspondence being given by the
relation.

* R
leth(t)dcx(t): lim /h(t)doc (t) (heC[— oo, o))
R

—x
—® .

A theorem similar to theorem 2.7 also holds in this case.

3. The complex inversion formula. Let « be a function defined
on [0, ) to X such that « is of bounded variation on every bounded
closed interval [0, R]. Let
(3.1 B(s,u) = / e ' du(t), s complex, u > 0.

Jo
It is clear that for each fixed complex number s, the function 8(s,.) is
a strongly continuous function on (0, ) to X.

THeorEM 3.1. (i) If for some constant M > 0 and some complex num-
ber s,
sup ||8(so,u)|| < M,

u=0
Ly

then the improper integral / e du (t) converges for every complex number
Jo
s with Re (s) > Re(s,). Moreover, we have
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(3.2) / e da (1) = (s — $) / e ETS0 B (s,1) dt.
L0 Jo
(it) There exists a real number o, («), the abscissa of convergence of «,

such that / ¢t do(t) converges if Re(s) > o,.(«) and diverges if Re(s) < o ().
Jo

We have the relation

(3.3) o,(2) = sup {o, (x*a) 1 x* € X*3.

(i) If f is the Laplace-Stieltjes transform of %, i.e.,

(3.4) f(s) = / e~ dx(t), Re(s) > o, (o),
Lo
then f is analytic in the half-plane Re (s) > o, (a) and

(3.5) f® (s5) = /(—— ke duft) (k= 12,....).
R0
Proof. (i) For every positive number R,
R "R
et da () = / =550 dB (soy1).
v 0 .0
Integration by parts gives
AR 'R
/ e du(t) = e TV BsoR) + (s — %) / e B (sort) dt.
J 0 .0
Now if ¢ = Re(s)and 6, = Re(sy), then

lim sup || e~¢ %% B (spR)|] < lim sup Me
R—> 00 R—>®

~(G—-GO)R — O’

and
2R ~2R

lim sup || | e7¢7%0" B(s0,1) dt | < lim sup M/ e @ dt =0

R—>»o© IR R—» 00 JR
o] @*®

(@) If [e'so' da(t) converges, then /e“o’ dx (t) converges for all s

Lo J O
©

with Re(s) > Re(so). On the other hand, if / ¢ daft) diverges, then
Jo

A

j et du(t) diverges for all s with Re (s) < Re(s,). Hence there exists a real
0

W

number a, («) such that / e~ dx(t) converges if Re(s) > s,(«)and diverges
0

TH. I No, 2 PROCEEDINGS 1961
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if Re(s) << o, (x). Now let 7 be the right hand side of formula (3.3). If Re(s)

> o,(o) then / e”* de.(t) converges and hence also / e dx* a(t) converges
Jo Jo
for all x* ¢ X*. If follows that Re(s) > o,(x*«)for all x* ¢ X* and since s is
arbitrary, o, (x) > 7. Conversely, if Re(s)=0c > =), then for each x* in X*,
sup |v*  (s,u)| = sup | / e dx*a (r)| < oo,
u>0 u>0 Jo
so that by the uniform boundedness principle, sup HB(S,lt)H < o0. By (1),
u>0

Re(s) == 6, (). Since s is arbitrary, t > o, ().

(z1) For each x* in X*, the function x*f is analytic in the half-
plane Re(s) > o, («). By a theorem of Dunford, f is analytic in the strong
sense in the same region. The rest follows by applving linear functionals
to the derivatives f® (k= 12,3, ....).

THEOREM 3.2. If for some real number v

(1) = (0} = 0 () (t— o)
or if

(2) o 00) = lim o(2) exists and ||x(t) — =( % )|| == 0(e"")(1 - =), then

t—mc0

Y = o, (a).

Proof. Suppose first that ||« (2)|| = 0(eY) (t— o). If s is a complex
number such that Re (s) = ¢ >, then for some constant A7 > 0, ]je** a(2)||
< Me=C—Viforall t > 0, so that if 0 < R < R’ < «, we have

R R
/e_“ da(t)= a(R') e *® —a(R)e ™R 1 5 / et d(t)dt.

JR SR
Now lim a(R)e 8= lim o(R')e R = 6, and
R—>¢ R —»o0
rR "R
I /e“" oc(t)dtnﬁﬂf/e_(G‘Y)’ dt->0 as R and R tend to oo,
<R JR
so that [ e du () converges. Thus, if 6 > v, then s > o, («) which implies
Jo
that v > o, (%). Now if lim o(f) = «( o) exists puto = o — a ( o).
>0
r"R Rt
Then / e~ do(t) = / ¢~ da (t) for all R > 0. Therefore if
o Jo
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. OC

o (D]l = 0(¢¥") (¢t —> =), then the integral /e_“ da(?)
Lo

ey =) = |

converges for all s with Re(s) > v, or v > o, (%).
, &

THEOREM 3.3. Suppose that / T d2 () converges and let 6, = Re(s,).

() If a0 > 0, then 2 (D)) = 0(e%) (¢ o0),
() If 65 <O, then lim w(t) = of o o) exists and
loe (8) — @ ((0)]| = 0 (e %) (> o0).

Proof. (i) On integrating by parts, we have for ¢ > 0,
t

a(t) — a(0) = / €' d(so,u)
<0

= B(sg,t)e’" — s, / e S(so,u)du.
<0
- Hence

) — O] = B ) — 506 [ €% B )
. « 0

= [Bef) — Blao )] =+ [8(50 %) — Bls, ey ™ [e0%du]

20
s rm’/ (8050 %) — Blsoa)} e ],

Now lim [|8(s,t) — B(s,, oo)}} = 0 by hypothesis, and
t—>o0
lim ||B(sy, o0) — B(s,, o0 )sqe 0 / e“)“ dul| = 0.
t—>% Lo '
Finally, to show that
”t
lim Hsoe_‘oz/ {850, =) — Blsgu)}e* du| = 0,
t—»00 0

let £ be an arbitra;ry positive number and put M = sup [|8(sqy 0) — B(sone)|).
Let ;> 0 be such that [18(s9, 20) — B(sg522) [ < 2 2 ? for all u > t;, Now

there exists a number ¢, > #, such that =00 (1= . ZO—W Ift >t

then

e

e [t 1=t

1%
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< ¢ 00t / edo"HS(SO, %) — B(sou)|| du — e~ /860“”,3(50, %)— 3(50»“)“ du
0 0

. .

€010 — 1 gy 00t O o
=M T e Syt
If follows that lim ¢~ () — 2(0)|| = 0. Hence [l (#) — (0) | = (%)
t—>»

and therefore ||o(2)|| = 0(e7%) (¢ —> =),

(%) The existence of x( %) = lim «(t) follows from the convergence

=00
of / da(t) (s = 0). On integrating by parts we have
<0 w
() = () = [ e 35y
P 4
= " B(so,2) — 5, / €% du.
« 1
Hence

e o (o) — (1)
= [B (s, %) — £ (sot)] + [soe_sot] e {B (59, ) — B (so1) } du]

t
~ 00

— (800 =) + 5™ [ (8 (s,, ) du.

ot
y

Now sge™0! / edu = "0 _1ift' > t. Since Re(s)) = 0y < 0, it

PR 2

follows that [im se—* / € du = — 1 and the third term in the above
t ~>00 Jo
inequality tends to 0 as t—> oo, Finally.
Hsoe—”” /e“’" {B(sg, 00) — 3(so,10) } du]] < ]s()[e—co' /ec"” ]B(so, o6)— S(so,u)” du
[ ot
5
< —_% sup i]fj(so, x ) — B (so,u) H—>0 as t— oc,
uZt
Hence lim e=%||n () — #( »)[| = 0 and the proof is complete.
t—»x

The abscissa of convergence can be computed in a manner which is
similar to the scalar case. Let « be a function on [0, %) to X such that
it is of bounded variation on every bounded interval. Let
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log [l (£):
(3.) (o) = lim sup 2B
t—>oo
and if a( ) = lim «(?) exists, let
t—»x
1 H—a( =
(3.7) b(x) = lim sup oglla(t) — =« (=)

t =0 t

TueoREM 3.4, (1) Ifa(a) 520, then o, (o) = a(«); if o( =) exists and
b(a) <0, then o, (o) = b(a).
(@) If a(x) = 0 and if lim o(t) does not exist then s, (o) = a(a); if

t—>oo
. a(e) =0 and if lim o(2) exists, then o, (o) = b().
t—-
(@) If o, () = 0, then o, (o) = a(a) and if o, (¢) < O, then lim «(f)

. t—>20
exists and o, (o) = b(2).

Proof. (i) First suppose that a(«) > 0. Then for every ¢ > a(«),
I]a(t)“ =0(e®") (t— o). By theorem 3.2, 6 > o, () and since o is arbitrary,
it follows that a(«) > o, (). If 6, (2) < a(s), let v be a positive number

~ e

such that o, (o) < v << a(«). Then/ e~ 1" du(t) converges, and by theorem 3.3
J oo
@) [|«(®)]| = 0(e'?) (t— o=). However, this means that a(x) < y and we

have a contradiction.
If a(x) < 0and a(a) <7 <0, then ||« (#)|| = 0(¢**) (t— o). Hence

lim «(t) = 0 and by theorem 3.2, 5, («) < 7. Since 7 is chosen arbitrarily,
t—00
it follows that 6,(a) < a(2) < 0. Now suppose that the inequality o, (a)

< a(a) holds and let 5, («) <<y < a(«). By theorem 3.3 (i), ||« (£) — a( %0)||
=o0(e¥’) (#—>c0). Since this implies that a(x) <y, we again have a
contradiction.

Now suppose that lim «(f) exists and let &(«) < 6. Then
tm00
[l#(2) — a( o)|| = 0(e°*) (t— o0 ) and hence by theorem 3.2, 6,(2) < 5. Since

¢ is arbitrary, o, () < b(a). On the other hand, if ¢ < b(«), then 6 < 0,

o

and the convergence of /e*c’ da(t) implies that ||z (£) — «( )| = 0(¢™)
Jo

(t— o) by theorem 3.3 (#). Since this means that b(a) < o, we arrive at

a contradiction and hence o, («) == b(«).

TH. I No. 2 PROCEEDINGS 1961
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=]

(i) If a(«) = 0, then / e *'du(t) converges whenever Re(s) > 0. On
C 0

Pge o}

the other hand, if lim o(#) does not exist, then /da(t) divergesand there-

) t—>=c0 J o

fore o () = 0 = a(«). Now suppose that lim «() exists and thata(«) = 0.
1—>x

Since « in bounded on [0, ®), « (f)==0(¢°) and hence also

le(8)— «( o) || = 0(¢®*) (¢— o) for every positive number o. If follows

log o (t) — a( o)}
t

that lim sup < ¢ for every positive ¢ or b () < 0.

t—»
Therefore we can apply (i) and we have o, (2) = b(x).

(iii) Let o,(2) > 0. If a(«) 5% 0, then o («) = a(x) by (¢). On the other
hand, if a(«) = 0, then ||x(f)|| = 0(e°*) (t— o) for all 5 > 0. By theo-
rem 3.2, o, («) <0 and hence ¢, (x) = 0 = a(«).

Now let 5,(«) < 0, then lim « () exists and sug Hoc(t)— o 00)“ < ¢o,

>

t—>0 t

Hence 5(«) < 0 and by (7), o, («) = b(=)

We shall now derive the complex inversion formula for the general
Laplace-Stieltjes transform. We will need the following important lemma
which is proved in [1].

Lemma 3.1. Let S be a compact Hausdorff space and let C(S) be the
Banach space of all complex-valued continuous functions on S. Then any
weakly completely continuous operator from C(S) into another Banach space
X maps weakly fundamental sequences iito strongly convergent sequences.

For the proof we refer to [1].

Lemma 3.2. Let 8 be a function of bounded variation on(— =, o) to
X such that im £(t) == 0. Then

t—>—w
1 Rsin Ty
(3.8) B (t,T) = lim — | ~B(t+y)dy
R—»% w . —R .y
. 1 [ %siny
exists for 1'> 0 and real t. Further, if si(t) = . / B dy, then
=/,
(39 BOT) =T8¢ + ) = [ §[T(s—1)]d3(3)

If B is of weakly compact wvariation on [ty — 3,y 4- 8], 8 > 0, then
(3.10) lim B (to,7) = 3 [& (ty— 0) + & (ty + O)].
T
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Proof. If R << R’, then integration by parts gives
R
! /si[T(z—z)] 43 (=)
R
. : Rsin T(z —t)
= si[T(R'— )] B(R) —si[T(R— 1] 8(R)+ [ g e
'R

Now if ¢ and T are fixed, and if 7' > 0, then lim si[7T (v —1)] = 0. More-
>
over, the functions s/ and 8 are bounded On (— oc, ), so that we have
lim s [T(R—1t)] 8(R) = 0, since lim B(R) = 0. On the other hand, for
R—>—

R—>+w

—(~
1\1(,\!

» OO

fixed R, / st [T(x —t)]dB (z) converges by theorem 2.4. Further,
7R
#[T(.—#)] is in C[-— o, cc] for all real t. Thisimplies (see theorem 2.4)
‘R
that for fixed R the integral / si[T(s —t)] d3(=) converges. Hence
e - ” CsinT(s—1) 6 () d
— t)] d3(3) == o B(%)ds
[ Te—nde = |~ s
1 FsinTy
== ety

Now suppose first that 3 is of weakly compact variation on (— o, ).
We know that if v is a scalar valued function of bounded variation on

(—o0, ) such that lim v (¢) = 0, then
t—>—o0

lim [ 5 [7(s — 0] () = T (6 —0) 4 v (¢ + 0]
L
forall real ¢. In other words, if zisareal number and [7,],>, is asequence

of positive numbers such that lim T, == %, then the functions si[T, (.-—1)]
77— 0
form a weakly fundamental sequence in C[— o, <«]. By lemma 3.1, the

sequence [ [si (7, (x—1)] db (z)],,>_1 converges in norm for every real ¢,

so that lim B(4T) = 1 [3(t—0) = 8(z - 0)] for cach ¢ (— o, ce).
T—>w

Next assume that for some #, and § > 0, the function 8 assumes
the value 6 on the interval {r,— 8,7, 4+ 8]. Consider the integral

/ si(Ty)d, B(ty +») (T > 1) evaluated over the intervals

TH. I No. 2 PROCEEDINGS 1961
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(== VV/T) (= VNT, — 1T, (=1 T2 1 T2),(1)T%1)v/T),(1/T, ).
The corresponding values B, (¢, T) (1 < k < 5) will be considered sepa-
rately.

Put si(Ty) = 1 + u(Ty), where lim u(Ty) = 0. Then

1T . —~1A T
Bolal)= [ a3+ [« b+
L o
= 80— VT + [w()d: £y + =T

Since B(t) =10 if t,—3<t<t,+ 3, and

I /u(r) de Bty + 7/T)| < 4 [ sup |ixf| 1. [sup |u(7)]
V(=2 ), {3> T<—4/T
if follows that lim B, (t,7T) = 0. Slmllarly,

T
By (1, T) = / si (Ty)d,B(t, + y) = / si(7) d-B(t + </T).
. I/,\/T o ,\/F
Therefore,
1Bs (10, T)]| < 4[ sup ||x|]m] [sup |s (7)]],
~=yT
and hence lim B; (£, T) = 6. Now let x* be an arbitrary element of X*,
T -

and let v = x*p. If o is the variation of 7, then ¢ is constant on(ty— §,¢,4-3)

’

4
so that if 7' > — 5 then

o Ba (10 )| < sup [si (D} [0 (t6 — 1/TY) — ¢t — 1)y T)] =

and

~

% By (1 T)] < [sup |si 1[0 (ty + Un/T —2 (g + 1T)] = 0.
N
Since x* is arbitrary, it follows that

lim B, (2, T) = lim B, (¢, T) = 0.

T-—>0c T—>
Finally, on integrating by parts, we obtain
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By (10, T) = si (1/T) 2 (fo + 1 T?) —si (— 1/T) B (ty — 1/T?)
/NI/T2 sin Ty
. —I/’T2 y

!
—_

i

rrj (10 + “') (1}".
Hence B, (15, T) = 0if T > 1/1/3.

Now if B is of weakly compact variation on [t, — &, t, -+ 3], let
B@y=p@ if t,—8<t<1t,+ 3, and B, (¢) = O otherwise, and let
By =B — By. If B (£, T)({ = 1,2) is the expression (3.9) corresponding
with 8;, then B (2, 7) = B! (¢,,T) + B2 (t,,T). Hence

lim B(2,T) = hm B(t,T) + lim B2 (¢,T)

T >0 T—>x

=} [B(io——o) + B(t -+ 0)].

THEOREM 3.5. Let o be a function on [0, ) to X which is of bound-
ed variation on every finite interval. If f is the Laplace-Siieltjes transform

of &, f(s) = /e_” do (t) (Re(s) > o, (a)), let
Jo
rat+iT f(s)
(3.11) A(,T) = i /ae_iT - ds,
where T > 0 and a > max[0,0,(a)]. Then
3.12) ($[a(t—0) 4+ a(t+0)] (¢ > 0), if « is of weakly com-
pact variation on[t — 3, t-+ 3] for
some & > 0,
lim  A@T)= < % «(04) if o is of weakly compact vari-
e ation on [0,3] for some § > 0,
& (< 0).

Proof. For each x* e X*

I sin T(t —
AT =2 / x*z (y) et mIE—y) dy

= 1 t—y
Setting
B () =a(y)e ™ for 0 <y <7,
=0 for y < 0 and y >,

we see that 8, satisfies the conditions of lemma 3.2. Further, B, is of weakly
compact variation on [p,q] if p < ¢ < 0. Therefore, if for each r > 0,
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o
e

sin Ty

B, (t +y) dy,

then lim e* B, (1,T) = 6 fort < 0. If o is of weakly compact variation
T
on [0,3] for some & > 0, then so is 8,. Also if « is of weakly compact

variation on [ty — 8,¢; -+ 3] for some § > 0, t; — 3 > 0, then the same is
true for B8,. Now if @ > ¢ > max [0,c, («)], then by theorem 3.3 there
i Me® (0 < t), so that for

1=
&@D:j/

o —&C

t < p < r, we have
M /wecy =

at —_ )
1B, (t,T) e A tTH< P dy
Me—(a—G)r eap
~(r—p) (a— o)
It follows that lim B, (#,T)e* = A(¢,T) uniformaly in 7" and uniformly

r —>»00
for ¢ belonging to any finite interval. Now suppose that o is of weakly

compact variation on [f, — 3,ty 4 8)], and let & be an arbitrary posmve

number. Let r > t, - & be such that ||B, (£, T) e — 1 (¢, T)H < -2— for

all T > 0. Since 8, is of weakly compact variation on [, — 3,t, + 3] it

follows that lim B, (t,7) = & [a (#; — 0) + « (¢, -+ 0)]. Now choose T,
T >
in such a manner that

HB,(tO,T) €¥o — L [x (ty — 0) + a (15 + 0)] H < =

it 7> T, then |4 (t,T)— % [x(ty—0) + x(fy < 0)]]| < & If a is of
weakly compact variation on [0,3] for some 4 > 0, the same method can be
2(0 +)

applied to show that lim A(0,7) =

T—>o»

2

If we examine the proof of the preceeding theorem, we see that if
o is a function of bounded variation on [0, =) to X and f is its Laplace-
Stieltjes transform, then the inversion formula holds at those points
t£(0, o) for which the following are satisfied :
(1) the limits « (¢ - 0) exist,
ot 8
(2) lim / si[T(z —t)] dx(z) = lim / st (1) do (t + =)
T, _3 T—>x)_§
exists for some 8 > 0, where 3 depends on #. As we have seen earlier,
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for each sequence 7', of positive numbers such that lim 7T, = oo, the
n—yxn
sequence of functions [/,] where
h, (7)y =s5i(T,7), we(— o=, =),
is weakly fundamental in C[— oo, o]
Now suppose that X is weakly complete. For each ¢ € (0, «), the
operator (), defined by

+3
O.h = /h (%) da(r)

%

is a bounded operator on C[— oc, ] into X. Now any bounded operator
on C[— oo, o] into a weakly complete Banach space is weakly completely
continuous and maps weakly fundamental sequences into strongly conver-
gent sequences (cf. [1]). In particular, for each ¢ £ (0, o),

+
lim /Si(TT) do (t + <)
3

T—>ow|
exists for any finite positive 5. On the other hand, Kendall and Moyal
[5] have proved that any function « of bounded variation on any inter-
- val to a weakly complete Banach space has the property that o (¢ - 0)
exists at every point. The following theorem is then a consequence of our
above discussions.

THEOREM 3.6. Let « be a function on [0, ) to a weakly complete
Banach space X which is of bounded variation on every finite interval. If
a > max [0,06, ()], then

a+iT 6 (t < 0),
lim /e“ ‘—@ds = ~5%a(0+) (t = 0),
T—>f iy ¥ ( a(t—0)+2(t+0)] (¢t > 0).

The followihg example shows that the complex inversion formula
does not hold, in general.
Let « be defined on [0, ») to L™ [0, =] by the formula:
% (t) = Yy (02 < o0)
Clearly « is of bounded variation on [0, c¢), and for each s > 0,
f(s) = /6’_” dx(t) = e,
Jo
where e, (1) = ¢, so that f(s) belongs to the subspace C [0, cc]of L™ [0, o=].
Furthermore, o, («) = 0. Now suppose that tor some t > 0, the limit
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14T £ (o
lim [ e 7:(—) ds

T—>x)1—r °
exists, and call the [imit x. Since f(s) € C[0, o] for all s >0, it follows that

1+iT s
/est mds
J 1-T s

belongs to C[0. o] for every T > 0, and hence x belongs to CJ0, e].
On the other hand, for each ¢ in L![0, co] and ¢ in (0, o),

t
(1) (¢) = /@ () d=
Jo
is an absolutely continuous function which is of bounded variation for
¢in [0, o). Applying the complex inversion formula for scalar-valued func-
tion we have

1+iT t
lim / o 1@ 2 (t) () = / o (7) d.
T—» f 7 d < 0

Therefore

Jo
or x =y, & ([0, o], which is absurd,

x(p) = /x (=) () de = /X[o,n (=) ¢ (v) dr,
Jo
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