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Abstract. Suppose that a time series model is fitted. It is likely that the fitted 

model is not the true model. In other words, the model has been misspecified. In 

this paper, we consider the prediction interval problem in the case of a 

misspecified first-order autoregressive or AR(1) model. We have calculated the 

coverage probability of an upper one-step-ahead prediction interval for both 

properly specified and misspecified models through Monte Carlo simulation. It 

was found that dealing with prediction interval for misspecified model is 
complicated: the distribution of a future observation conditional on the last 

observation and the parameter estimator is not identical to the distribution of this 

future observation conditional on the last observation alone. 

Keywords: autoregressive; coverage probability; model misspecification; time series 

prediction.  

1 Introduction 

A very informative way of specifying the accuracy of a time series prediction is 

to use a prediction interval. To do this, some authors, e.g. [1-5], have computed 

the prediction interval or limit for the autoregressive (AR) process and the 

autoregressive conditional heteroscedastic (ARCH) process. For these models, 
they have assumed that the fitted model is the true model. In other words, the 

authors have employed properly specified models. 

In practice, however, time series models are likely to be misspecified. For 
instance, an AR(1) model is fitted but the true model is an AR(2) or MA(1) 

model. This paper deals with the prediction interval in the case of a misspecified 

AR(1) model. In the context of the prediction problem, there have been a few 

papers, such as [6] and [7], that provide derivations of expressions for mean-
squared-error of prediction in the case of a misspecified Gaussian AR(p) model. 

An investigation of the coverage probability, conditional on the last 

observations, of a prediction interval based on a misspecified Gaussian AR(p) 
model was presented first by [8]. 

In the case of a misspecified Gaussian AR(p) model, the derivation of the 

asymptotic expansion of the coverage probability, conditional on the last 
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observations, of a prediction interval requires a great deal of care. To make 

clear the issues involved in this derivation, we consider the simple scenario 

described in Section 2. Namely, a misspecfied zero-mean Gaussian AR(1) 

process fitted to a stationary zero-mean Gaussian process. We also consider a 
one-step-ahead prediction interval with target coverage probability. Similarly to 

[8], we aim to find the asymptotic expansion for the coverage probability of the 

prediction interval under consideration, conditional on the last observation. 

In Section 3, we compute the conditional coverage probabilities for both 

properly and misspecified first order autoregressive models. This is aimed to 

examine the effect of misspecification on the coverage probability of the 

prediction interval. Furthermore, the technical argument for finding the 
conditional coverage probability of a prediction interval as proposed by de Luna 

(which differs from the estimative prediction interval) is reviewed in detail in 

Section 4. A numerical example to illustrate a gap in his argument is given in 
Section 5. 

2 Description of the Time Series and Fitted Models 

Consider a discrete time stationary Gaussian zero-mean process }{ tY . Let 

)(= kttk YYE   denote the autocovariance function of }{ tY  evaluated at lag k . 

Suppose that 


|<|
1= jj
 . We do not require that }{ tY  is an AR(1) process. 

The available data are nYYY ,,, 21  . We will be careful to distinguish between 

random variables, written in upper case, and their observed values, written in 

lower case. 

We consider one-step-ahead prediction using a stationary Gaussian zero-mean 

AR(1) model. This model may be misspecified. Let 0/=  kk . Define   to 

be the value of a  that minimizes 
2

1 )( nn YaYE  . Thus 01/=  . Define 

)=|(= 1

2

nnn yYYvar  . Note that  

0

2

1
0

2 =



   

and 
22

1 =)(  nn YYE  . Let k


  denote a consistent estimator of k  such 

as kjj

n

kj
YYn 

  1=

1
. Let 01 /=


  and note that 


  is a consistent 
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estimator of  . We use the notation ][ ba  for the interval ],[ baba   

( 0>b ). 

3 The Coverage Properties of Misspecified AR(1) Model 

In this section, we examine the effect of misspecification on the coverage 

probability of the prediction interval. The true model }{ tY  is a zero-mean 

Gaussian AR(2) process, satisfying  

 1 1 2 2=t t t tY Y Y      (1) 

for all integer t , where t  are independent and identically )(0, 2N  

distributed. The roots of 
2

211 mm    are outside the unit circle to ensure 

stationarity of the process. 

We consider an upper one-step-ahead prediction interval with conditional mean 

square prediction error equal to 
2V , i.e.  

 

2

1( ; , ) = (1 ) ,u n nI Y V Y V   
   

  (2) 

where the estimators 

  and 

2


V  are obtained by maximizing the 

loglikelihood function conditional on 11 = yY , that are  

1

1

=1

1
2

1

=1

=

n

t t

t

n

t

t

Y Y

Y















 

and  

2
1

2

1

=1

1
= ( ) .

1

n

t t

t

V Y Y
n








 
 

The coverage probability of ),;(

2


VYI nu  , conditional on nn yY =  is 

calculated as follows. First, we observe that  



220 Khreshna Syuhada 

)=,=|)(1( 11

1

1 



  nnnnnn yYyYVYYP




)=,=|)(1(= 11

1

1121 



  nnnnnnnn yYyYVYYYP




)=,=|)(1)((= 11

1

1211 



  nnnnnnn yYyYVyyP


  

11
1 2 1 1= ( ) (1 ) | = , =n n

n n n n

y y V
E Y y Y y  

  


 

  
  
      
  

  




 (3) 

and we estimate this conditional expectation by simulation. We use the 

backward representation:  

 1 1 2 2=t t t tY Y Y      (4) 

for all integer t , where t  are independent and identically )(0, 2N  

distributed. It is noted that t  and ,, 21  tt YY  are independent. We begin the 

simulation run by setting ),(=),( 11  nnnn yyYY  and then use (4) to run the 

process backwards in time. 

Table 1 Estimated coverage probabilities, conditional on 
1( , ) = (0,1)n nY Y 

, of 

the upper 0.95 one-step-ahead forecasting intervals for true and misspecified 

models. Standard errors are in brackets. 

2

21 ,, aa  Model 
=50n

 
=100n

 

 1=0.25,=1,= 2

21 aa    True   0.9401 

(0.00079)  

 0.9451 

(0.00055) 

  Misspecified   0.9999 
(0.00001)  

 1 (0.000002) 

 1=0.4,=0.1,= 2

21 aa    True   0.9327 

(0.00091)  

 0.9423 

(0.00056) 

  Misspecified   0.9311 

(0.0011)  

 0.9316 

(0.0009) 

1=0.3,=0.3,= 2

21  aa    True   0.9342 

(0.00088)  

 0.9419 

(0.00057) 

  Misspecified   0.9656 

(0.0010)  

 0.9728 

(0.0007) 

1=0.5,=0.75,= 2

21 aa     True   0.9427 

(0.00074)  

 0.9468 

(0.00049) 

  Misspecified   0.9988 
(0.00006)  

 0.9993 
(0.00002) 
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Table 1 presents the estimate of conditional coverage probability (3). Standard 

errors of these estimates are given in brackets. We also provide the estimate of 

conditional coverage probability of when the predictor is also a zero-mean 

Gaussian AR(2) model (properly specified model) as in [4]. 

4 The Conditional Distribution for Misspecified Model 

de Luna [8] considers the data generating mechanism }{ tY , as described earlier, 

and h -step-ahead prediction using a zero-mean Gaussian AR( p ) model. This 

model may be misspecified. Consider the case that 1=h  and 1=p . His 1  

prediction interval for 1nY  is  

 
2 2 2 2

1 /2 1 /2= [ ( ) , ( ) ],n n n nJ Y Y z Y Y z          
 

 

 where 
212 =)( nn YwnY  , 

2

1111=
)2(= kkkk

w   



  and /21 z  is the 

/2)(1   quantile of the (0,1)N  distribution. In practice, 
2  and w  are 

unknown since they depend on an unknown autocovariance function of the 

process }{ tY . However, de Luna assumes that both 
2  and w  are known. 

de Luna claims that )(1=)=|( 1

1



  nOyYJYP nnn  . His justification for 

this claim, with intermediate steps added, is the following.  

 
)=|( 1 nnn yYJYP   

 
2 2

1 1 /2= ( [ ( ) ] | = )n n n n nP Y y y z Y y     


)( nsexpectatiolconditionafortheoremonsubstitutitheby  

 
),=|),=|])([((= /21

22

1 nnnnnnn yYyYzyyYPE

  

 

by the double expectation theorem. To evaluate this conditional expectation, de 

Luna proceeds as follows. Define )(F  and )(f  to be the cdf and pdf of 1nY  

conditional on nn yY = , respectively. He then assumes that  

 
2 2

1 1 /2( [ ( ) ] | = , )n n n n nP Y y y z Y y      
 

 

is equal to  
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2 2 2 2

1 /2 1 /2( ( ) ) ( ( ) ),n n n nF y y z F y y z           
 

 (5) 

since the Taylor expansions are applied to F  and not some other function. 

Then, by Taylor expansion of F  around /21   zyn ,  

 ))(( /21

22

  zyyF nn


 

)(= /21   zyF n   

2 2

1 /2 1 /2( )( ( ) ( ( ) ) )n n nf y z y y z             


 

 Now, /21=)( /21    zyF n . Thus  

 
2 2

1 /2( ( ( ) )| = )n n n nE F y y z Y y    


 

 is equal to  

2 2

1 /2 1 /21 ( )( ( | = ) ( ( ) ) )
2

n n n n nf y z y E Y y y z 


             




 

Similarly,  

2 2

1 /2( ( ( ) )| = )n n n nE F y y z Y y    





  )))(()=|()((
2

= /21

22

/21  


zyyYEyzyf nnnnn
 

If it is assumed that 
1( | = ) = ( )n nE Y y O n 


 then 

1

1( | = ) =1 ( )n n nP X J Y y O n 

    . 

The assumption (5) is crucial. It is true if { }tY  is also an AR(1) process (i.e. if 

the model is properly specified), but it is not necessarily true if the model is 

misspecified. Let 
† ˆ( ; )F   denote the cdf of 1nY   conditional on =n nY y  and 

ˆ=


. Now  
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2 2

1 1 /2( [ ( ) ] | = , )n n n n nP Y y y z Y y      
 

 

† 2 2 † 2 2

1 /2 1 /2= ( ( ) ; ) ( ( ) ; ).n n n nF y y z F y y z             
   

 

If }{ tY  is also an AR(1) process then, by the Markov property, )(=)ˆ;(†  FF   

and so (5) is satisfied. If, however, the model is misspecified then )ˆ;(† F  is 

not necessarily equal to )(F . 

5 Computational Example to Illustrate the Error in the 

Calculating Conditional Distribution 

In this section, we provide a numerical example to support the following 

argument. For a misspecified AR(1) model, the distribution of 1nY  conditional 

on nn yY =  is not identical to the distribution of 1nY  conditional on nn yY =  

and ̂=

 . In doing so, we seek an estimator 


 , an observed value ̂  

and a misspecified AR(1) model such that the condition ̂=

 , when added 

to the condition nn yY = , tells us a great deal more about the value of 1nY  than 

the condition nn yY =  alone. 

Consider the following estimator:  

 

2

1

=2

2 2

1

=2 =2

=

T

t t

t

T T

t t

t t

Y Y

Y Y





 
 
 



 


 (6) 

and let ),,(=),,( 21 Tn YYyy   and ),,(=),,( 111 Tn YYxx  . Thus, we 

write the estimator (6) as  

2

=1

2 2

=1 =1

=

n

i i

i

n n

i j

i j

y x

y x

 
 
 



 


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which is less than or equal to 1, according to the Cauchy-Schwarz inequality. 

Equality occurs if ii yax *= , i.e. 1

*= tt YaY , where  

1
* =1 =2

2 2

=1 =2

= =

n T

i i t t

i t

n T

i t

i t

y x Y Y

a

y Y

 

 
 

Thus,  

 
*

1=1 =t tY a Y  


 

where 1=*

a . Meanwhile,  

 11and = .n n n nY y Y y   


 

Now, consider a stationary zero-mean Gaussian AR(1) process }{ tY  satisfying  

 ttt YY  2=
 

where t  are independent and identically )(0, 2N  distributed,   is close to 1 

but satisfies 1< . We find the autocovariance properties of }{ tY  as follows:  

 

2

0 2
=

1





 

 

2

2 2
= , =1,2,

1

k

k k
 




  

whilst 0=l , for 1,3,=l . By the properties above, 0=/= 01   for the 

above process. Thus the distribution of 1nY  conditional on nn yY =  is 

)(0, 0N , i.e.  

 

.
1

0,=)(0,)=|(
2

2

01 














 NNyYY nnn 

 (7) 

If we choose 1=2 , 0.95=  and ny  fairly large,  
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2

1
= 2 = 6.405, say,

1 0.95
ny


 

then  

.(0,10.256)=))0.95(0,1/(16.405)=|( 2

1 NNYY nn    

Now, if we condition on |<1| 


, where 0.01= , say, and n  is not too 

large then we expect that, to a good approximation,  

 
,1).(0.95=),()|<1|,=|( 2

1 nnnnn yNyNyYY  


 (8) 

which is quite different from (7). 

As for illustration, a simulation is carried out as follows. Initialize the counter: 

set 0=l . The k th simulation run is   

 simulate an observation of ),,( 11 nYY   conditional on nn yY = . 

 calculate 

  

 if |<1| 


, then 1= ll  and store 1= nl yx   

 

After M  simulation runs, suppose that Nl = . The probability density function 

of 1nY  conditional on nn yY =  and |<1| 


 is approximated by  

 
=1

1
( ;0.95 )

N

l

l

f y x
N
  

where )0.95;( lxyf  denotes the ,1)(0.95 lxN  probability density function 

evaluated at y . Note that to simulate an observation of ),,( 11 nYY   

conditional on nn yY =   
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Figure 1 The pdf of 1nY   conditional on n nY y  (top) and the pdf of 1nY   

conditional on n nY y  and | 1|    (bottom), M = 10.000. 

we shall know that the vector 
T

nYYY ),,(= 1  follows a multivariate normal 

distribution with mean vector   and the covariance matrix   i.e.  

 






















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Y
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
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
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





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

























011

1

01

110

,

0

0

0



















n

n

  

Now if we partition the mean vector   and the covariance matrix   such that  

 
















2

1

= 





  

with sizes for 1  and 2  are 11)( n  and 11 , respectively, and  
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



















 2221

1211

=   

with sizes  





















111)(1

11)(1)(1)(

n

nnn

  

 

Figure 2 The pdf of 1nY   conditional on n nY y  (top) and the pdf  of 1nY   

conditional on n nY y  and | 1|    (bottom), M=50.000. 

Then the distribution of ),,( 11 nYY   conditional on nn yY =  is multivariate 

normal with mean vector 

  and covariance matrix 


  ([9]), i.e.  

 
),()=|,,( 11


  NyYYY nnn 

 

where the mean vector and the covariance matrix  
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)(= 2

1

22121   

ny


 

 21

1

221211=  


 

Figures 1-3 show the pdf of 1nY  conditional only on nn yY =  (top figure) and 

the pdf of 1nY  conditional on nn yY =  and |<1| 


 (bottom figure). We 

carry out 300=n  and 100,00000,10,000,500= andM  simulation runs. 

6 Discussion 

The derivation of the asymptotic conditional coverage probability for a 

misspecified model requires a great deal more care than the derivation of the 

asymptotic conditional coverage probability for a properly specified model. 
Results similar to those of de Luna can be derived by defining the random 

variable 1 1 1 1= ( | , , )n n n n nX E X X X       and noting that 1n  and 

),,( 1nn XX  are independent random vectors. 

 

Figure 3 The pdf of 1nY   conditional on n nY y  (top) and the pdf of 1nY   

conditional on n nY y  and | 1|    (bottom), M=100.000. 
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1 1 1( | , , )n n n nX E X X X     and noting that 1n   and 1( , , )n nX X    are 

independent  random vectors. 
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