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Abstract. We propose families of estimators for the population mean using an 

exponential function in case of non-response. This situation is examined under 

two cases, Case I and II. The bias, MSE and minimum MSE are separately 

obtained for both cases. We compare the proposed estimators theoretically with 

the main estimators from the literature, such as Hansen and Hurwitz (1946), 

ratio, regression and exponential estimators. The conditions for which the 

proposed estimators are most efficient are obtained. Moreover, different 

empirical studies are conducted to support the theoretical results for both cases. 
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1 Introduction 

Several authors have introduced different types of estimators to estimate 

unknown population parameters. When estimating population parameters, the 

information of an auxiliary variable (x) is generally used for enhancing the 

efficiency. For instance, Yadav and Mishra [1] and Yadav et al. [2] have 

proposed an estimator for population mean using auxiliary information. For this 

reason, ratio, product, regression, etc. type estimators have been proposed using 

auxiliary information to introduce more efficient estimators than others in the 

literature.  

Some of the main estimators to estimate the population mean under the 

SRSWOR scheme are the following.  

The ratio type estimator was proposed by Cochran [3]: 

 𝑡𝑅 =
𝑦̄

𝑥̄
𝑋̄ (1) 

In Eq. (1), 𝑋̄ and 𝑥̄ refer to the population and sample mean of x, respectively, 

and the sample mean of y is defined as 𝑦̄. The MSE of the 𝑡𝑅 is given by: 

 𝑀𝑆𝐸(𝑡𝑅) = 𝜆𝑌̄2(𝐶𝑦
2 + 𝐶𝑥

2 − 2𝐶𝑥𝑦), (2) 
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where 𝜆 =
1−𝑓

𝑛
, 𝐶𝑦

2 =
𝑆𝑦

2

𝑌̄2 , 𝐶𝑥
2 =

𝑆𝑥
2

𝑋̄2 , 𝐶𝑥𝑦 = 𝜌𝑥𝑦𝐶𝑥𝐶𝑦. Besides, 𝑌̄ is the population 

mean of y. Here, 𝑓 =
𝑛

𝑁
 and 𝜌𝑥𝑦 is the population correlation coefficient 

between x and y.  

Cochran [4] proposed the classical regression estimator and obtained its MSE as 

follows: 

 𝑡𝑟𝑒𝑔 = 𝑦̄ + 𝑏(𝑋̄ − 𝑥̄), (3) 

 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔) = 𝑌̄2𝜆𝐶𝑦
2(1 − 𝜌𝑥𝑦

2 ), (4) 

respectively, where b is the regression coefficient. 

The product, ratio and regression type estimators have equal efficiency when 

the relation between x and y is a straight line passing through the origin.  

However, this situation may not occur most of the time [5]. Recently, estimators 

have been proposed to take advantage of an exponential function. 

Bahl and Tuteja [6] were the first to introduce an exponential type estimator: 

 𝑡𝐵𝑇 = 𝑦̄𝑒𝑥𝑝 (
𝑋̄−𝑥̄

𝑋̄+𝑥̄
). (5) 

𝑀𝑆𝐸(𝑡𝐵𝑇) is obtained as follows: 

 𝑀𝑆𝐸(𝑡𝐵𝑇) = (
𝐶𝑥

2

4
− 𝐶𝑥𝑦 + 𝐶𝑦

2) 𝜆𝑌̄2. (6) 

Following Bahl and Tuteja [6], Yadav and Kadilar [7] proposed as estimator:  

 𝑡𝑌𝐾 = 𝑘𝑦̄ 𝑒𝑥𝑝 𝑒𝑥𝑝 (
(𝑐𝑋̄−𝑐𝑥̄)

(𝑐𝑋̄+𝑐𝑥̄)+2𝑑
) , (7) 

where c and d are functions of the parameters or real constants. The expression 

of the minimum MSE for the estimator in Eq.  (7) is given by: 

 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝑌𝐾)̄ = 𝑌̄2 (1 −
(𝜆(2𝜉2𝐶𝑥

2−𝜉𝐶𝑥𝑦)+1)
2

𝜆(𝐶𝑦
2+5𝜉2𝐶𝑥

2−4𝜉𝐶𝑥𝑦)+1
) (8) 

where 𝜉 =
𝑐𝑋̄

2(𝑐𝑋̄+𝑑)
.  

After the significant contributions of these studies, Singh et al. [8], Kumar and 

Saini [9], and Singh et al. [10] proposed exponential type estimators for the 

population mean.  

In real life, all information on various variables may not be available. Hansen 

and Hurwitz [11] introduced a new sub-sampling method to deal with non-

response situations. In this method a population consist of N units, S, and n 

units are drawn from the population under SRSWOR. N is composed of 𝑁1 and 
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𝑁2 for responding and non-responding units, respectively. Furthermore, n is 

divided into two units, responding (𝑛1) and non-responding (𝑛2). From 𝑛2 a 

sub-sample of size 𝑟 =
𝑛2

𝑧
(𝑧 > 1)𝑋̄ is randomly drawn. Here, z means the 

inverse sampling rate at the second phase sample. In addition to this technique, 

the methods of Srinath [12] and Bouza [13] can be used as alternatives to 

Hansen Hurwitz’s method for determining the subsample size [14]. 

Hansen and Hurwitz [11] were the first to introduce an unbiased estimator for 

non-response situations for the population mean as follows: 

 𝑡𝐻𝐻 = 𝑤1𝑦̄1 + 𝑤2𝑦̄2(𝑟), (9) 

where 𝑤1 =
𝑛1

𝑛
 is the response proportion in the sample. Similarly, 𝑤2 =

𝑛2

𝑛
 

refers to the non-response proportion. In addition, 𝑦̄2(𝑟) and 𝑦̄1 indicate the 

sample means of the y contingent on r and 𝑛1 units, respectively. The variance 

of 𝑡𝐻𝐻 is given by: 

 𝑉(𝑡𝐻𝐻) = 𝑌̄2 (𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ), (10) 

where 𝐶𝑦(2)
2 =

𝑆𝑦(2)
2

𝑌̄2  is the coefficient of variation of y for 𝑁2 units. 𝑊2 =
𝑁2

𝑁
 is 

the non-response proportion of the population. 

The non-response situation will be examined under Case I and Case II. In Case 

I, non-response is known and exists only in y. 

For this case, Rao [15] adapted the ratio estimator and the regression estimator, 

𝑡𝑅
∗  and 𝑡𝑟𝑒𝑔

∗ , in Eq. (1) and Eq. (7) respectively, using the Hansen and Hurwitz 

[11] technique: 

 𝑡𝑅
∗ =

𝑋̄

𝑥̄
𝑦̄∗, (11) 

 𝑡𝑟𝑒𝑔
∗ = 𝑦̄∗ + 𝑏∗(𝑋̄ − 𝑥̄), (12) 

where 𝑏∗ =
𝑆𝑥𝑦

∗

𝑆𝑥
∗2  and 𝑦̄∗ is the sample mean of y under the non-response scheme. 

The 𝑀𝑆𝐸(𝑡𝑅
∗ ) and 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔

∗ ) are given, respectively, as 

 𝑀𝑆𝐸(𝑡𝑅
∗ ) = 𝑌̄2 (𝜆(𝐶𝑥

2 − 2𝐶𝑦𝑥 + 𝐶𝑦
2) +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ), (13) 

 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔
∗ ) = 𝑌̄2 (𝜆𝐶𝑦

2(1 − 𝜌𝑥𝑦
2 ) +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ). (14) 

Singh et al. [16] proposed an exponential type estimator using a similar 

technique by adapting the 𝑡𝐵𝑇 estimator as: 

 𝑡𝐵𝑇
∗ = 𝑦̄∗𝑒𝑥𝑝 (

𝑋̄−𝑥̄

𝑋̄+𝑥̄
). (15) 



4 Ceren Unal & Cem Kadilar 

The MSE for the 𝑡𝐵𝑇
∗  estimator is given by: 

 𝑀𝑆𝐸(𝑡𝐵𝑇
∗ ) = 𝑌̄2 ((𝐶𝑦

2 +
𝐶𝑥

2

4
− 𝐶𝑦𝑥) 𝜆 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ). (16) 

After the significant contributions of these studies, Yunusa and Kumar [17], 

Dansawad [18], Singh and Usman [19], Pal and Singh [20,21], Yadav et al. 

[22], Sinha and Kumar [23], Pal and Singh [24], Kumar and Kumar [25], 

Sanaullah et al. [26] and Javaid et al. [27] have proposed exponential type 

estimators for the population mean for Case I.  

For Case II, non-response exists in both x and y and 𝑋̄ is known. Cochran [4] 

adapted the estimator in Eq. (1) for the Case II as follows: 

 𝑡𝑅
∗∗ =

𝑦̄∗

𝑥̄∗ 𝑋̄, (17) 

where 𝑥̄∗denotes the sample mean of x in case of non-response. The MSE of the 

𝑡𝑅
∗∗ is: 

 𝑀𝑆𝐸(𝑡𝑅
∗∗) = 𝜆𝑌̄2(𝐶𝑥

2 − 2𝐶𝑦𝑥 + 𝐶𝑦
2) + 𝑌̄2 (

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 + 𝐶𝑥(2)
2 −

2𝐶𝑦𝑥(2))), (18) 

where 𝐶𝑥(2)
2 =

𝑆𝑥(2)
2

𝑋̄2  and 𝐶𝑦𝑥(2) = 𝐶𝑥(2)𝐶𝑦(2)𝜌𝑦𝑥(2). Here, 𝜌𝑦𝑥(2) is the 

population correlation coefficient of the non-response group between y and x. 

Singh et al. [16] adapted the exponential type estimator in Eq. (3) using the 

Hansen and Hurwitz [11] technique for Case II: 

           𝑡𝐵𝑇
∗∗ = 𝑦̄∗𝑒𝑥𝑝 (

𝑋̄−𝑥̄∗

𝑋̄+𝑥̄∗).                                                                          (19) 

𝑀𝑆𝐸(𝑡𝐵𝑇
∗∗ ) is given as: 

 𝑀𝑆𝐸(𝑡𝐵𝑇
∗∗ ) = 𝑌̄2 (𝜆

𝐶𝑥
2

4
− 𝜆𝐶𝑦𝑥 + 𝜆𝐶𝑦

2 + +
𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 +
𝐶𝑥(2)

2

4
−

𝐶𝑦𝑥(2))) (20) 

Cochran [4] proposed a classical regression estimator under non-response by 

adapting the estimator in Eq. (7) as follows:  

 𝑡𝑟𝑒𝑔
∗∗ = 𝑦̄∗ + 𝑏∗(𝑋̄ − 𝑥̄∗), (21) 

whose MSE is given as: 
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 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔
∗∗ ) = 𝜆𝐶𝑦

2𝑌̄2(1 − 𝜌𝑥𝑦
2 ) + 𝑌̄2 (

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 −

2𝜌𝑥𝑦
𝐶𝑦

𝐶𝑥
𝐶𝑦𝑥(2) + 𝜌𝑥𝑦

2 𝐶𝑦
2

𝐶𝑥
2 𝐶𝑥(2)

2 )). (22) 

After Singh et al. [16], Kumar and Bhougal [28], Kumar [29], Yadav et al. [22], 

Pal and Singh [20], Singh and Usman [19], Ünal and Kadilar [30, 31], Muneer 

et al. [32], Sanaullah et al. [26], Riaz et al. [33], Sinha and Kumar [23], Pal and 

Singh [24], Kumar and Kumar [25] and Sanaullah et al. [26] also proposed new 

estimators, taking advantage of an exponential function for Case II.  

In this study, families of estimators taking advantage of an exponential function 

to estimate the population mean by adapting the estimator in Eq. (7) are 

proposed for non-response situations. The properties will be examined in 

Section 2 and comparisons between the proposed estimator and existing 

estimators from the literature will be made in Section 3 and Section 4, 

respectively.  

2 The Proposed Families of Estimators 

Based on Yadav and Kadilar [7], we adapt the exponential type estimators in 

Eq. (5) to a family of estimators, taking advantage of the exponential function 

for the population mean for Case I and Case II. 

2.1 Case I:  

We propose the following family of estimators for the first case: 

 𝑡𝐶𝐶1,𝑖 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
(𝑎𝑖𝑋̄+𝑏𝑖)−(𝑎𝑖𝑥̄+𝑏𝑖)

(𝑎𝑖𝑋̄+𝑏𝑖)+(𝑎𝑖𝑥̄+𝑏𝑖)
] , 𝑖 = 1, . . . ,10. (23) 

Here, k is a chosen constant to make 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖), 𝑖 = 1, . . . ,10 min and 𝑎𝑖 , 𝑏𝑖 

either functions of known parameters of x, such as, 𝛽2(𝑥), 𝐶𝑥 etc. or real 

numbers. 

To obtain expressions for 𝐵(𝑡𝐶𝐶1,𝑖) and 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖), 𝑖 = 1, . . . ,10, we consider: 

 𝑦̄∗ = (𝑌̄𝑒𝑦
∗ + 𝑌̄), 𝑥̄ = (𝑋̄𝑒𝑥 + 𝑋̄),    

Then, 𝐸(𝑒𝑥) = 0, 𝐸(𝑒𝑦
∗𝑒𝑥) = 𝜆𝐶𝑥𝑦, 𝐸(𝑒𝑦

∗) = 0, 𝐸(𝑒𝑦
∗2

) = 𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 . 

𝐸(𝑒𝑥
2) = 𝜆𝐶𝑥

2, 

Now, expressing 𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10 in terms of 𝑒𝑥 and 𝑒𝑦
∗, we have: 

 𝑡𝐶𝐶1,𝑖 = 𝑌̄(𝑘 + 𝑘𝑒𝑦
∗) 𝑒𝑥𝑝 (

𝑎𝑖𝑋̄+𝑏𝑖−𝑎𝑖𝑋̄−𝑎𝑖𝑋̄𝑒𝑥−𝑏𝑖

𝑎𝑖𝑋̄+𝑏𝑖+𝑎𝑖𝑋̄+𝑎𝑖𝑋̄𝑒𝑥+𝑏𝑖
) , (24) 
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 = 𝑘𝑌̄(1 + 𝑒𝑦
∗) 𝑒𝑥𝑝 [

−𝜃𝑖𝑒𝑥

2
(1 +

𝜃𝑖𝑒𝑥

2
)

−1
]  (25) 

 = 𝑌̄ (𝑘 + 𝑘𝑒𝑦
∗ −

𝑘𝜃𝑖

2
𝑒𝑥 +

3𝑘𝜃𝑖
2

8
𝑒𝑥

2 −
𝑘𝜃𝑖

2
𝑒𝑦

∗𝑒𝑥), 𝑖 = 1, . . . ,10,  (26) 

where  𝜃𝑖 =
𝑎𝑖𝑋̄

𝑎𝑖𝑋̄+𝑏𝑖
. 

Expanding the right-hand side of Eq. (26), we have: 

 (𝑡𝐶𝐶1,𝑖 − 𝑌̄) = 𝑌̄ (𝑘𝑒𝑦
∗ −

𝑘𝜃𝑖

2
𝑒𝑥 +

3𝑘𝜃𝑖
2

8
𝑒𝑥

2 −
𝑘𝜃𝑖

2
𝑒𝑦

∗𝑒𝑥) + 𝑌̄(𝑘 − 1). (27) 

We take the expectation on both sides of Eq. (27) as the bias and we get:  

 𝐵(𝑡𝐶𝐶1,𝑖) = 𝑌̄ ((𝑘 − 1) +
3𝑘𝜃𝑖

2

8
𝜆𝐶𝑥

2 −
𝑘𝜃𝑖

2
𝜆𝜌𝑥𝑦𝐶𝑥𝐶𝑦) , 𝑖 = 1, . . . ,10.(28) 

We take the square of both sides of (𝑡𝐶𝐶1,𝑖 − 𝑌̄) and then we take the 

expectation, so we obtain 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖), 𝑖 = 1, . . . ,10 as: 

 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖) = 𝑌̄2(𝑘2 (𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) + (𝑘 − 1)2 +

𝜆𝐶𝑥
2 (𝑘2𝜃𝑖

2 −
3𝑘𝜃𝑖

2

4
) − 𝜆𝜌𝑥𝑦𝐶𝑦𝐶𝑥(2𝑘2𝜃𝑖 − 𝑘𝜃𝑖)),  

 𝑖 = 1, . . . ,10.      (29) 

After obtaining the optimal k as: 

 𝑘∗ =
𝐴1

𝐴2
. (30) 

here, 

 𝐴1 = 𝜆 (
3

4
𝜃𝑖

2𝐶𝑥
2 − 𝜃𝑖𝐶𝑦𝑥) + 2 

and 

 𝐴2 = 2 (𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 + 𝜆𝜃𝑖
2𝐶𝑥

2 − 2𝜆𝜃𝑖𝐶𝑦𝑥 + 1), 

we have the min 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖), 𝑖 = 1, . . . ,10 estimators as follows: 

 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝐶𝐶1,𝑖)
̄ 2

(1 −
𝐴1

2

2𝐴2
),  𝑖 = 1, . . . ,10. (31) 

Some members of the estimators in Eq. (23) are given in Table 1.  

2.2 Case II:  

We propose the family of estimators for the second case as follows: 
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 𝑡𝐶𝐶2,𝑖 = 𝑘𝑦̄∗ 𝑒𝑥𝑝 𝑒𝑥𝑝 [
(𝑎𝑖𝑋̄+𝑏𝑖)−(𝑎𝑖𝑥̄∗+𝑏𝑖)

(𝑎𝑖𝑋̄+𝑏𝑖)+(𝑎𝑖𝑥̄∗+𝑏𝑖)
] , 𝑖 = 1, . . . ,10. (32) 

Table 1 Some members of the family of estimators. 

Values 
Estimators 

𝜃𝑖  𝑎𝑖  𝑏𝑖  

𝜃1 1 1 𝑡𝐶𝐶1,1 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝑋̄ − 𝑥̄

𝑋̄ + 𝑥̄ + 2
]  

𝜃2 1 𝛽2(𝑥) 𝑡𝐶𝐶1,2 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝑋̄ − 𝑥̄

𝑋̄ + 𝑥̄ + 2𝛽2(𝑥)
]  

𝜃3 1 𝐶𝑥 𝑡𝐶𝐶1,3 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝑋̄ − 𝑥̄

𝑋̄ + 𝑥̄ + 2𝐶𝑥

]  

𝜃4 1 𝜌 𝑡𝐶𝐶1,4 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝑋̄ − 𝑥̄

𝑋̄ + 𝑥̄ + 2𝜌
]  

𝜃5 𝛽2(𝑥) 𝐶𝑥 𝑡𝐶𝐶1,5 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝛽2(𝑥)(𝑋̄ − 𝑥̄)

𝛽2(𝑥)(𝑋̄ + 𝑥̄) + 2𝐶𝑥

]  

𝜃6 𝐶𝑥 𝛽2(𝑥) 𝑡𝐶𝐶1,6 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝐶𝑥(𝑋̄ − 𝑥̄)

𝐶𝑥(𝑋̄ + 𝑥̄) + 2𝛽2(𝑥)
]  

𝜃7 𝐶𝑥 𝜌 𝑡𝐶𝐶1,7 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝐶𝑥(𝑋̄ − 𝑥̄)

𝐶𝑥(𝑋̄ + 𝑥̄) + 2𝜌
]  

𝜃8 𝜌 𝐶𝑥 𝑡𝐶𝐶1,8 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝜌(𝑋̄ − 𝑥̄)

𝜌(𝑋̄ + 𝑥̄) + 2𝐶𝑥

]  

𝜃9 𝛽2(𝑥) 𝜌 𝑡𝐶𝐶1,9 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝛽2(𝑥)(𝑋̄ − 𝑥̄)

𝛽2(𝑥)(𝑋̄ + 𝑥̄) + 2𝜌
]  

𝜃10 𝜌 𝛽2(𝑥) 𝑡𝐶𝐶1,10 = 𝑘𝑦̄∗𝑒𝑥𝑝 [
𝜌(𝑋̄ − 𝑥̄)

𝜌(𝑋̄ + 𝑥̄) + 2𝛽2(𝑥)
]  

Using Table 1, we can write some members of 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 for Case II. 

To obtain 𝐵(𝑡𝐶𝐶2,𝑖) and 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖) we consider: 

 𝑦̄∗ = (𝑌̄ + 𝑌̄𝑒𝑦
∗), 𝑥̄∗ = (𝑋̄ + 𝑋̄𝑒𝑥

∗), 

Then, we have: 

 𝐸(𝑒𝑥
∗) = 0, 𝐸(𝑒𝑥

∗2
) = 𝜆𝐶𝑥

2 +
𝑊2(𝑧−1)

𝑛
𝐶𝑥(2)

2 , 𝐸(𝑒𝑦
∗) = 0, 

 𝐸(𝑒𝑦
∗2

) = 𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 , 𝐸(𝑒𝑥
∗𝑒𝑦

∗) = 𝜆𝐶𝑥𝑦 +
𝑊2(𝑧−1)

𝑛
𝐶𝑥𝑦(2). 

Now, expressing 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 estimators in Eq. (32), we get: 

 𝑡𝐶𝐶2,𝑖 = 𝑌̄(𝑘 + 𝑘𝑒𝑦
∗) 𝑒𝑥𝑝 𝑒𝑥𝑝 (

𝑎𝑋̄+𝑏−𝑎𝑋̄−𝑎𝑋̄𝑒𝑥
∗−𝑏

𝑎𝑋̄+𝑏+𝑎𝑋̄+𝑎𝑋̄𝑒𝑥
∗+𝑏

) , (33) 

 = 𝑘𝑌̄(1 + 𝑒0
∗) 𝑒𝑥𝑝 𝑒𝑥𝑝 [

−𝜃𝑖𝑒1
∗

2
(1 +

𝜃𝑖𝑒1
∗

2
)

−1

]  (34) 
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 = 𝑌̄ (𝑘 + 𝑘𝑒𝑦
∗ −

𝑘𝜃𝑖𝑒𝑥
∗

2
+

3𝑘𝜃𝑖
2𝑒𝑥

∗2

8
−

𝑘𝜃𝑖

2
𝑒𝑦

∗𝑒𝑥
∗) , 𝑖 = 1, . . . ,10. (35) 

Using the same procedure as was used for the first proposed family, we obtain 

𝐵(𝑡𝐶𝐶2,𝑖) and 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖) as follows: 

 𝐵(𝑡𝐶𝐶2,𝑖) = 𝑌̄(
3𝑘𝜃𝑖

2

8
(𝜆𝐶𝑥

2 +
𝑊2(𝑧−1)

𝑛
𝐶𝑥(2)

2 ) + (𝑘 − 1) −
𝑘𝜃𝑖

2
(𝜆𝜌𝑦𝑥𝐶𝑦𝐶𝑥 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦𝑥(2))), 𝑖 = 1, . . . . ,10, (36) 

 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖) = 𝑌̄2(𝑘2 (𝜆𝐶𝑦
2 +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) + (𝑘 − 1)2 +

𝑘𝜃𝑖
2 (𝑘 −

3

4
) (𝜆𝐶𝑥

2 +
𝑊2(𝑧−1)

𝑛
𝐶𝑥(2)

2 ) − 𝑘𝜃𝑖(2𝑘 −

1) (𝜆𝐶𝑦𝑥 +
𝑊2(𝑧−1)

𝑛
𝐶𝑦𝑥(2))), 𝑖 = 1, . . . ,10. (37) 

Minimization of 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖) with respect to 𝑘, the optimal 𝑘 is obtained as: 

 𝑘∗∗ =
𝐵1

𝐵2
, (38) 

where 

 𝐵1 = (𝜆 (
3

4
𝜃𝑖

2𝐶𝑥
2 − 𝜃𝑖𝐶𝑦𝑥) +

𝑊2(𝑧−1)

𝑛
(

3

4
𝜃𝑖

2𝐶𝑥(2)
2 − 𝜃𝑖𝐶𝑦𝑥(2)) + 2) 

and 

𝐵2 = 2 (𝜆(𝐶𝑦
2 − 2𝜃𝑖𝐶𝑦𝑥 + 𝜃𝑖

2𝐶𝑥
2) +

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 + 𝜃𝑖
2𝐶𝑥(2)

2 −

2𝜃𝑖𝐶𝑦𝑥(2)) + 1). 

Using 𝑘∗∗ in 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖), we have min 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖), 𝑖 = 1, . . . ,10 estimators 

as follows: 

 𝑀𝑆𝐸𝑚𝑖𝑛(𝑡𝐶𝐶2,𝑖)
2

= 𝑌̄2 (1 −
𝐵1

2

2𝐵2
),  𝑖 = 1, . . . ,10 (39) 

3 Efficiency Comparisons 

Now we will investigate the efficiencies of 𝑡𝐶𝐶1,𝑖 and 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 given 

in Eq. (23) and Eq. (32) with various estimators from the literature for Case I 

and Case II. 

3.1 Efficiency Comparisons for Case I 

Using Eqs. (10), (13), (14), (16) and (31) we find the efficiency conditions of 

𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10 as follows: 

i) 𝑉(𝑡𝐻𝐻) − 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖)
𝑚𝑖𝑛

> 0 
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 (1 −
𝐴1

2

2𝐴2
) < (𝜆𝐶𝑦

2 +
𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) (40) 

ii) 𝑀𝑆𝐸(𝑡𝑅
∗ ) − 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖)

𝑚𝑖𝑛
> 0 

 (1 −
𝐴1

2

2𝐴2
) < (𝜆(−2𝐶𝑦𝑥 + 𝐶𝑥

2 + 𝐶𝑦
2) +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) (41) 

iii) 𝑀𝑆𝐸(𝑡𝐵𝑇
∗ ) − 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖)

𝑚𝑖𝑛
> 0 

 (1 −
𝐴1

2

2𝐴2
) < (𝜆 (𝐶𝑦

2 +
𝐶𝑥

2

4
− 𝐶𝑦𝑥) +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) (42) 

iv) 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔
∗ ) − 𝑀𝑆𝐸(𝑡𝐶𝐶1,𝑖)

𝑚𝑖𝑛
 

 (1 −
𝐴1

2

2𝐴2
) < (𝜆𝐶𝑦

2(1 − 𝜌𝑥𝑦
2 ) +

𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) (43) 

3.2 Efficiency Comparisons for Case II 

Using Eqs. (10), (18), (20), (22) and (39) for 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 we have: 

i) 𝑉(𝑡𝐻𝐻) − 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖)
𝑚𝑖𝑛

> 0 

 (1 −
𝐵1

2

2𝐵2
) < (𝜆𝐶𝑦

2 +
𝑊2(𝑧−1)

𝑛
𝐶𝑦(2)

2 ) (44) 

ii) 𝑀𝑆𝐸(𝑡𝑅
∗∗) − 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖)

𝑚𝑖𝑛
> 0 

 (1 −
𝐵1

2

2𝐵2
) < (𝜆(𝐶𝑦

2 + 𝐶𝑥
2 − 2𝐶𝑦𝑥) +

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 + 𝐶𝑥(2)
2 −

2𝐶𝑦𝑥(2))) (45) 

iii) 𝑀𝑆𝐸(𝑡𝐵𝑇
∗∗ ) − 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖)

𝑚𝑖𝑛
> 0  

 (1 −
𝐵1

2

2𝐵2
) < (𝜆 (𝐶𝑦

2 +
𝐶𝑥

2

4
− 𝐶𝑦𝑥) +

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 +
𝐶𝑥(2)

2

4
− 𝐶𝑦𝑥(2))) (46) 

iv) 𝑀𝑆𝐸(𝑡𝑟𝑒𝑔
∗∗ ) − 𝑀𝑆𝐸(𝑡𝐶𝐶2,𝑖)

𝑚𝑖𝑛
> 0 

 (1 −
𝐵1

2

2𝐵2
) < (𝜆𝐶𝑦

2(1 − 𝜌𝑥𝑦
2 ) +

𝑊2(𝑧−1)

𝑛
(𝐶𝑦(2)

2 + 𝜌𝑥𝑦
2 𝐶𝑦

2

𝐶𝑥
2 𝐶𝑥(2)

2 −

2𝜌𝑦𝑥
𝐶𝑦

𝐶𝑥
𝐶𝑦𝑥(2))  (47) 

When the conditions Eq. (40-43) and Eq. (44-47) are satisfied, we infer that 

𝑡𝐶𝐶1,𝑖 and 𝑡𝐶𝐶2,𝑖 are more efficient than the other estimators for both i values, 

respectively. 
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4 Numerical Illustrations 

We used different data sets considered by Khare and Sinha [34] and Khare and 

Srivastava [35] for Case I and II, respectively, to examine the performances of 

𝑡𝐶𝐶1,𝑖 and 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 in practice compared to other estimators from the 

literature. 

The percent relative efficiencies (PREs) were also computed using various 

values of z for both cases separately by using the following formula: 

 𝑃𝑅𝐸(∗, 𝑡𝐻𝐻) =
𝑉(𝑡𝐻𝐻)

𝑀𝑆𝐸(∗)
× 100. 

4.1 Numerical Illustration of Case I 

We used the data set from Khare and Sinha [34] for Case I. The descriptive 

statistics are given in Table 2. Note that for Population 1: 

Table 2 Parameter values for Population I. 

𝑁 = 96, 𝑛 =40 𝑌̄ =137.92 𝐶𝑦 =1.32 𝜌𝑦𝑥(2) =0.72 𝐶𝑦𝑥(2) =1.408 

𝑓 =0.4167 𝑋̄ =144.87 𝐶𝑥 =0.81 𝜌𝑦𝑥 =0.77 𝐶𝑦𝑥 =0.823 

𝑊2 =0.25 𝜆 =0.0146 𝐶𝑥(2) =0.94 𝐶𝑦(2) =2.08 𝛽2(𝑥) =1.2 

The MSE values of 𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10 and 𝑡𝐻𝐻 , 𝑡𝑅
∗ , 𝑡𝐵𝑇

∗ , 𝑡𝑟𝑒𝑔
∗

 for various values 

of z for Case I are given in Table 3.  

Table 3 MSE Values of (𝑡𝐶𝐶1,𝑖 , 𝑖 = 1, . . . ,10) and other estimators for 

Population I. 

 z=4 z=5 z=6 z=7 z=8 

𝑡𝐻𝐻 2026.406 2540.7587 3055.112 3569.4645 4083.817 

𝑡𝑅
∗  1751.647 2265.9998 2780.353 3294.7056 3809.058 

𝑡𝐵𝑇
∗  1843.525 2357.8782 2872.231 3386.584 3900.937 

𝑡𝑟𝑒𝑔
∗  1739.829 2254.1822 2768.535 3282.888 3797.241 

𝑡𝐶𝐶1,1 1688.787 2107.573 2506.6 2887.233 3250.717 

𝑡𝐶𝐶1,2 1688.948 2107.728 2506.748 2887.376 3250.855 

𝑡𝐶𝐶1,3 1688.634 2107.426 2506.458 2887.097 3250.586 

𝑡𝐶𝐶1,4 1688.601 2107.395 2506.428 2887.068 3250.558 

𝑡𝐶𝐶1,5 1688.525 2107.321 2506.357 2887.0001 3250.492 

𝑡𝐶𝐶1,6 1689.175 2107.945 2506.957 2887.577 3251.048 

𝑡𝐶𝐶1,7 1688.747 2107.535 2506.563 2887.198 3250.683 

𝑡𝐶𝐶1,8 1688.829 2107.613 2506.638 2887.27 3250.753 

𝑡𝐶𝐶1,9 1688.498 2107.295 2506.332 2886.976 3250.469 

𝑡𝐶𝐶1,10 1689.237 2108.004 2507.014 2887.632 3251.101 

Based on these results we conclude that all estimators in (𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10) 

are more efficient than the other estimators in Case I. 
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Table 4 PREs of (𝑡𝐶𝐶1,𝑖 , 𝑖 = 1, . . . ,10) and other estimators for Population I. 

 z=4 z=5 z=6 z=7 z=8 

𝑡𝐻𝐻 100 100,000 100 100 100 

𝑡𝑅
∗  115,6858 112,125 109,8822 108,3394 107,2133 

𝑡𝐵𝑇
∗  109,9202 107,756 106,3672 105,4001 104,6881 

𝑡𝑟𝑒𝑔
∗  116,4716 112,713 110,3512 108,7294 107,547 

𝑡𝐶𝐶1,1 119,9918 120,554 121,8827 123,6292 125,6282 

𝑡𝐶𝐶1,2 119,9804 120,545 121,8755 123,6231 125,6229 

𝑡𝐶𝐶1,3 120,0027 120,562 121,8896 123,6351 125,6333 

𝑡𝐶𝐶1,4 120,005 120,564 121,8911 123,6363 125,6343 

𝑡𝐶𝐶1,5 120,0104 120,568 121,8945 123,6392 125,6369 

𝑡𝐶𝐶1,6 119,9642 120,532 121,8654 123,6145 125,6154 

𝑡𝐶𝐶1,7 119,9946 120,556 121,8845 123,6307 125,6295 

𝑡𝐶𝐶1,8 119,9888 120,551 121,8809 123,6277 125,6268 

𝑡𝐶𝐶1,9 120,0123 120,570 121,8957 123,6403 125,6378 

𝑡𝐶𝐶1,10 119,9598 120,529 121,8626 123,6122 125,6134 

According to the Table 4, the PRE values of (𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10), especially 

𝑡𝐶𝐶1,9, were better compared to those of the other estimators. We also found that 

the PRE values of 𝑡𝐶𝐶1,𝑖, 𝑖 = 1, . . . ,10 increased with increasing values of z. 

4.2 Numerical Illustration for Case II 

We used the data set from Khare and Srivastava [35] for Case II and the 

descriptive statistics are given in Table 5. Note that for Population 2: 

Table 5 Values of the parameters for Population II. 

𝑁 = 70, 𝑛 =35 𝑋̄ =1755.53 𝜆 =0.014 𝜌𝑦𝑥 =0.778 𝐶𝑦𝑥 =0.39 

𝑓 =0.50 𝑌̄ =981.29 𝐶𝑥 =0.801 𝜌𝑦𝑥(2) =0.445 𝐶𝑦𝑥(2) =0.104 

𝑊2 =0.2 𝐶𝑦 =0.625 𝐶𝑥(2) =0.5739 𝐶𝑦(2) =0.409 𝛽2(𝑥) =0.34 

The MSE values of the 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 and 𝑡𝐻𝐻 , 𝑡𝑅
∗∗, 𝑡𝐵𝑇

∗∗ , 𝑡𝑟𝑒𝑔
∗∗

 estimators for 

various values of z in Case II are given in Table 6. 

According to the MSE values, the 𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10 estimators are more 

efficient than the other estimators in a non-response situation both in y and x. 

The PRE values which are given in Table 7, were also better compared to those 

of the other estimators. Furthermore, we also found that the PRE values of 

(𝑡𝐶𝐶2,𝑖, 𝑖 = 1, . . . ,10) decreased with increasing values of z. 
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Table 6 MSE values of (𝑡𝐶𝐶2,𝑖 , 𝑖 = 1, . . . ,10) and other estimators for 

Population II. 

 z=4 z=5 z=6 z=7 z=8 

𝑡𝐻𝐻 8137.694 9056.8011 9975.908 10895.0147 11814.12 

𝑡𝑅
∗∗ 8231.209 9813.9618 11396.72 12979.4683 14562.22 

𝑡𝐵𝑇
∗∗  4619.291 5417.1474 6215.003 7012.8594 7810.715 

𝑡𝑟𝑒𝑔
∗∗  4794.201 5684.361 6574.521 7464.6817 8354.842 

𝑡𝐶𝐶2,1 4576.81 5357.387 6135.116 6910.009 7682.081 

𝑡𝐶𝐶2,2 4576.791 5357.478 6135.314 6910.313 7682.488 

𝑡𝐶𝐶2,3 4576.804 5357.415 6135.176 6910.101 7682.204 

𝑡𝐶𝐶2,4 4576.804 5357.418 6135.183 6910.111 7682.218 

𝑡𝐶𝐶2,5 4576.852 5357.204 6134.712 6909.39 7681.251 

𝑡𝐶𝐶2,6 4576.793 5357.467 6135.289 6910.274 7682.436 

𝑡𝐶𝐶2,7 4576.809 5357.391 6135.125 6910.023 7682.099 

𝑡𝐶𝐶2,8 4576.811 5357.383 6135.107 6909.996 7682.063 

𝑡𝐶𝐶2,9 4576.85 5357.213 6134.732 6909.42 7681.292 

𝑡𝐶𝐶2,10 4576.794 5357.465 6135.285 6910.268 7682.428 

Table 7 PREs of (𝑡𝐶𝐶2,𝑖 , 𝑖 = 1, . . . ,10) and Others for Population II. 

 z=4 z=5 z=6 z=7 z=8 

𝑡𝐻𝐻 100 100,000 100 100 100 

𝑡𝑅
∗∗ 98,8639 92,285 87,53315 83,94038 81,12856 

𝑡𝐵𝑇
∗∗  176,1676 167,188 160,5133 155,3577 151,2553 

𝑡𝑟𝑒𝑔
∗∗  169,7404 159,328 151,7359 145,9542 141,4045 

𝑡𝐶𝐶2,1 177,8027 169,053 162,6034 157,6701 153,788 

𝑡𝐶𝐶2,2 177,8035 169,050 162,5982 157,6631 153,7799 

𝑡𝐶𝐶2,3 177,803 169,052 162,6018 157,668 153,7856 

𝑡𝐶𝐶2,4 177,803 169,052 162,6016 157,6677 153,7853 

𝑡𝐶𝐶2,5 177,8011 169,058 162,6141 157,6842 153,8046 

𝑡𝐶𝐶2,6 177,8034 169,050 162,5988 157,664 153,7809 

𝑡𝐶𝐶2,7 177,8028 169,052 162,6032 157,6697 153,7877 

𝑡𝐶𝐶2,8 177,8027 169,053 162,6037 157,6703 153,7884 

𝑡𝐶𝐶2,9 177,8012 169,058 162,6136 157,6835 153,8038 

𝑡𝐶𝐶2,10 177,8034 169,050 162,5989 157,6641 153,7811 

5 Conclusion 

We proposed families of estimators, 𝑡𝐶𝐶1,𝑖, 𝑡𝐶𝐶2,𝑖; 𝑖 = 1, . . . ,10, taking advantage 

of an exponential function for estimating the population mean under non-

response for two cases. Equations for the bias and minimum MSE of 

𝑡𝐶𝐶1,𝑖, 𝑡𝐶𝐶2,𝑖; 𝑖 = 1, . . . ,10 were also obtained for both cases. In this way, the 

𝑡𝐶𝐶1,𝑖, 𝑡𝐶𝐶2,𝑖; 𝑖 = 1, . . . ,10 estimators were found to be more efficient in theory 

than the other estimators under the obtained conditions. Using the data sets from 

Khare and Sinha [34] and Khare and Srivastava [35], we concluded that 𝑡𝐶𝐶1,𝑖 

and 𝑡𝐶𝐶2,𝑖 are more efficient than the other estimators in Case I and II, 
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respectively. Therefore, the proposed 𝑡𝐶𝐶1,𝑖, 𝑡𝐶𝐶2,𝑖; 𝑖 = 1, . . . ,10 estimators are 

recommended for both cases of non-response situations based on the obtained 

results. 
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