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Abstract. Various mathematical models have been developed to describe the 

transmission of malaria disease. The purpose of this study was to modify an 

existing mathematical model of malaria disease by using a CTMC stochastic 

model. The investigation focused on the transition probability, the basic 

reproduction number (ℛ0), the outbreak probability, the expected time required 

to reach a disease-free equilibrium, and the quasi-stationary probability 

distribution. The population system will experience disease outbreak if ℛ0 > 1, 

whereas an outbreak will not occur in the population system if ℛ0 ≤ 1. The 

probability that a mosquito bites an infectious human is denoted as 𝑘, while 𝜃 is 

associated with human immunity. Based on the numerical analysis conducted, 𝑘 

and 𝜃 have high a contribution to the distribution of malaria disease. This 

conclusion is based on their impact on the outbreak probability and the expected 

time required to reach a disease-free equilibrium.  

Keywords: basic reproduction number; expected time to reach disease-free equilibrium; 

malaria disease; outbreak probability; quasi-stationary distribution. 

1 Introduction 

Malaria is an infectious disease that has a major impact on health, social 

networks and the economy, and is mostly found in tropical and subtropical 

countries. Based on estimates of the World Health Organization (WHO) there 

were 216 million cases of malaria in 2016, 217 million cases in 2017, and up to 

219 million cases in 2018 [1,2]. The number of deaths due to this disease 

reached 445 thousand in 2016 and decreased to 434 thousand in 2017 and 2018. 

Children under 5 years of age are the most vulnerable to the disease. In 2017, 

nearly 61% of all deaths caused by malaria were among young children. 

Malaria is caused by protozoa genera of Plasmodium i.e. Plasmodium 

falciparum, Plasmodium malariae, Plasmodium ovale, and Plasmodium vivax. 

Plasmodium falciparum is the most common cause of infection in South East 

Asia, Africa, and South America. It contributes 80% of all malaria cases, with 

90% of them leading to death. During its life cycle, the protozoa live in two  
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type of hosts: vector female Anopheles mosquitoes and humans. They grow 

rapidly in the human blood [3]. 

Mathematical models are intended to simplify the phenomenon of disease 

transmission between humans and mosquitoes using relevant clinic and 

biological information. There are two major types of models for infectious 

diseases: deterministic and stochastic models. There have been many related 

studies on host-vector transmission using either deterministic or stochastic 

models [4-9]. 

The first mathematical model of malaria disease transmission was introduced by 

Ross [10] using a deterministic differential equation by grouping the human 

population into 𝑆ℎ (susceptible) and 𝐼ℎ (infected), while the mosquito 

population is grouped into 𝑆𝑣 (susceptible) and 𝐼𝑣 (infected). Macdonald [11] 

expanded the model by adding a latent period for the mosquito population and 

the 𝐸𝑣 group (exposed mosquitoes). Furthermore, Kingsolver [12] modeled 

malaria disease spread by taking into account manipulation by the malaria 

parasite. Accordingly, in Lacroix et al. [13], the malaria parasite manipulates 

the host to be more attractive to mosquitos through chemical substances. 

In the present study, an SIS-SI model of the spread of malaria, developed by 

Chamchod & Britton [14], was further modified by including the attractiveness 

of mosquitos to hosts, formulated by a deterministic model. Also, the model 

was formulated within a stochastic framework, considering the human 

immunity factor related to malaria. The stochastic model is carried out using the 

continuous time Markov chain (CTMC) approach. In addition, the transition 

probability, the outbreak probability, the expected time required to reach a 

disease-free equilibrium, and the quasi-stationary probability distribution were 

calculated. In the last part of this work, a numerical simulation was conducted 

to analyze the behavior of malaria spread in several given conditions. 

2 Mathematical Model 

In this study, the model developed by Chamchod & Britton [14] was intensively 

investigated. The total human population, denoted by 𝑁ℎ(𝑡), is grouped into 

two compartments, 𝑆ℎ(𝑡) and 𝐼ℎ(𝑡). The total population of mosquitoes, 

denoted by 𝑁𝑣(𝑡), is also categorized into two compartments, 𝑆𝑣(𝑡) and 𝐼𝑣(𝑡). 
Infected humans may recover following treatment, but some of them may return 

to the susceptible compartment. Meanwhile, infected mosquitoes cannot 

recover. In the model, it is assumed that the parasite can manipulate the host to 

make itself more attractive to so that mosquitoes will be more interested in 

biting infected humans. In addition, Mading and Yunarko in [15] state that 

humans can have immunity to malaria, which can arise naturally or through 
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vaccination. Chamchod and Britton’s model was modified by adding the 

assumption of immunity, so that not all susceptible humans bitten by infected 

mosquitoes are infected. A flow diagram of the model is shown in Fig. 1. 

 

Figure 1 Compartmental diagram of the SIS-SI type model of malaria disease 

spread. 

Based on the diagram above, we obtain the following system of ordinary 

differential equations: 

 
𝑑𝑆ℎ

𝑑𝑡
=  𝜇𝑁ℎ − (1 − 𝜃)

𝛽𝑙𝑆ℎ

𝑘𝐼ℎ+𝑙𝑆ℎ
𝐼𝑣 − 𝜇𝑆ℎ + 𝛿𝐼ℎ 

 
𝑑𝐼ℎ

𝑑𝑡
= (1 − 𝜃)

𝛽𝑙𝑆ℎ

𝑘𝐼ℎ+𝑙𝑆ℎ
𝐼𝑣 − ( 𝜇 + 𝛿)𝐼ℎ 

 
𝑑𝑆𝑣

𝑑𝑡
= 𝜂𝑁𝑣 −

𝛼𝑘𝐼ℎ

𝑘𝐼ℎ+𝑙𝑆ℎ
𝑆𝑣 − 𝜂𝑆𝑣 

 
𝑑𝐼𝑣

𝑑𝑡
=

𝛼𝑘𝐼ℎ

𝑘𝐼ℎ+𝑙𝑆ℎ
𝑆𝑣 −  𝜂𝐼𝑣 . 

(1) 

The definitions of the parameters used in the model are listed in Table 1. 

3 CTMC Stochastic Model 

In this section, we will determine the transition probability, the outbreak 

probability, the expected time required to reach a disease-free equilibrium, and 

the quasi-stationary probability distribution for the SIS-SI model mentioned 

above. 
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Table 1 Model parameters. 

Parameter Description Value Reference 

𝑁ℎ Total population of humans varied - 

𝑁𝑣 
Total population of 

mosquitoes 
varied - 

𝜇 Birth or death rate of humans 1/70 (year -1) [14] 

𝜂 
Birth or death rate of 

mosquitoes 
365/20 (year -1) [16] 

𝛿 Recovery rate 365/180 (year -1) [17] 

𝛽 Transmission rate in humans 10 (year -1) [18] 

𝛼 
Transmission rate in 

mosquitoes 
30 (year -1) [18] 

𝑘 
Probability that a mosquito 

bites an infectious human 
0 - 1 - 

𝑙 
Probability that a mosquito 

bites a susceptible human 

(𝑘 > 𝑙) 
0 - 1 - 

𝜃 
Effectiveness of the human 

immunity system 
0 - 1 - 

3.1 Transition Probability 

The transition probability is the probability that a process originally in state 𝑖 
transitions to state 𝑗 after a certain time has elapsed. This model is a bivariate 

process consisting of two random variables 𝐼ℎ and 𝐼𝑣 , where 𝑆ℎ = 𝑁ℎ − 𝐼ℎ and 

𝑆𝑣 = 𝑁𝑣 − 𝐼𝑣. It is assumed that the following Markov properties are satisfied: 

𝑃{𝐼ℎ(𝑡 + ∆𝑡), 𝐼𝑣(𝑡 + ∆𝑡)|(𝐼ℎ(0), 𝐼𝑣(0)), (𝐼ℎ(∆𝑡), 𝐼𝑣(∆𝑡)), … , (𝐼ℎ(𝑡), 𝐼𝑣(𝑡))} =

𝑃{𝐼ℎ(𝑡 + ∆𝑡), 𝐼𝑣(𝑡 + ∆𝑡)|𝐼ℎ(𝑡), 𝐼𝑣(𝑡)}. 

Suppose 𝐼ℎ(𝑡) = 𝑖ℎ, 𝐼𝑣(𝑡) = 𝑖𝑣, 𝐼ℎ(𝑡 + ∆𝑡) = 𝑗ℎ and 𝐼𝑣(𝑡 + ∆𝑡) = 𝑗𝑣, where 

𝑖ℎ , 𝑗ℎ = 0, 1,… ,𝑁ℎ and 𝑖𝑣 , 𝑗𝑣 = 0, 1,… ,𝑁𝑣. The transition probability that 

originates from state (𝑖ℎ , 𝑖𝑣) and transitions to state (𝑗ℎ , 𝑗𝑣) can be expressed as 

follows: 

 𝑝(𝑗ℎ,𝑗𝑣),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t) = 

 𝑃{𝐼ℎ(𝑡 + ∆𝑡) = 𝑗ℎ , 𝐼𝑣(𝑡 + ∆𝑡) = 𝑗𝑣|𝐼ℎ(𝑡) = 𝑖ℎ , 𝐼𝑣(𝑡) = 𝑖𝑣}. 

Based on the model transition probability it is assumed that ∆𝑡 is sufficiently 

small so that during this tiny time interval only at most one single transition 

event exists for a particular random variable. The transition probabilities in this 

model are formulated as follows: 
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𝑝(𝑗ℎ,𝑗𝑣),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t)

=

{
 
 
 
 

 
 
 
 (1 − 𝜃)

𝛽𝑙(𝑁ℎ − 𝑖ℎ)

𝑘𝑖ℎ + 𝑙(𝑁ℎ − 𝑖ℎ)
𝑖𝑣∆𝑡 + 𝑜(∆𝑡),        (𝑗ℎ, 𝑗𝑣) = (𝑖ℎ + 1, 𝑖𝑣)

(𝛿 + 𝜇)𝑖ℎ∆𝑡 + 𝑜(∆𝑡),                                          (𝑗ℎ, 𝑗𝑣) = (𝑖ℎ − 1, 𝑖𝑣)

𝛼𝑘𝑖ℎ
𝑘𝑖ℎ + 𝑙(𝑁ℎ − 𝑖ℎ)

(𝑁𝑣 − 𝑖𝑣)∆𝑡 + 𝑜(∆𝑡),         (𝑗ℎ , 𝑗𝑣) = (𝑖ℎ , 𝑖𝑣 + 1)

𝜂𝑖𝑣∆𝑡 + 𝑜(∆𝑡),                                                      (𝑗ℎ, 𝑗𝑣) = (𝑖ℎ , 𝑖𝑣 − 1)

(1 − 𝜔(𝑖ℎ , 𝑖𝑣))∆𝑡 + 𝑜(∆𝑡),                                         (𝑗ℎ, 𝑗𝑣) = (𝑖ℎ , 𝑖𝑣)

𝑜(∆𝑡),                                                                                          otherwise

 

where  

𝜔(𝑖ℎ , 𝑖𝑣) = (1 − 𝜃)
𝛽𝑙(𝑁ℎ−𝑖ℎ)

𝑘𝑖ℎ+𝑙(𝑁ℎ−𝑖ℎ)
𝑖𝑣 + (𝛿 + 𝜇)𝑖ℎ +

𝛼𝑘𝑖ℎ

𝑘𝑖ℎ+𝑙(𝑁ℎ−𝑖ℎ)
(𝑁𝑣 − 𝑖𝑣) + 𝜂𝑖𝑣. 

3.2 Derivation of Probability of Malaria Disease Outbreak 

An outbreak event occurs when the number of infected humans increases as 

time goes on. Allen & Lahodny [19] derived a stochastic threshold for disease 

extinction and outbreak probability by using the multiple branching process 

approach. In this method, outbreak probability is determined by using a 

probability generating function (pgf). Firstly, we assume that the initial values 

of 𝑁ℎ(0) and 𝑁𝑣(0) are sufficiently large and nearly the same. The offspring 

pgf of 𝐼ℎ, given 𝐼ℎ(0) = 1 and 𝐼𝑣(0) = 0, is: 

 𝑓1(ℎ1, ℎ2) =
(𝜇+𝛿)+(

𝛼𝑘

𝑙
ℎ1ℎ2)

((𝜇+𝛿)+
𝛼𝑘

𝑙
)

 

And the offspring pgf of 𝐼𝑣, given 𝐼ℎ(0) = 0 and 𝐼𝑣(0) = 1, is 

 𝑓2(ℎ1, ℎ2) =
𝜂+(1−𝜃)𝛽ℎ1ℎ2
(𝜂+(1−𝜃)𝛽)

. 

The fixed point of pgf is found by setting 𝑓𝑖(ℎ1, ℎ2) = ℎ𝑖, 𝑖 = 1,2, and solving 

for ℎ𝑖. So that, we have 

 ℎ1 = −
𝑙(𝛽+𝜂−𝛽𝜃)(𝛿+𝜇)

𝛽(−1+𝜃)(𝑘𝛼+𝑙(𝛿+𝜇))
 

and 

 ℎ2 =
𝜂(𝑘𝛼+𝑙(𝛿+𝜇)

𝑘𝛼(𝛽+𝜂−𝛽𝜃)
 

where 0 < ℎ𝑖 < 1. The expectation matrix of the offspring pfg evaluated at 

(ℎ1, ℎ2) = (1,1) is given by 
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 𝑀 = (

𝜕𝑓1(ℎ1,ℎ2)

𝜕ℎ1

𝜕𝑓2(ℎ1,ℎ2)

𝜕ℎ1
𝜕𝑓1(ℎ1,ℎ2)

𝜕ℎ2

𝜕𝑓2(ℎ1,ℎ2)

𝜕ℎ2

) =

(

 
 

𝛼𝑘

𝑙((𝜇+𝛿)+
𝛼𝑘

𝑙
)

(1−𝜃)𝛽

(𝜂+(1−𝜃)𝛽)

𝛼𝑘

𝑙((𝜇+𝛿)+
𝛼𝑘

𝑙
)

(1−𝜃)𝛽

(𝜂+(1−𝜃)𝛽)

)

 
 
. 

The spectral radius of 𝑀 can be obtained by finding the maximum eigenvalue as 

follows: 

 𝜆 =
−2𝑘𝛼𝛽−𝑙𝛽𝛿−𝑘𝛼𝜂+2𝑘𝛼𝛽𝜃+𝑙𝛽𝛿𝜃−𝑙𝛽𝜇+𝑙𝛽𝜃𝜇

(−𝛽−𝜂+𝛽𝜃)(𝑘𝛼+𝑙𝛿+𝑙𝜇)
 

which represents the number of offspring per infectious individual. Therefore, 

the outbreak probability is determined by using pgf from the multiple branching 

process as follows:  

 1 − 𝑃{𝐼ℎ(𝑡) = 0, 𝐼𝑣(𝑡) = 0} = {
0,                              𝜆 < 1

1 − ℎ1
𝑖ℎℎ2

𝑖𝑣 ,         𝜆 ≥ 1.
 

Basic reproduction number ℛ0 is known as a threshold in a deterministic model 

and is closely related to stochastic threshold 𝜆. By using the next-generation 

matrix we have: 

 ℛ0 = −
𝑘𝛼𝛽(−1+𝜃)

𝑙𝜂(𝛿+𝜇)
. 

It can be proven that if 𝜆 < 1 then ℛ0 < 1 and if 𝜆 ≥  1 then ℛ0 ≥  1. Thus, 

the outbreak probability can be written as: 

 1 − 𝑃{𝐼ℎ(𝑡) = 0, 𝐼𝑣(𝑡) = 0} = {
0,                              ℛ0 < 1

1 − ℎ1
𝑖ℎℎ2

𝑖𝑣 ,         ℛ0 ≥ 1.
 

ℛ0 represents the average number of infections caused by a single infected 

human in susceptible humans. If ℛ0 < 1, on average each infected human will 

infect less than one new infected human; this will diminish the number of 

infected humans gradually and hence the disease dies out in the population. On 

the other hand, if ℛ0 > 1 then on average each infected human will infect more 

than one human. As time goes on, the number of infected humans increases. 

Therefore, an outbreak of the malaria disease is inevitable. The reproduction 

number is obtained by using the next generation matrix method [15]. 

Furthermore, to simplify the notation, Eq. 1 can be written as follows:  

𝑝(𝑗ℎ,𝑗𝑣)(𝑡 + ∆t) = 𝑝(𝑗ℎ,𝑗𝑣),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t), 

𝑝(𝑖ℎ+1,𝑖𝑣),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t) = 𝑏1(𝑖ℎ,𝑖𝑣)∆t + 𝑜(∆𝑡), 

𝑝(𝑖ℎ,𝑖𝑣+1),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t) = 𝑏2(𝑖ℎ,𝑖𝑣)∆t + 𝑜(∆𝑡), 

(2) 
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𝑝(𝑖ℎ−1,𝑖𝑣),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t) = 𝑑1(𝑖ℎ,𝑖𝑣)∆t + 𝑜(∆𝑡), 

𝑝(𝑖ℎ,𝑖𝑣−1),(𝑖ℎ,𝑖𝑣)(𝑡, 𝑡 + ∆t) = 𝑑2(𝑖ℎ,𝑖𝑣)∆t + 𝑜(∆𝑡). 

3.3 Expected Time Required to Reach a Disease-free Equilibrium 

The simplified formula just mentioned for 𝑝(𝑗ℎ,𝑗𝑣)(𝑡 + ∆𝑡) can be expressed in a 

so called Kolmogorov differential equation, which can be derived directly from 

the transition probability as follows: 

 𝑝(𝑗ℎ,𝑗𝑣)
′ (𝑡 + ∆t) = 𝑏1(𝑗ℎ − 1, 𝑗𝑣)𝑝(𝑗ℎ−1,𝑗𝑣)(𝑡) + 𝑑1(𝑗ℎ +

1, 𝑗𝑣)𝑝(𝑗ℎ+1,𝑗𝑣)(𝑡) + 𝑏2(𝑗ℎ, 𝑗𝑣 − 1)𝑝(𝑗ℎ,𝑗𝑣−1)(𝑡) +

𝑑2(𝑗ℎ, 𝑗𝑣 + 1)𝑝(𝑗ℎ,𝑗𝑣+1)(𝑡) − 𝜔(𝑗ℎ , 𝑗𝑣)𝑝(𝑗ℎ,𝑗𝑣)(𝑡). 

In matrix form, the forward Kolmogorov differential equation can be expressed 

as follows: 

 
𝑑𝑝

𝑑𝑡
= 𝑄𝑝, 

where 𝑄 = (𝑞𝑗𝑖) ∈ 𝑀(𝑁ℎ+1)(𝑁𝑣+1)×(𝑁ℎ+1)(𝑁𝑣+1)(ℝ) is the generator matrix. If 

the state space is finite, then we have 

𝑄 =

(

 
 

𝐾0 𝑀1 0 ⋯ 0 0
𝐿0 𝐾1 𝑀2 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ 𝐾𝑁ℎ−1 𝑀𝑁ℎ

0 0 0 ⋯ 𝐿𝑁ℎ−1 𝐾𝑁ℎ)

 
 
,  

where 𝐾𝑛, 𝐿𝑛,𝑀𝑛 ∈ 𝑀(𝑁𝑣+1)×(𝑁𝑣+1)(ℝ), and 

𝐾𝑛 =

(

 
 

−𝜔(𝑛, 0) 𝑑2(𝑛, 1) 0 ⋯ 0 0

𝑏2(𝑛, 0) −𝜔(𝑛, 1) 𝑑2(𝑛, 2) ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ −𝜔(𝑛,𝑁𝑣 − 1) 𝑑2(𝑛, 𝑁𝑣)

0 0 0 ⋯ 𝑏2(𝑛, 𝑁𝑣 − 1) −𝜔(𝑛,𝑁𝑣))

 
 
, 

 𝐿𝑛 = (

𝑏1(𝑛, 0) 0 … 0

0 𝑏1(𝑛, 1) … 0
⋮ ⋮ … ⋮
0 0 … 𝑏1(𝑛, 𝑁𝑣)

), 

 𝑀𝑛 = (

𝑑1(𝑛, 0) 0 … 0

0 𝑑1(𝑛, 1) … 0
⋮ ⋮ … ⋮
0 0 … 𝑑1(𝑛, 𝑁𝑣)

), 
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𝑛 = 0,1,… ,𝑁ℎ . As before, 𝑁ℎ is the total human population. 

Suppose 𝜏(𝑖ℎ,𝑖𝑣) = 𝐸(𝑇(𝑖ℎ,𝑖𝑣)) is the expected time required to reach a disease-

free equilibrium with initial number of infected individuals (𝑖ℎ , 𝑖𝑣). Then 

𝜏(0,0) = 0 and the following relationship for 𝜏(𝑖ℎ,𝑖𝑣) hold: 

𝑏1𝜏(𝑖ℎ+1,𝑖𝑣) + 𝑑1𝜏(𝑖ℎ−1,𝑖𝑣) + 𝑏2𝜏(𝑖ℎ,𝑖𝑣+1) + 𝑑2𝜏(𝑖ℎ,𝑖𝑣−1) −𝜔(𝑖ℎ , 𝑖𝑣)𝜏(𝑖ℎ,𝑖𝑣) = −1. 

As previously shown, this can be written in matrix form as 𝜏𝑄 = 𝑐, where 𝜏 =
(𝜏0, 𝜏1, … , 𝜏𝑁ℎ), 𝜏𝑖ℎ = (𝜏(𝑖ℎ,0), 𝜏(𝑖ℎ,1), … , 𝜏(𝑖ℎ,𝑁𝑣)), and 𝑐 = (0,−1,… ,−1). 

Thus, the expected time required to reach a disease-free equilibrium can be 

obtained as follows: 

 𝜏 = 𝑐𝑄−1. 

3.4 Quasi-stationary Probability Distribution 

If the expected time required to reach a disease-free equilibrium is long enough, 

then it is worthwhile to study the dynamics of the process leading up to the 

equilibrium state. We consider the stochastic model {𝐼ℎ(𝑡 + ∆𝑡), 𝐼𝑣(𝑡 +

∆𝑡)} , 𝑡 ≥  0,  defined as a conditional process of non-extinction at the 

absorbing state (0,0). Firstly, we have the conditional probability, denoted as 

𝜋(𝑗ℎ,𝑗𝑣)(𝑡 + ∆𝑡), where 𝐼ℎ(𝑡 + ∆𝑡) = 𝑗ℎ and 𝐼𝑣(𝑡 + ∆𝑡) = 𝑗𝑣. This results in: 

 𝜋(𝑗ℎ,𝑗𝑣)
(𝑡 + ∆𝑡) =

𝑝(𝑗ℎ,𝑗𝑣)
(𝑡+∆𝑡)

1−𝑝(0,0)(𝑡+∆𝑡)
, 𝜋(0,0)(𝑡 + ∆𝑡) = 0. (3) 

By using Eq. 3, we obtain the forward Kolmogorov equation for the conditional 

process as follows: 

𝜋(𝑗ℎ,𝑗𝑣)
′ (𝑡 + ∆t) = 𝑏1(𝑗ℎ − 1, 𝑗𝑣)𝜋(𝑗ℎ−1,𝑗𝑣)(𝑡)

+ 𝑑1(𝑗ℎ + 1, 𝑗𝑣)𝜋(𝑗ℎ+1,𝑗𝑣)(𝑡)

+ 𝑏2(𝑗ℎ, 𝑗𝑣 − 1)𝜋(𝑗ℎ,𝑗𝑣−1)(𝑡)

+ 𝑑2(𝑗ℎ, 𝑗𝑣 + 1)𝜋(𝑗ℎ,𝑗𝑣+1)(𝑡)

− [𝜔(𝑗ℎ , 𝑗𝑣) − 𝑑1(1,0)𝜋(1,0)(𝑡)

− 𝑑2(0,1)𝜋(0,1)(𝑡)]𝜋(𝑗ℎ,𝑗𝑣)(𝑡). 

(4) 
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The quasi-stationary probability distribution 𝜋 is obtained by setting the left-

hand side of Eq. 4 to zero. The values of 𝜋(1,0)(𝑡) and 𝜋(0,1)(𝑡), which appear 

as factors of 𝜋(𝑗ℎ,𝑗𝑣)
(𝑡), make the equations nonlinear. An explicit solution 

cannot be determined in this situation. As an alternative, we use a numerical 

method known as the shifted inverse iteration method to determine the quasi-

stationary probability distribution. The solution of Eq. 4 is found in a two-stage 

process, consisting of many iterations in each stage. 

The values of 𝜋(1,0)(𝑡) and 𝜋(0,1)(𝑡) are determined in the first stage. In each 

iteration of the first stage, the values of these probabilities are determined from 

the result of the previous iteration. For the initial iteration they are assigned by a 

judicious guess, 𝛱(1,0)(𝑡) and 𝛱(0,1)(𝑡). At each iteration the equations that 

need to be solved are: 

𝑏1(𝑗ℎ − 1, 𝑗𝑣)𝜋(𝑗ℎ−1,𝑗𝑣)(𝑡) + 𝑑1(𝑗ℎ + 1, 𝑗𝑣)𝜋(𝑗ℎ+1,𝑗𝑣)(𝑡) + 𝑏2(𝑗ℎ, 𝑗𝑣 − 1) 

𝜋(𝑗ℎ,𝑗𝑣−1)(𝑡) + 𝑑2(𝑗ℎ, 𝑗𝑣 + 1)𝜋(𝑗ℎ,𝑗𝑣+1)(𝑡) − 𝜔𝑄(𝑗ℎ, 𝑗𝑣)𝜋(𝑗ℎ,𝑗𝑣)(𝑡) 

−[𝑑1(1,0)𝜋(1,0)(𝑡) − 𝑑2(0,1)𝜋(0,1)(𝑡)]𝜑(𝑗ℎ)𝜑(𝑗𝑣) = 0, 

where 𝜔𝑄(𝑗ℎ, 𝑗𝑣) = 𝜔(𝑗ℎ , 𝑗𝑣) − 𝑑1(1,0)Π(1,0)(𝑡) − 𝑑2(0,1)Π(0,1)(𝑡), (𝑗ℎ, 𝑗𝑣) 

and 

 𝜑(𝑗) = {
1, 𝑗 = 0,
0, 𝑗 ≠ 0.

 

This will give 

 𝑏1(𝑗ℎ − 1, 𝑗𝑣)𝜋(𝑗ℎ−1,𝑗𝑣)(𝑡) + 𝑑1(𝑗ℎ + 1, 𝑗𝑣)𝜋(𝑗ℎ+1,𝑗𝑣)(𝑡) 

+𝑏2(𝑗ℎ, 𝑗𝑣 − 1)𝜋(𝑗ℎ,𝑗𝑣−1)(𝑡) + 𝑑2(𝑗ℎ, 𝑗𝑣 + 1)𝜋(𝑗ℎ,𝑗𝑣+1)(𝑡) (5) 

−𝜔(𝑗ℎ , 𝑗𝑣)𝜋(𝑗ℎ,𝑗𝑣)(𝑡) = 0, 

The numerical problem of Eq. 5 is solved by using the shifted inverse iteration 

method with a properly modified matrix 𝑄 [20]. 

4 Numerical Simulations 

A simulation was performed to analyze the system using several parameters. 

This was done to study the effect of changing the values of certain parameters, 

to see whether a disease outbreak will occur or the disease will gradually 

disappear. In this numerical simulation, the initial populations were assigned as 

follows: 𝑁ℎ(0) = 50, 𝑁𝑣(0) = 50, 𝐼ℎ(0) = 1, and 𝐼𝑣(0) = 1. The parameter 
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values used were: 𝜇 = 1/70, 𝜂 = 365/20, 𝛿 = 365/180, 𝛽 = 10 and 𝛼 = 30, 

as listed in Table 1. 

4.1 Scenario 1: The Effect of Changing the Probability that a 

Mosquito Bites an Infectious Human (𝒌) 

In this scenario, the value of parameter 𝑘 was varied, i.e. the probability that a 

mosquito bites an infectious human. The parameters used were 𝑙 = 0.3 and 𝜃 =
0.3. The results of the analysis for ℛ0, the outbreak probability and the 

expected time required to reach a disease-free equilibrium are presented in 

Table 2. 

Table 2 Values of 𝑘, ℛ0, outbreak probability and expected time required 

to reach a disease-free equilibrium. 

𝒌 𝓡𝟎 
Outbreak 

Probability 

Expected Time 

(Years) 

0.3 5.63491 0.81891 5.07 × 1011 
0.4 7.51322 0.86328 2.69 × 1012 
0.5 9.39152 0.88989 6.98 × 1012 
0.6 11.26983 0.90765 9.04 × 1012 

The results in Table 2 show that the value of 𝑘 increases with ℛ0, the outbreak 

probability and the expected time to reach a disease-free equilibrium.  

Fig. 2 shows that the dynamics of the values of 𝐼ℎ and 𝐼𝑣 for various values of 𝑘 

have a relatively similar fluctuating pattern. It can be seen that when the value of 

𝑘 increases, populations 𝐼ℎ and 𝐼𝑣 both increase rapidly. Starting from single 

individuals of both humans 𝐼ℎ and mosquitoes 𝐼𝑣, the values of 𝐼ℎ and 𝐼𝑣 increase 

to 30 humans and 25 mosquitoes, the patterns fluctuating for a considerable 

period of time. 

 

Figure 2 Dynamics of infected human population (a) and infected mosquito 

population (b) for Scenario 1. 

(b) (a) 
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Fig. 3 shows that the higher the value of 𝑘, the more time is required to reach a 

disease-free equilibrium for a set given initial values (𝐼ℎ(0), 𝐼𝑣(0)). Moreover, 

this time increases dramatically if the vector’s initial value increases from 

(𝐼ℎ(0), 𝐼𝑣(0)) = (0,1) to (𝐼ℎ(0), 𝐼𝑣(0)) = (0,10). If the initial values for 

humans increase (𝐼ℎ(0), 𝐼𝑣(0)) = {(1,0), (2,0), (3,0)}, then the time required to 

reach a disease-free equilibrium is slightly shorter. After experiencing a 

downturn, it gradually rises and remains steady at 6.22 × 1011 years for 𝑘 =
0.3; remains steady at 3.13 × 1012 years for 𝑘 = 0.4; remains steady at 

7.89 × 1012 years for 𝑘 = 0.5; and remains steady at 1.00 × 1013 years for 

𝑘 = 0.6. 

 

Figure 3 Expected time to reach a disease-free equilibrium for Scenario 1. 

 

 

Figure 4 Quasi-stationary probability distribution of infected human (a) and 

infected mosquito (b) for Scenario 1. 

(a) (b) 
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Based on Fig. 4 it can be seen that for a curve with legend 𝑘 = 0.3, the highest 

probability occurs when 𝑗ℎ = 32 and 𝑗𝑣 = 25. This means that before a disease-

free equilibrium is reached, 32 infected humans and 25 infected mosquitoes will 

be found in the system. This is the same for 𝑘 = 0.4, when the greatest 

probability occurs for 𝑗ℎ = 30 and 𝑗𝑣 = 26; for 𝑘 = 0.5, when the greatest 

probability occurs for 𝑗ℎ = 28 and 𝑗𝑣 = 26; and for 𝑘 = 0.6, when the greatest 

probability occurs for 𝑗ℎ = 27 and 𝑗𝑣 = 27.  

The quasi-stationary distribution shown in Fig. 4 indicates that the expected 

numbers of infected humans for 𝑘 = 0.3, 𝑘 = 0.4, 𝑘 = 0.5, and 𝑘 = 0.6 are 

31.6, 29.8, 28.4, and 27.1, respectively. Meanwhile, the expected numbers of 

infected mosquitoes for 𝑘 = 0.3, 𝑘 = 0.4, 𝑘 = 0.5, and 𝑘 = 0.6 are 25.4, 26.0, 

26.4, and 26.7, respectively. In this scenario, we obtain that the value of 𝑘 may 

affect the number of infected humans and infected mosquitoes before the 

disease-free equilibrium is reached. Thus, we can conclude that the value of 𝑘 

increases with the number of infected mosquitoes but decreases with the 

number of infected humans. 

4.2 Scenario 2: The Effect of Changing the Effectiveness of the 

Human Immunity System (𝜽) 

In this scenario, the value of parameter 𝜃, the effectiveness of the human 

immunity system, was varied. The parameter values used, 𝑘 = 0.5 and 𝑙 = 0.5, 

were assigned to be constant. The simulation results are presented in terms of 

the obtained value of ℛ0, the probability of disease outbreak, and the expected 

time required to reach a disease-free equilibrium (See Table 3). 

The results in Table 3 show that an increase of 𝜃 will decrease ℛ0, the outbreak 

probability and also the expected time required until a disease-free equilibrium 

is reached. 

Table 3 Values of ℛ0, outbreak probability, and expected time required to 

reach a disease-free equilibrium. 

𝜽 𝓡𝟎 
Outbreak 

Probability 

Expected Time 

(Years) 

0 8.04988 0.87324 1.72 × 1013 
0.5 4.02494 0.74648 3.33 × 107 
0.7 2.41496 0.57746 648.186 
0.9 0.80499 0 0.98882 
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Figure 5 Dynamics of infected human population (a) and infected mosquito 

population (b) for Scenario 2. 

Fig. 5 shows that the dynamics of infected humans and vectors 𝐼ℎ and 𝐼𝑣 for 𝜃 =

0 and 𝜃 = 0.5 have relatively similar fluctuating patterns. This is maintained for 

a considerable period of time (see Table 3). Further, for 𝜃 = 0.7 the same 

fluctuating pattern occurs but in a slightly lower range. For 𝜃 = 0.9 the pattern is 

maintained with an even lower range of infected humans and mosquitoes. For 

this latter value, the disease-free equilibrium is reached within less than one 

simulation year.  

Fig. 6 shows that the higher the value of 𝜃, the shorter the time required to reach 

a disease-free equilibrium for a set of initial values (𝐼ℎ(0), 𝐼𝑣(0)). However, this 

time increases dramatically if the vector’s initial value increases from 
(𝐼ℎ(0), 𝐼𝑣(0)) = (0,1) to (𝐼ℎ(0), 𝐼𝑣(0)) = (0,10). For several initial values, except 

𝐼𝑣(0) = 0, the time required to reach a disease-free equilibrium dropped slightly but 

gradually rises and remains steady at 1.97 × 1013 years for 𝜃 = 0; steady at 

4.52 × 107 years for 𝜃 = 0.5; steady at 1182.56 years for 𝜃 = 0.7; and steady 4.04 

years for 𝜃 =  0.9. 

From Fig. 7 it can be seen that for the 𝜃 = 0 curve, the highest probability 

occurs when 𝑗ℎ = 37 and 𝑗𝑣 = 27. This means that before the disease-free 

equilibrium is reached, often 37 infected humans and 27 infected mosquitoes 

will be found in the system. This is the same for 𝜃 = 0.5, where the greatest 

probability occurs when 𝑗ℎ = 27 and 𝑗𝑣 = 23; for 𝜃 = 0.7 it occurs when 𝑗ℎ =
17 and 𝑗𝑣 = 18; and for 𝜃 = 0.9 it occurs when 𝑗ℎ = 0 and 𝑗𝑣 = 1.  

The quasi-stationary distribution shown in Fig. 7 indicates that the expected 

value of the numbers of infected humans for 𝜃 = 0, 𝜃 = 0.5, 𝜃 = 0.7, and 𝜃 =
0.9 are 36.2, 26.3, 16.6, and 0.97, respectively. Meanwhile, the expected value 

of the number of infected mosquitoes for 𝜃 = 0, 𝜃 = 0.5, 𝜃 = 0.7, and 𝜃 = 0.9 

are 27.1, 23.0, 17.3 and 1.96, respectively. In this scenario, we obtain that the 

value of 𝜃 may affect the number of infected humans and infected mosquitoes 

(a) (b) 
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before the disease-free equilibrium is reached. Thus, we can conclude that an 

increase of 𝜃 decreases the number of infected humans before the disease-free 

equilibrium is reached. 

 

Figure 6 Expected time to reach a disease-free equilibrium with 𝜃 = 0 (a), 𝜃 =
0,5 (b), 𝜃 = 0,7 (c), and 𝜃 = 0,9 (d) for Scenario 2. 

 

Figure 7 Quasi-stationary probability distribution of infected human (a) and 

infected mosquito (b) for Scenario 2. 

5 Conclusions 

From this work it is concluded that if the probability that a mosquito bites an 

infectious human (𝑘) increases malaria disease will spread quickly. Thus, the 

outbreak probability will be higher and the expected time required to reach a 

disease-free equilibrium will be much longer. On the other hand, an increase of 

effectiveness of the human immunity system (𝜃) will slow down the spread of 

the malaria disease. Also, it may be concluded that both the outbreak probability 

(a) (b) 

(a) (b) 

(c) (d) 
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and the expected time required to achieve a disease-free equilibrium will be 

shorter. 

The computer simulation denoted as Scenario 2 is aligned with the modified 

Chamchod and Britton’s model, considering an immunity factor of 𝜃 = 0.3. As 

a result, the probability of disease outbreak decreases from 0.87324 to 

0.74648. Similarly, the expected time to reach a disease-free equilibrium is 

much shorter, decreasing from 1.72 × 1013 to 3.33 × 107 simulation years. 

The quasi-stationary probability can describe the number of infected individuals 

in the population before a disease-free equilibrium is reached with a certain 

probability value. Based on the simulation results it was found that 𝑘 and 𝜃 may 

affect the number of infected humans and mosquitoes before a disease-free 

equilibrium is reached. The value of 𝑘 increases with the number of infected 

mosquitoes, but it will decrease with the number of infected humans. On the 

other hand, an increase of 𝜃 may decrease both the number of infected humans 

and the number of infected mosquitoes before a disease-free equilibrium point 

is reached. 
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