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Abstract. In this paper, several parameters of the non-linear Hirota-Satsuma
coupled KdV system were estimated using a hybrid between the Firefly
Algorithm (FFA) and the Modified Adomian decomposition method (MADM).
It turns out that optimal parameters can significantly improve the solutions when
using a suitably selected fitness function for this problem. The results obtained
show that the approximate solutions are highly compatible with the exact
solutions and that the hybrid method FFA_MADM gives higher efficiency and
accuracy compared to the classic MADM method.
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1 Introduction

The Adomian decomposition method (ADM) was introduced in 1980 to solve
many linear and nonlinear equations effectively and accurately, with easy
solutions of ordinary or partial differential equations with approximate values
that converge speedily [1]. Several studies have been proposed to modify the
regular ADM for initial value problems and boundary value problems [2-3]. An
error analysis of the Adomian series of non-linear differential equations was
introduced in [4] and [5] used the ADM to solve coupled systems of non-linear
physical equations, coupled systems of diffusion-reaction equations and integro-
differential diffusion-reaction equations. In 2017, Nouri suggested an
improvement of the ADM for the solution of stochastic differential equations

[6].

Yan in 2003 proposed extended Jacobian elliptic functions to construct new
exact solutions from periodic solutions of the Hirota-Satsuma coupled KdV
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system by using the concept of symbolic computation [7]. Hu and Liu in 2008
proposed positon, complexiton and negaton solutions for the Hirota-Satsuma
coupled KdV system, where the approximate complexiton solutions are singular
and given both graphically and analytically [8]. Khater, et al. in 2017 proposed
the exact traveling solution of the Hirota-Satsuma coupled KdV system
depending on the modified simple equation method [9]. Hosseini, et al. in 2012
proposed an analytic method that efficiently solves ODEs, where the proposed
method requires only the calculations of the first Adomian polynomial and does
not need to solve the functional equations in each iteration [10]. Moradweysi, et
al. in 2018 studied the pull-in instability of doubly clamped nano-switches
subjected to electrostatic and intermolecular forces and proposed to solve the
obtained equation by using the modified ADM [11-12].

The basic idea of the proposed FFA_MADM is to find the best parameters for
the non-linear Hirota-Satsuma coupled KdV system by using the firefly
algorithm (FFA), one of the most popular metaheuristic algorithms, with the
modified ADM by formulating a fitness function from the modified ADM that
is minimized by the FFA to attain optimal values for all parameters of the
nonlinear Hirota-Satsuma coupled KdV system.

In Section 2 of this paper the mathematical model and related work are
presented. In Section 3 the basic ideas of the MADM are described. In Section 4
a brief introduction of FFA is given. Section 5 is devoted to solving a nonlinear
Hirota-Satsuma coupled KdV system by MADM. Section 6 describes the
proposed method. Concluding remarks are given in Section 7.

2 Mathematical Model and Related Works
The coupled Korteweg-de Vries equation (CKdV) is known as [13]:

ou 23%u ou ov

E—a(ﬁ+6Ua)+2bUa, (1)
ov 93v ov

%= o oy, )

where a and b are subjective constants. The CKdV condition describes
connections of two long waves with various scattering relations. It is associated
in particular with most sorts of long waves with frail scattering [14-15]. By
utilizing the Hirota technique, the single lone wave arrangement of this
framework is:

u(x,t) = 2A4%sech?(¢), v(x,t) = ﬁsech(s),
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where w is an arbitrary constant depending on the parameter value A > 0, b # 0
and a is any parameter such that 4 a + 1 # 0.

Raslan [16] proposed the use of the ADM for a Hirota-Satsuma coupled KdV
equation and a coupled MKdV equation. The local existence and smoothing
properties for Hirota-Satsuma systems is discussed in [17]. Periodic solutions to
generalized Hirota-Satsuma coupled systems using trigonometric and
hyperbolic functions are discussed in [18]. Ismail and Ashi [19] used the
Petrov-Galerkin method with a product approximation technique to numerically
solve a Hirota-Satsuma coupled KdV equation.

Recently, several researchers have employed FFA to solve differential
equations. Raja [20] applied ANN with other heuristic techniques to solve the
one-dimensional Bratu equation. Apostolopoulos and Vlachos [21] used FFA
for solving the economic emission load dispatch problem. Yang [22] has shown
how to use a recently developed FFA to solve nonlinear design problems. Yang,
et al. [23-24] used the firefly algorithm (FA) to determine a feasible optimal
solution for the economic dispatch problem with valve loading effect problems.

3  The Modified Adomian Decomposition Method (MADM)
Suppose the general equation can be defined as follows:
Lu + Nu + Ru = f (x) 4)

where L represents an invertible linear operator, N is a non-linear operator and R
is the residual linear part. Then:

Lu=f(x)—Nu-—Ru

If the initial conditions are used and the inverse operator L~ is applied to both
sides of Equation (4), we find that:

u=g(x)— L *Nu—L1Ru (5)

where L7 = fox (.)ds, and g(x) are the terms gotten from integrating the

remaining term, f (x). The ADM expects that the nonlinear administrator N (u)
can be disintegrated by an infinite series of polynomial functions given by:

N(u) = Z;?:O An(uo, Uq, eens ,un)
where A,, are the Adomian polynomials (ADMP) [1,5]:

Ay == N2 )], n=012,. (6)

El-Kalla [4] presented another formula for ADMP. He asserted that the
Adomian arrangement utilizing this new approach is speedier than utilizing
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ADMP Eq. (6). The Kalla polynomial in the accompanying structure is
expressed as follows:

= N(Sp) — X755 Ai(Uo) Uy, o Un_1) (7)
where S,, = u, + u; +---+u, and A, can be given as Ay = N(u,)
(N(uo))u1 > dxz (N(uo))ul +- p dx3 (N(uo))u1
24 dx4 (N(u"))ul
Ay =— (N(uo))uz % Iz
(N(uo)) [Buu, + 3u u +ud] +-

(N(uo)) 2uy uy +udl +
6 dx3

4 Firefly Algorithm (FFA)

In recent years, researchers have been very interested in studying swarm
algorithms, which have been applied for solutions to many complex
applications. The firefly algorithm, developed by Yang in 2008, is one of the
most important swarm algorithms and has managed to outperform many other
algorithms in solving problems efficiently [25-26].

FFA has shown effectiveness and good performance in several optimization
problems. The idea for FFA was inspired by the flashing light behavior of
fireflies. The flashes are used as a signal system for fireflies to attract other
fireflies through the characteristics of their flashing [27].

Each member of the FFA is classified as a candidate solution within the search
space of the problem, while the best solutions represent the brightest locations.
The attractiveness of a firefly is determined by its brightness, which is
expressed in the objective function of the problem. The greater the distance
between the firefly and the target location, the higher the brightness ratio [28].
At first the fireflies move randomly. During the search they are attracted to new
locations (candidate solutions).

The process of attraction between the fireflies is based on the brightness of their
flashes. The least bright fireflies are attracted to the brightest fireflies [29]. The
mathematical representation of the FFA is determined by the size of the
population in the swarm (ng), which is randomly distributed, as well as the
position vector of each firefly, denoted by x; = {x;1, xi2, ..., X;p}, Where i =
1,2,..,nf, D is the dimensionality of the solutions. The distance in the search
area between any two fireflies i and j at positions x; and x; can be calculated by
the following equation:
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Start
Create objective function, positions of FFA,
Create max iteration, light intensity ,,
while (t < Max NO. of iterations).
for i=1: n (n is the No. of fireflies)
for j=1: n (n is the No. of fireflies)
if move firefly towards
endif
Evaluate the new solutions in FFA
Update the light intensity equation.
end for j
end for i
Update the current best solution
end while
Return the current best solution results
End

Figure 1 Pseudocode of the FFA.

; 2 .. .
rij = ||lx— x| = \/Zgﬂ(xw —xp), i#jandi,j=12..n (8)
where Dim represents the dimensions of the solutions to the problem.

The value of the objective function represents the brightness of firefly i at
position xi, which is calculated by the following equation:

I (x;) = F(x;) (©)
The intensity depends on the Ir, emitted and the distance r;; between the
fireflies. The light intensity I+ () can be described by r;; as follows [27]:

@) =le,  m=>1 (10)
where y can be taken as a constant.

Each firefly has a certain attractiveness in the swarm and S varies relative to
distance r;;. The main formula for the attractiveness of a firefly is formulated as
follows [30]:

Br(r) = Efoe‘yrm, m=>=1 (11)

where B¢(r) is the attractiveness function at distance r and Sy, is the initial
attractiveness of the firefly (which can be constant). Firefly positions are
updated in the swarm depending on their brightness. A less bright firefly x;
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moves towards a brighter firefly x; because of attraction. The equation of
movement is defined as follows:

_,m
Xigt=xlg+ Broe™ (xfg —xfy) +a ey (12)

where «; is a random parameter, ¥ is the coefficient, and id = (rand — 0.5),
where ‘rand’ represents a random number from an uniform distribution in the
interval [0,1]. The pseudocode for the FFA can be written as in Figure 1 [31].

5 Application of MADM to the Coupled Hirota-Satsuma System

This section is devoted to the analytical solution of Hirota-Satsuma Eqg. (1) and
Eqg. (2). For this purpose, MADM was used in order to obtain the solution.

Let the standard form of Equations Eq. (1-2) in an operator be:
Liu — a Lyyt — 6aul,u —2bv L,v =0, (13)
Liv+ Lyyv+3ul,v=0, (14)
u(x,0) = g1(x)

v(x,0) = g5 (x) 3
. a a d . .

where the notations L, = 50 Lx =52 and Ly, = Py symbolize the linear

differential operator.

Let L1 be the inverse of operator L;. It can conveniently be taken as an integral

with respect to ¢ from 0 to t.

Define Lt = fot( .)dt . Then system Egs. (8-9) becomes:

ux,t) = g1 (x) + Ly'[a Lygu + 6a@;(w) + 2b0,(v)], (15)

v(x,t) = g2 (x) = L[ Lyxxv + 305(u, v)], (16)
where:

0,(w) = uuy, D, (v) = vy, D3 (u,v) = uv,

MADM assumes an infinite series for the unknown functions u(x,t) and
v(x,t) in the form

u(x, t) = Xyzo un(x, 1), v(x,t) = Xn=o (X, 1), (17)

We can write @, ,®,, and @5 by an infinite series of Adomian polynomials in
the form

O1(u) = Xp=04n, D2(v) = X3=0Bn, 03(u,v) = ¥7-0Cp (18)
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where A,, B,, and C,, are the appropriate ADMP. That is, when A,,, B,, and C,
are the appropriate Adomian polynomials, the general form of the formulas is:

1 da"

An(uo yUg, ---;un) = E m [@1 (Zlio:o yk uk)] Y=0 ,n=0 (19)
1 d" .
Bn(vo s V1) ey Vn) = n m [@2 (Zk:o yk Uk)] y=0 1 =0 (20)
1 an o
Cn(o Uy, vy Un Vo, V1, ey V) = — d—w[%(zk:oyk U,
Xiczo V" vie)| y=o,
n=0 (21)

For example, the first polynomials using Eq. (14) and Eq. (16) are computed as
follows:

AO:%%

A=ty 4w T u T G G2
A3—u3%+u0%+u3%+ul%+...
A4:u4% uo%

Bozvo%

31=v0%+p1%+v1%
By=vs o v v vy 4
Cozuo%
62:u°%+u2%+”2%+u1%+u2%,
C3=u3aai; uo%+u3%+u1%+...
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and so on. The nonlinear systems Egs. (15-16) are constructed as follows:

uo(x' t) = gl(x); vo(x, t) = «gZ(x)!
Unp1 (0, t) = L7Ya Lygyn + 6a A, +2bBy]; n>1 (22)
vn+1(x: t) = _Lgl[l‘xxxvn +3 Cn]; n=1 (23)

where the functions g; (x) and g, (x) are the initial condition. We construct the
solution u(x,t) and v(x,t) as follows:

limy, = u(x,t), lim @, = v(x,t)
n—oo n—-oo
where:
Yn(x,8) = Lo Uk (x, 1), @u(x,t) = Xi—ovi(x,0), (24)

and the recurrence relation is given as in Egs. (22-23).

To examine the performance of MADM for solving Egs. (1-2), we set the initial
condition [16]:
(Ax+2m1(w))

Vw

where w is an arbitrary constant depending on parameter value 1 >0, b # 0
and a is any parameter such that 4 a + 1 # 0. Now, the reclusive relation can
be written as follows:

u,(x,t) = 222 sech? (Ax + v,(x, t) = %

zln(w))

1 2Aln(w)x+1
ety = 10 TGy ) (2adt winae
1' 2 p(L 2AnWw) x+1 3
cos (E W)
1 22 Inw)x+1
v, (x,t) == sinh (% W)As t
1\ -
2 1 2An(w) x+1
cosh (} L xL)" iy

u(x,t) =u,(x,t) +u (x, t) +uy(x,t) +-
1 1

"y (rscon e
5 1 2Aln(w) x+1
ln(w)x+1) )W —1925nh(2m(—w))
1 2Aln(w) x+1 4 1 2Aln(w) x+1
co h( In(w) ) — 6sinh (2 In(w) ) t
4
cosh (2 ZMT;TE‘ZA)})XH) wb + 24 23 t?

5
22AIn (w) x+1) wab — 36 13 t2

cosh (2 In (w)
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1 2Aln(w) x+1

3
cosh (5 W) wab + 18 /12 t3

. 1 2Aln(w) x+1 2
sinh (E W) ab (25)
v(x, t) = v,(x, t) + vi(x, t) + vy (x, t) ...
=2 L = (4 cosh G

3
8 wicosh( 12 An(w) x+1 )

2 n(w)
5
1) )W +

1 2Aln(w) x+1 1 1

42 sinh (E ln(—w)) t (5 (In(w)) (2 Aln(w) x+1 )4 -

9,3 .- l 2 Ain(w) x+1 l 1
64 A° t°sinh (2 o )awcosh (2 o) 22

In(w) x + 1))? (26)

1
In(w)

A In (w)x +

6 Firefly Proposed Method (FFA_MADM)

The idea of the proposed FFA_MADM method is based on finding the best and
optimal parameters for nonlinear Hirota-Satsuma systems using FFA combined
with MADM. The results of MADM solution series Egs. (25-26) are used to
formulate the objective or fitness function in the FFA using:

U(a,b, 1) = MSE( S (u(e ) - a(x tj))z) 27)
V(a,b,2) = MSE (S, Tt (v(x0 &) - 9(x, tj))z) (28)
F= min% |U(a,b,A) +V(a,b,2) (29)

where F represents the fitness function (MSE) solved by using FFA, n and m
represent the total number of steps used in the solution domain of x and ¢t
respectively, u and v are the solutions of nonlinear Hirota-Satsuma systems
Egs. (25-26), @i and ¥ are the exact solutions for these systems. Consequently,
the best values for systems Egs. (25-26) are obtained from the following
parameter values:

a= —2.7286.
b = 4.4061.
A= -0.0086.

The proposed method supposes an elementary standard model structure where
some of the parameters are unknown. The objective of this method is to find the
optimal parameters (a, b, A) for nonlinear Hirota-Satsuma coupled KdV systems
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to minimize the differences between the model output vector and the real
response vector.

The default settings for the FFA parameters listed in Table 1 were used by the
Matlab® R2016a software.

Table 1 Parameter Values for FFA

Parameter Name Values

Swarm size 30

Max no. of iterations 500
Max stall generations 50

Initial population range [-10, 10]

Number of decision variables 3
Light absorptioncCoefficient 1
Attraction coefficient 2

Mutation coefficient 0.2

We note that the proposed FFA_MADM algorithm outperformed the numerical
method both at t=0.5 and t=1 as can be seen in comparison of absolute errors
using u,, see Table 2.

Table 2 Comparison of Absolute Errors Using u, for Various Values of t and x in
Hirota-Satsuma System between FFA_MADM and MADM

FFA_MADM MADM FFA_MADM MADM

X t=05 t=1
0 8.2799%e-24 8.1547e-6 4.3946e-23 3.3335e-5
0.1 7.9989-24 1.3822e-5 4.2685e-23 8.4115e-5
0.2 7.7207e-24 2.0346e-5 4.1426e-23 1.4248e-4
0.3 7.4454e-24 2.7423e-5 4.0170e-23 2.0566e-4
04 7.1730e-24 3.4660e-5 3.8915e-23 2.7011e-4
05 6.9035e-24 4.1623e-5 3.7662e-23 3.3203e-4
0.6 6.6368e-24 4.7890e-5 3.6412e-23 3.8778e-4
0.7 6.3730e-24 5.3102e-5 3.5163e-23 4.3428e-4
0.8 6.1122e-24 5.6994e-5 3.3917e-23 4.6928e-4
0.9 5.8542e-24 5.9407e-5 3.2673e-23 4.9149e-4
1 5.5991e-24 6.0302e-5 3.1431e-23 5.0058e-4
MSE 4.8576e-47 1.8077e-9 1.4348e-45 1.1866e-7

Figure 2 depicts the absolute error of the Hirota-Satsuma system by U equation
att=0.5 and t=1.
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Figure 2 Absolute error of the Hirota-Satsuma system by: (a) U equation when
t=0.5, (b) U equation when t = 1.

The proposed FFA_MADM algorithm also outperformed the numerical method
at both t=0.5 and t=1 as shown in comparison of absolute errors using v, see
Table 3.

Table 3 Comparison of Absolute Errors Using v, for Various Values of t and
x in Hirota-Satsuma System between FFA_MADM and MADM

FFA_MADM MADM FFA_MADM  MADM
t=0.5 t=1

0 2.1884e-24  1.9191e-5 5.6782e-24 1.5662e-4
01 2.0998e-24  2.1578e-5 5.4934e-24 1.7534e-4
0.2 2.0127e-24  2.2771e-5 5.3101e-24  10844e-4
0.3 1.9273e-24  2.2785e-5 5.1284e-24 1.8411e-4
0.4 1.8434e-24  2.1718e-5 4.9482e-24  1.7508e-4
05 1.7611e-24  1.9730e-5 4.7695e-24  1.5870e-4
0.6 1.6804e-24  1.7026e-5 4.5923e-24  1.3660e-4
0.7 1.6012e-24  1.3831e-5 4.4167e-24 1.1061e-4
0.8 1.5237e-24  1.0369e-5 4.2426e-24  8.2539e-5
0.9 1.4478e-24  6.8489%-6 4.0701e-24 5.4042e-5

1 1.3734e-24  3.4455e-6 3.8991e-24  2.6544e-5

MSE  3.1958e-48  3.0727e-10 2.3137e-47  2.0034e-8
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Figure 3 The absolute error of the Hirota-Satsuma system by: (a) V equation
when t =1, (b) V equation when t = 1.

7 Conclusion

In this paper, nonlinear Hirota-Satsuma coupled KdV systems were solved
using MADM combined with FFA. The basic idea for the proposed hybrid
method is to find the optimal parameters for nonlinear Hirota-Satsuma coupled
KdV systems (a,b,1) as they are widely applied to solve other nonlinear
systems. Compared to MADM, FFA MADM ensures that the optimal
parameters will be appropriately selected even if the system has multiple values
and gives more accurate results than MADM. The tables and figures in this
paper indicate that the approximate solutions obtained by FFA_MADM were in
great agreement with the exact solutions. The calculations in this paper were
performed using the MAPLE 13 and the Matlab® R2016a software.
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