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Abstract. Many research studies have been carried out to understand the 

epidemiological characteristics of the COVID-19 pandemic in its early phase. 

The current study is yet another contribution to better understand the disease 

properties by parameter estimation based on mathematical SIR epidemic 

modeling. The authors used Johns Hopkins University’s dataset to estimate the 

basic reproduction number of COVID-19 for five representative countries 

(Japan, Germany, Italy, France, and the Netherlands) that were selected using 

cluster analysis. As byproducts, the authors estimated the transmission, recovery, 

and death rates for each selected country and carried out statistical tests to see if 

there were any significant differences. 
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1 Introduction 

Officially named COVID-19, the novel coronavirus pneumonia outbreak was 

first identified in Wuhan, China in late December 2019. It is recognized as a 

severe respiratory illness similar to MERS-CoV and SARS-CoV. A review 

published on March 2, 2019 foresaw future SARS- or MERS-like coronavirus 

diseases in humans originating from bats, most likely in China [1]. 

Soon the COVID-19 outbreak was characterized as a pandemic and the World 

Health Organization (WHO) declared it a Public Health Emergency of 

International Concern on 30 January 2020. As of April 8, 2020, over 1,436,833 

cases of COVID-19 had been reported to WHO, from over 209 countries and 

territories around the world with more than 82,421 fatalities and about 303,721 

recoveries. 
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Obtaining epidemiological characteristics such as basic reproduction number, 

incubation period, infectious period, and death rate are crucial in better 

understanding the pandemic outbreak. Shortly after the first statistics were made 

available, various research studies of COVID-19 were carried out to estimate 

these parameter values, see e.g. [2,3]. A study [4] from January 2020 estimated 

the basic reproduction number 𝑅0 to range from 2.24 (95%CI: 1.96-2.55) to 

5.71 (95%CI: 4.24-7.54) using the formula 𝑅0 =  1/𝑀(−𝛾), where M is the 

moment generating function for the serial interval of the COVID-19 and γ is the 

intrinsic growth rate. Another early work [5] estimated 𝑅0 to be 3.11 (95%CI, 

2.39-4.13) using the deterministic SEIR metapopulation model. The same work 

estimated the transmission rate, 𝛽, to be 1.94 (95%CI, 1.25-6.71) and the 

infectious period to be 1.61 days (95%CI, 0.35-3.23) in Wuhan, China. A 

review of twelve recent works showed that 𝑅0 ranges from 1.4 to 6.49, with a 

mean of 3.28, a median of 2.79 and an interquartile range (IQR) of 1.16 [6]. 

While early reports of the Chinese Center for Disease Control and Prevention 

[7] suggested the infectious period to be 9 days, another recent work [8] 

reported the mean infectious period to be 10.91 days (SD = 3.95).  

For various mathematical models that have been formulated to forecast the 

development of the disease and estimating the parameters, we refer to [9] and 

references therein.  

Our goal in this study was to estimate death rates for COVID-19 for selected 

representative countries. These parameter values were used to estimate the 

recovery rate and the basic reproduction number from a deterministic 

mathematical model. We then compared these results to see if there were any 

significant differences among countries. 

The rest of the paper is organized as follows. First, we introduce the 

methodology, including data, the mathematical model, and the parameter 

estimation technique. Then comes the results section, where we report our 

findings. Finally, we end with a discussion section, where we interpret the 

findings and provide recommendations for future research. 

2 Method 

2.1 Data Set 

This study used Johns Hopkins University’s COVID-19 data made available via 

a GitHub repository [10]. The dataset includes confirmed, recovered, and death 

cases for almost all countries in the world over the period of January 22, 2019 

to March 23, 2020 on a daily basis. The epidemiological characteristics of 
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COVID-19 in the USA, South Korea, Italy, France, China, and Iran were 

studied; this list of selected countries was based on cluster analysis. 

2.2 Theoretical Model 

Let N be the total population of a country. The following diagram summarizes 

the disease transmission process. 

 

Figure 1 SIR model diagram. 

The corresponding classical deterministic SIR epidemic model is given by 

 
𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼/𝑁 

 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼/𝑁 − (𝛾 + 𝜇)𝐼 

 
𝑑𝑅

𝑑𝑡
= 𝛾𝑅 

where, S, I, R are susceptible, infectious, and recovered classes and parameters 

β, γ, μ are transmission, recovery, and death rates, respectively. Since we had a 

dataset containing data recorded on a daily basis, we fixed our time units in 

terms of days. For this model, the basic reproduction number is given by the 

formula 

 𝑅0 =
𝛽

𝛾+𝜇
  (1) 

We note that this is a system of autonomous nonlinear ordinary differential 

equations. The nonlinearity term SI is due to the law of mass-action, which is 

the reason for the absence of a non-trivial closed form. However, computer 

assisted numerical approximations are available. There are variations of this 

model, where one may include new classes, such as exposed and quarantine 

cases, or demographic characteristics such as birth rate, natural death rate, etc. 

As our parameter estimations fit well to the current model, we decided to use it 

as is. 

2.3 Clustering 

Before applying the statistics model (least square) and SIR method, this study 

verified the cluster analysis. As reported above, there are over 184 countries 

where a COVID-19 outbreak has occurred so far. Analyzing each country 
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separately and reporting results in a research article is not very convenient. 

Therefore, we decided to run cluster analysis to first group the countries 

according to similarity of confirmed cases and then select one representative 

country from each cluster. Here, cluster analysis was carried using country 

recovery rates (γ) and the country doubling periods of confirmed cases. The last 

equation of the SIR model is 𝑑𝑅/𝑑𝑡 = 𝛾𝐼, which can be rewritten in discretized 

form as 

 𝛥𝑅𝑡 = 𝑅(𝑡 + 1) − 𝑅(𝑡) = 𝛾𝐼(𝑡).      (2) 

Both 𝛥𝑅 and 𝐼(𝑡) can be computed from the dataset and γ can be obtained as 

the slope of the equation. Before the confirmed case gets very large, one can 

safely assume that 𝑆 ≈ 𝑁, which together with the second equation of SIR gives 

𝑑𝐼/𝑑𝑡 = 𝑘𝐼, with growth rate 𝑘 = 𝛽 − 𝜇 − 𝛾. This has a solution 𝐼(𝑡) =
𝐼(0)𝑒𝑘𝑡 from which one can obtain  

  𝑘 =
𝑙𝑜 𝑔(𝐼(𝑡))−𝑙𝑜 𝑔(𝐼(0))

𝑡
, 

where time t was taken to be the last day available in the dataset and 𝑡 = 0 was 

taken so that 𝐼(0) is nonzero. We note here that 𝐼(𝑡) in the model is the total 

number of infectious cases at time t, which is different from the total number of 

confirmed cases at time t. However, if I has exponential growth, then so does 

the total confirmed cases. Once the growth rate is estimated for each country, 

the doubling period is computed to be (ln 2)/𝑘. 

We conducted k-means cluster analysis, which is sensitive to outliers. Hence, 

we first cleared outliers from our data using box plot analysis and then used the 

elbow method to determine the number of centroids. Finally, cluster analysis 

was carried out for the normalized variables, 𝓏-scores, and one representative 

was selected from each cluster. Moreover, we did not completely avoid outliers; 

instead, we selected one representative country with a low doubling period and 

a very low recovery period.  

2.4 Parameter Estimation 

To estimate the parameters β, γ, μ for the SIR system one usually considers non-

linear least square analysis. However, models are simplified versions of real life 

systems and not always behave well with parameter estimations. What we did 

was estimate parameter γ using simple linear regression. Then, we used this 

point estimate in the SIR model to estimate β and μ. More specifically, we used 

the scipy.integrate.ode function in the Python programming language to 

simulate 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡), with the following initial values: 𝑆(0) = country 

population, 𝐼(0) = the first observed number of cases in the country, and 

𝑅(0) = 0. Then, we called the scipy.optimize.curve_fit function for least-square 



362 Kadyrov, S., et al. 

fitting of the theoretical model solution to the observed daily number of 

confirmed cases and recovered individuals. More specifically, we let 

𝐼0(𝑡); 𝑅0(𝑡) be the observed confirmed cases and total recovered individuals at 

time moment t, respectively. Also, we let 𝐼𝑝(𝑡; 𝛽; 𝜇; 𝛾); 𝑅𝑝(𝑡; 𝛽; 𝜇; 𝛾) be the 

predicted/simulated confirmed cases and total recovered individuals at time 

moment t obtained from the SIR model using Python’s scipy.integrate.ode 

function, given parameter values 𝛽; 𝜇; 𝛾. Consider the error function 

 𝐸𝑟𝑟𝑜𝑟(𝛽; 𝜇; 𝛾) = ∑ [𝐼𝑜(𝑡) − 𝐼𝑝(𝑡; 𝛽; 𝜇; 𝛾)]2 + [𝑅𝑜(𝑡) −𝑛
𝑡=0

𝑅𝑝(𝑡; 𝛽; 𝜇; 𝛾)]
2

, 

where n is the total number of days from the day when the first infected case 

occurred in a country to March 23, 2020. Then, given 𝛾 from the linear 

regression, the scipy:optimize:curve_fit function searches for positive numbers 

𝛽 and 𝜇 to minimize the error function. 

3 Results and Discussion  

Table 1 Countries in Each Cluster 

Cluster Number Countries 

1 14 

Afghanistan, Australia, Cruise Ship, Egypt, Georgia, India, Japan, 

South Korea, Malaysia, Monaco, Nigeria, Russia, Singapore, United 

Arab Emirates 

2 25 

Albania, Armenia, Bangladesh, Brunei, Bulgaria, Chile, Colombia, 

Costa Rica, Cote d’Ivoire, Croatia, Cyprus, Germany, Greece, Israel, 

Lebanon, Luxembourg, Morocco, Poland, San Marino, Saudi Arabia, 

Slovakia, Switzerland, Trinidad and Tobago, Ukraine, US 

3 10 
Azerbaijan, Belgium, Burkina Faso, Iceland, Indonesia, Italy, Jamaica, 

Kuwait, Senegal, Spain 

4 5 Belarus, France, Hungary, Iraq, Pakistan 

The countries with fewer data resulted in unrealistic doubling periods (over 10) 

and/or almost zero recovery rates (less than 0.0001), these countries were 

eliminated. Eliminating countries with a doubling period more than 10 resulted 

in 152 countries left. On the other hand, when we eliminated countries with a 

very small (< 0.0001) recovery rate, we were left with only 67 countries. The 

eliminated countries were those with few data reports or with missing data for 

recovered individuals. Further remaining outliers were cleared using box plot 

analysis, which resulted in 54 countries left. The final box plot results for the 54 

countries are shown in Figure 2. 
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(a) Doubling periods of confirmed 

cases of countries 

(b) Recovery rates of countries 

Figure 2 Box plots of recovery rates and cases doubling periods. 

In Figure 3, the distributions of both doubling periods and recovery rates are 

shown. In particular, it can be seen that the mean doubling period for 54 

countries was 3.60 (95%CI: 3.22-3.99). 

  
(a) Average doubling period (b) Recovery rate 

Figure 3 Distribution of doubling periods for the confirmed cases 

and recovery rates. 

An elbow method summary is shown in Figure 4. Here we see that there are five 

points with sum of squared distances more than 1, suggesting to consider 5 

clusters. However, with 5 clusters, some of the clusters would contain very few 

countries, and since the total remaining countries was only 54, we decided to set 

the number of clusters to 4. 
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Figure 4 Scree plot for optimal k. 

The bar charts of the 𝓏-scores of the variables for each cluster are shown in 

Figure 5 and the list of countries in each cluster is given in Table 1. Both 

recovery rate and doubling period were found to be significant predictors, with 

F(3,50) = 76.19, p < 0.001 and F(3,50) = 45.17, p < 0.001 respectively. 

 

Figure 5 Scree plot for optimal k. 

We see that the first cluster contained 14 countries with a high doubling period, 

the second cluster contained 25 countries with a low recovery rate and a low 

doubling period, the third contained 10 countries with a somewhat average 

recovery rate and an average doubling period, and the last cluster contained 5 

countries with a high recovery rate. 

We selected one representative country, i.e., Japan, Germany, Italy, and France 

from each cluster. We selected one more country as a representative of the 

outliers, namely the Netherlands, which had a low case doubling period (2.08 

days) as well as a low recovery period (< 0.001). 

For the selected countries, least square parameter estimation using the 

theoretical SIR model was carried out. The results are summarized in Table 2. 
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(a) Japan (b) Germany 

  
(c) Italy (d) France 

 
(e) The Netherlands 

Figure 6 Plot of the data (dotted curve) vs. SIR simulation (solid curve). The 

red and blue colors correspond to infectious and recovered cases respectively. 

As mentioned in the methodology section, the death rates were estimated using 

linear regression, which was then substituted into the SIR model to estimate 

both the transmission rate and the recovery rate. The reported mean error was 

computed as the L2-norm of residuals divided by the total data points used in 

the estimation. Figure 6 shows the plot of data points vs. the SIR simulation 

with estimated parameter values for each representative country. The three-

hundred-day simulations of the SIR model after the start of the outbreak are 

provided in the appendix. 
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Table 2 Summary of Parameter Estimations with Standard Deviation in 

Brackets 

Parameters Japan Germany Italy France 
The 

Netherlands 

Transmission rate (𝛽) 
0.1898 

(1.65e-05) 

0.1895 

(3.93e-06) 

0.3481 

(1.64e-05) 

0.2022 

(4.34e-06) 

0.4017 

(0.0003) 

Recovery rate (𝛾) 
0.0284 

(1.72e-05) 

0.0018 

(3.89e-06) 

0.027 

(1.66e-05) 

0.0061 

(4.32e-06) 

0.0002 

(0.00029) 

Death rate (𝜇) 0.0426 0.0035 0.1202 0.042 0.0472 

𝑅0 2.67 35.74 2.36 4.20 8.47 

Case doubling period 6.71 3.84 3.28 4.22 2.08 

Mean square error 7 45 190 36 45 

4 Conclusion 

In this study we used the SIR model of Kermack and McKendrick to estimate 

COVID-19 epidemiological characteristics using Johns Hopkins University 

dataset over the period from January 22 to March 22. Our approach was purely 

data-driven without relying on any parameters reported before. 183 countries 

were divided into 5 clusters, classified according to recovery rates and case 

doubling periods, and one representative country was selected from each 

cluster. The summary of parameter estimation results are given in Table 2. Here 

we see that the death rate 𝜇 varied from 0.0035 to 0.1202. Germany had the 

lowest death rate and Italy had the highest death rate. One may expect similar 

estimates within the respective clusters. The reason for such a significant 

difference in death rates requires further investigation. 

When it comes to parameter estimation using nonlinear epidemic models, the 

recovery rate 𝛾 is usually taken to be the inverse of the infectious period. 

However, estimation results reveal, see Table 2, that this rate varied from 

0.0018 to 0.0284 for the representative countries in four clusters. Taking the 

inverse yielded a range from 35 days to 555 days, which is much longer than 

the infectious period reported before, see e.g. CDC, (You et al., 2020). This 

indicates that the recovery rate should not be taken as the inverse of the 

infectious period, provided the dataset (JHU, 2020) is accurate. Moreover, we 

noticed some inaccuracies in the dataset, e.g. one country started reporting the 

number of recovered individuals after almost two months, etc. However, in such 

situations the scipy.optimize.curve_fit function would overestimate the 𝜇 and 

since 𝑅0 = 𝛽/(𝛾 + 𝜇), so the estimation of 𝑅0 is not affected much. As for the 

basic reproduction number 𝑅0, we had 2.36, 2.67, 4.20, 8.47, and 35.74 for 

Italy, Japan, France, the Netherlands, and Germany respectively. While the first 

four estimates are in line with earlier reports of 𝑅0 for COVID-19, we find the 

𝑅0 estimate of 35.74 for Germany very high. This is consistent with the low 
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death rate in Germany of 0.0035 found, as the death rate appears in the 

reciprocal of the basic reproduction formula. 

One of the limitations of the study is that the SIR model is theoretical so its 

forecasting of the pandemic’s progression may be misleading. However, the 

model is effective in providing a qualitative picture of the pandemic and 

estimating the epidemiological parameters, including the basic reproduction 

number in the early stages of infection. For our five representative countries we 

provided a three-hundred-day simulation in the appendix. What we found from 

the simulations was that the COVID-19 pandemic is likely to start slowing 

down within 100-150 days, in this case, starting from January 22. Looking at 

the times series of susceptible individuals, we see that over 80% of the world 

population will be affected by the pandemic. However, we note that our model 

ignores any kind of preventative situation and as such it is very likely that the 

total number of affected cases will be much lower. It is possible to consider 

various improvements of the model, where one can include other compartments 

such as exposed or quarantined individuals and consider a non-autonomous 

system, where the transmission rate is controlled according to mitigation 

campaigns such as social distancing, self-quarantine, mask mandates, etc. 
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