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Abstract. In this paper, we study the instability properties of solutions of a kind
of functional differential equations of the fifth order with constant delay. Using
the Lyapunov-Krasovskii functional approach, we obtain certain sufficient
conditions to guarantee that the zero solution of the equation is unstable.
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1 Introduction

It is well known that the instability of the solutions is a very important problem
in the theory and applications of differential equations. For example, if the
solutions of a differential equation describing a dynamical system or of any
differential equation under consideration are known in closed form, then one
can determine the instability properties of the system or the solutions of the
differential equation taken under consideration, appealing directly the definition
of the instability, which will be introduced hereinafter. In addition, ideally, one
would like to compute clearly all solutions of every differential equation or
system of differential equations. However, as we know, there are actually very
few equations (beyond linear equations with constant coefficients — and even
there are difficulties if the order of the equation or system is high) for which we
can do this. That is, in general, it is not possible to find the solution of all linear
and nonlinear differential equations, except numerically. Moreover, finding
solutions becomes more difficult for delay differential equations rather than
differential equations without delay. Therefore, it is very important to get
information about the qualitative behavior of solutions of delay differential
equations when there is no analytical expression for the solutions. In the
literature, specific methods have been developed to obtain information on the
qualitative behavior of solutions of differential equations when there is no
analytical expression for the solutions. One of them is known as Lyapunov’s
second (or direct) method. More than 100 years ago, the world-famous
mathematician Lyapunov established this method to study stability problems.
Today, this method is widely recognized as an excellent tool not only in the
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study of differential equations but also in the theory of control systems,
dynamical systems, system with time lag, power system analysis, and so on. It
is worth mentioning that the expressions of Lyapunov functionals are very
complicated and hard to construct. The method is an interesting and fruitful
technique to determine the instability and the stability behaviors of solutions of
linear and non-linear differential equations. This technique has gained
increasing significance and has given impetus for modern development of
instability and stability theory of differential equations. An apparent advantage
of this method is that the instability and the stability in the large can be obtained
without any prior knowledge of solutions. That is, the method yields instability
and stability information directly, without solving the differential equation. The
chief characteristic of the method requires the construction of the scalar
function or functional for the equation under study. Unfortunately, it is
sometimes very difficult to find a proper Lyapunov function or functional for a
given differential equation.

However, from then on, the Lyapunov’s direct method was also widely used
and is still being employed to study the instability of solutions of ordinary
differential equations and functional differential equations of fifth order, see e.g.
Tung [1-10], Li and Duan [11], Ezeilo [12-14], Li and Yu [15], Sadek [16], Sun
and Hou [17], Tiryaki [18], Tun¢ and Erdogan [19], Tun¢ and Karta [20], and
Tuncg and Sevli [21] and the references therein. Besides, it is worth mentioning
that to the best of our knowledge, the instability of the solutions of certain
functional differential equations of the fifth order has been discussed in the
literature, recently (see [1-7]).

In this case, it is worthwhile to continue the investigation of the instability of
the solutions of functional differential equations of fifth order.

It should be noted that the author in ([1,2,5,6]) considered the functional
differential equations of the fifth order

X (t) + , (X)) X"(E) + (X(E), X(t = 1),... X (), X (t - 1))x"(2)
+OX D)+ f,(xt—1) =0,

X (t) +a,x @ (t) + k(x(t), x"(t), x"(£), x" (1), x@ () x" (1) + g (X' (t))x"(t)
+h(X(), X'(t), X"(t), X" (), X () + f (x(t 1)) =0,

x® (t) +a,x? (t) + a,x"(t) + a,x"(t) +a,x'(t) + f (x(t—r)) =0
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and
XO () +a,x® (1) +a,x" (1) + g(X (V) X" (1)

+h(x(t — (1)), X t —z(1)),... xX® (t — (1)) + f (X(t —z(t))) =0,

respectively. Then, the author obtained some sufficient conditions ensuring that
the zero solution of these equations is unstable by defining some appropriate
Lyapunov-Krasovskii functionals.

Besides, Li and Duan [11] considered the equation
X® () +a x@ (t) +a,x"(t) + f,(x(t), X'(t), X" (t), X" (1), x“ () x"(t)

+ £, (), X (©), X" (0, X"(©), X ©)X (¥) + f, (x(1)) =0. o)

By using the Cetaev’s instability theorem, they obtained sufficient conditions
for the zero solution of Eq. (1) to be unstable, see LaSalle and Lefschetz [22].

In this paper, instead of Eqg. (1), we consider fifth order nonlinear delay
differential equation

x® (t) +a x“ (t) +a,x"(t)
+ F, (X =), X' (t=r), X"t =), X"t =), x? (= )X"(t)
+ f,(X(t—r), X't —r), X"t —1r), X"t —1),x? t—r)x(t)

+ f,(x(t—r)) =0. @)

We write Eq. (2) as the system
X, () = X, (t), X5 (1) = X5 (1), X5(t) = X, (1), X5 (t) = X5 (1),
X (1) = —8sXs (1) —a,X, (1) — f3 (¢ (T —1),... X (E—1))X; (1)

- 1:2 (Xl(t - r)’--st (t - r))x2 (t)

— £,060)+ [ £(x ()% (s)ds, 3)
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where a;, a, and r(>0) are constants, r is fixed delay, the primes in Eq.
(2) denote differentiation with respect to t,teR* =[0,00); f,, f, and f,

are continuous functions on R, > and R°, respectively, and with f,(0) =0.

The continuity of the functions f,, f, and f, is a sufficient condition for the
existence of the solution of Eq. (2) (see [23, pp.14]). It is also assumed as basic
that the functions f;, f, and f, satisfy a Lipschitz condition in their respective
arguments. Hence, the uniqueness of the solutions of Eq. (2) is guaranteed (see
[23, pp.15]). We also assume throughout what follows that f, is differentiable,
and X,(t),...,xs(t) are abbreviated as x,...,Xs, respectively.

It should also be noted that, in reality, many systems have the property of
aftereffect, i.e. the future states depend not only on the present, but also on the
past. Therefore, the investigation of the instability of the solutions of delay
differential equations of higher order is very considerable in the literature. The
purpose of this paper is to present a new result on the instability of the zero
solution of Eq. (2). Our method relies on the Lyapunov-Krasovskii functional
approach (see [24]). This method permits us to obtain a new result on Eq. (2)
under quite general assumptions on the nonlinearities. The obtained result
improves and enhances the result in Li and Duan [11, Theorem 5] for the case
without delay to the case with delay. Here, by defining an appropriate
Lyapunov-Krasovskii functional, we carry out our purpose. It should be noted
that the result to be established here is different from that in Tunc ([1], [2], [5].
[6]) and the literature.

It is worth mentioning that for some recent works on the qualitative behaviors
of solutions, we can also refer to Zhu and Shong [25] and Zhu, et al. [26].

In the following theorems, we give a basic idea of the method about the
instability of solutions of ordinary and delay differential equations. The
following theorem is due to the Russian mathematician N.G. Cetaev (see
LaSalle and Lefschetz [22]).

Theorem A (Instability Theorem of Cetaev).

Let Q be a neighborhood of the origin. Let there be given a function V (x)
and region QQ, in Q with the following properties:

1. V(X) has continuous first partial derivatives in €.
2. V(x) and V(x) are positive in €.
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3. At the boundary points of Q, inside Q, V(X)=0.
4. The origin is a boundary point of €.

Under these conditions the origin is unstable.
Let r >0 begiven, and let C =C([—r,0], R") with

Il = mexofs)], o<

—r<s<0

For H >0 define C,;, —C by

C,, ={p<C:|g|<H}.
If X:[-r, A) > R" is continuous, 0 < A < oo, then, for each t in [0, A), X,
in C is defined by

X (s)=x(t+s), -r<s<0, t=0.

Let G be an open subset of C and consider the general autonomous delay
differential system with finite delay

x=F(x), X =x(t+6), -r<6<0, t=0,
where F:G —R" is continuous and maps closed and bounded sets into

bounded sets and F(0) =0. It follows from the conditions on F that each
initial value problem

Xx=F(x), X,=¢€G

has a unique solution defined on some interval [0, A), 0 < A<oc, This solution
will be denoted by X(¢)(.) sothat X,(¢) = ¢.

Definition. The zero solution of X = F(X,) is stable if for each &> 0 there

exists 5=5(£)>0 such that @< implies that [x(¢)(t) <& for all
t > 0. The zero solution is said to be unstable if it is not stable.

2 Statement of Main Result

In this section, we will state our main result. The main result is the following
theorem.
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Theorem. Assume that there exist constants a, (>0), a, and & such that the
following conditions hold:

f,(0)=0, f,(x)=0, (x #0), a,<-1|f/(x) <a, forall x

and
f,(x({t—=r),... X {t—-r))— f32(x1(t—r),...,x5(t—r)) >0>0

forall x (t—r),...,x(t—r).
If

r<—,

&4
then the zero solution of Eq. (2) is unstable.

Remark. It is clear that Eq. (2) has the zero solution since f,(0) =0.

It should be noted that the proof of the main result is based on the instability
criteria of Krasovskii [24]. Because of these criteria, it is necessary to show here

that there exists a Lyapunov-Krasovskii functional V =V (X,...,Xs,) that has
Krasovskii properties, say (P,), (P,) and (R,):

(P)) In every neighborhood of (0,0,0,0,0), there exists a point (&,,...,&;)
such that V (&,,...,&) >0,

(P,) the time derivative dgtV(xn,...,xSt) along solution paths of (3) is
positive semi-definite,

(R,) the only solution (X,...,.X5) = (X, (t),....Xs(t)) of (3) which satisfies
d

av (Xy 1 %5, ) =0, (t > 0), is the trivial solution (0,0,0,0,0).

Proof. We define a Lyapunov-Krasovskii functional V =V (X ,...,Xg) :

1 h
V= — X, X5 + X3X, — 85X, X, +§a5x§ —a,X,X, —j f,(s)ds
0
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—uf j x2(6)déds, (4)

—r t+s

where a;(>0),a, are constants, S is a real variable such that the integral
0 t
I I X2 (0)d@s is non-negative, and 4 is positive constant, which will be

—r t+s

determined later in the proof.
Hence, it is clear from the definition of V that
V(0,0,0,00 =0
and
2 1 2
V(0,0,&,¢,0)=¢ +§a58 >0

for each arbitrary sufficiently small & so that every neighborhood of the origin
in the (X,...,%)— space contains the points (&,...,&;) such that

V(&,...&)>0.

Let
(Xl’-'-’xs) = (Xl(t)!""XS (t))

be an arbitrary solution of (3). By elementary differentiation, the time derivative
of the Lyapunov functional V in (4) along the solutions of (3) yields

%V(xﬂ,..., Xe) = X5 —a,% + f,((t—=T),..., X (t =) %X
+f,( t=1),... X (t =) X5
— X, [ /0, (8))%, ()0 — pnxZ + gt [ X2 (s)ds.

Using the assumption \fl’(xl)\sal of the theorem and the estimate

|mn|<m?+n?, we get

=%, (1) [ /(% ()%, (8)ds > =[x, (1)| [ F,0x, ()}, (5)|ds
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>

N |-

[0 (] 0 + X () ds

|

> - _t[(Xz2 (©) +X; (5))ds

2'[
1 1
==K 0Or—2a [ s

Hence, it follows that
d 3 X ’
aV(xﬂ,..., X ) = X5 +Zx§ +(?3+ fo(x (t=r)... X (t— r))xzj
1
+{fz(X1(t—r)a---,Xs(t—r)—(ﬂ+zal)r}xf
SR LS LA (S g I (S 9)) 2%

1 V¢,
+ (y - Ealjtj.rxz (s)ds.
1 . .
Let u= E a,. Using the assumptions of the theorem, we get

d 3
av(xlt""’XSI) 2 Xj +ZX32

+f,( t=1),... X (t—1) X5
{70 =), X (=) —arp

3
> X? +ng2 +(5—a,r)x’.

o .
If r<—, thenwe have for a positive constant k that
a‘l

d 3
aV(xlt,...,xa) > X +ZX§ +kxZ > 0.

Then, the Lyapunov-Krasovskii functional V satisfies the property (P,).
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: d : :
Besides, EV(XH ;.. X5 ) = 0 if and only if
X, =X3 =X, = X5 =0.

The substitution of the above estimate in (3) gives f,(&)=0. This result
implies that & =0 by the assumption f,(x,) #0, (x #0). Hence, V=0
(t >0) so that

X=X =X =X, =% =0, (t=0).

Thus, the functional V has all the requisite Krasovskii [24] properties subject
to the conditions of the theorem, which now follows. By the above discussion,
we can conclude that the zero solution of Eq. (2) is unstable. The proof for the
theorem is complete.

3 Conclusion

A non-linear functional differential equation of fifth order with constant delay is
considered. Based on the Krasovskii properties, the instability of the zero
solution of this equation is discussed. In proving our result, we employ the
Lyapunov-Krasovskii functional approach by defining a new Lyapunov-
Krasovskii functional. Our result improves some known results from the scalar
case to the vectorial case.
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