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Abstract. Many research studies have been carried out to understand the
epidemiological characteristics of the COVID-19 pandemic in its early phase.
The current study is yet another contribution to better understand the disease
properties by parameter estimation based on mathematical SIR epidemic
modeling. The authors used Johns Hopkins University’s dataset to estimate the
basic reproduction number of COVID-19 for five representative countries
(Japan, Germany, Italy, France, and the Netherlands) that were selected using
cluster analysis. As byproducts, the authors estimated the transmission, recovery,
and death rates for each selected country and carried out statistical tests to see if
there were any significant differences.
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1 Introduction

Officially named COVID-19, the novel coronavirus pneumonia outbreak was
first identified in Wuhan, China in late December 2019. It is recognized as a
severe respiratory illness similar to MERS-CoV and SARS-CoV. A review
published on March 2, 2019 foresaw future SARS- or MERS-like coronavirus
diseases in humans originating from bats, most likely in China [1].

Soon the COVID-19 outbreak was characterized as a pandemic and the World
Health Organization (WHO) declared it a Public Health Emergency of
International Concern on 30 January 2020. As of April 8, 2020, over 1,436,833
cases of COVID-19 had been reported to WHO, from over 209 countries and
territories around the world with more than 82,421 fatalities and about 303,721
recoveries.
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Obtaining epidemiological characteristics such as basic reproduction number,
incubation period, infectious period, and death rate are crucial in better
understanding the pandemic outbreak. Shortly after the first statistics were made
available, various research studies of COVID-19 were carried out to estimate
these parameter values, see e.g. [2,3]. A study [4] from January 2020 estimated
the basic reproduction number R, to range from 2.24 (95%CI: 1.96-2.55) to
5.71 (95%CI: 4.24-7.54) using the formula Ry = 1/M(—y), where M is the
moment generating function for the serial interval of the COVID-19 and vy is the
intrinsic growth rate. Another early work [5] estimated R, to be 3.11 (95%Cl,
2.39-4.13) using the deterministic SEIR metapopulation model. The same work
estimated the transmission rate, 5, to be 1.94 (95%CI, 1.25-6.71) and the
infectious period to be 1.61 days (95%CI, 0.35-3.23) in Wuhan, China. A
review of twelve recent works showed that R, ranges from 1.4 to 6.49, with a
mean of 3.28, a median of 2.79 and an interquartile range (IQR) of 1.16 [6].
While early reports of the Chinese Center for Disease Control and Prevention
[7] suggested the infectious period to be 9 days, another recent work [8]
reported the mean infectious period to be 10.91 days (SD = 3.95).

For various mathematical models that have been formulated to forecast the
development of the disease and estimating the parameters, we refer to [9] and
references therein.

Our goal in this study was to estimate death rates for COVID-19 for selected
representative countries. These parameter values were used to estimate the
recovery rate and the basic reproduction number from a deterministic
mathematical model. We then compared these results to see if there were any
significant differences among countries.

The rest of the paper is organized as follows. First, we introduce the
methodology, including data, the mathematical model, and the parameter
estimation technique. Then comes the results section, where we report our
findings. Finally, we end with a discussion section, where we interpret the
findings and provide recommendations for future research.

2 Method
2.1 Data Set

This study used Johns Hopkins University’s COVID-19 data made available via
a GitHub repository [10]. The dataset includes confirmed, recovered, and death
cases for almost all countries in the world over the period of January 22, 2019
to March 23, 2020 on a daily basis. The epidemiological characteristics of
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COVID-19 in the USA, South Korea, Italy, France, China, and Iran were
studied; this list of selected countries was based on cluster analysis.

2.2 Theoretical Model

Let N be the total population of a country. The following diagram summarizes
the disease transmission process.

Figure 1 SIR model diagram.

The corresponding classical deterministic SIR epidemic model is given by
ds

E == —,BSI/N

dl

S = BSI/N = (y + W)l
drR _

= YR

where, S, I, R are susceptible, infectious, and recovered classes and parameters
B, v, u are transmission, recovery, and death rates, respectively. Since we had a
dataset containing data recorded on a daily basis, we fixed our time units in
terms of days. For this model, the basic reproduction number is given by the
formula
__B

Ro=-"2 1)
We note that this is a system of autonomous nonlinear ordinary differential
equations. The nonlinearity term Sl is due to the law of mass-action, which is
the reason for the absence of a non-trivial closed form. However, computer
assisted numerical approximations are available. There are variations of this
model, where one may include new classes, such as exposed and quarantine
cases, or demographic characteristics such as birth rate, natural death rate, etc.
As our parameter estimations fit well to the current model, we decided to use it
as is.

2.3  Clustering

Before applying the statistics model (least square) and SIR method, this study
verified the cluster analysis. As reported above, there are over 184 countries
where a COVID-19 outbreak has occurred so far. Analyzing each country
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separately and reporting results in a research article is not very convenient.
Therefore, we decided to run cluster analysis to first group the countries
according to similarity of confirmed cases and then select one representative
country from each cluster. Here, cluster analysis was carried using country
recovery rates (y) and the country doubling periods of confirmed cases. The last
equation of the SIR model is dR/dt = yI, which can be rewritten in discretized
form as

AR, = R(t + 1) — R(t) = yI(b). )

Both AR and I(t) can be computed from the dataset and y can be obtained as
the slope of the equation. Before the confirmed case gets very large, one can
safely assume that S = N, which together with the second equation of SIR gives
dl/dt = kI, with growth rate k = —u—y. This has a solution I(t) =
1(0)e*t from which one can obtain

k = lo g(1(t))—1o g(1(0))
. )
where time t was taken to be the last day available in the dataset and t = 0 was
taken so that 1(0) is nonzero. We note here that /(t) in the model is the total
number of infectious cases at time t, which is different from the total number of
confirmed cases at time t. However, if | has exponential growth, then so does
the total confirmed cases. Once the growth rate is estimated for each country,
the doubling period is computed to be (In 2)/k.

We conducted k-means cluster analysis, which is sensitive to outliers. Hence,
we first cleared outliers from our data using box plot analysis and then used the
elbow method to determine the number of centroids. Finally, cluster analysis
was carried out for the normalized variables, z-scores, and one representative
was selected from each cluster. Moreover, we did not completely avoid outliers;
instead, we selected one representative country with a low doubling period and
a very low recovery period.

2.4 Parameter Estimation

To estimate the parameters B, vy, 1 for the SIR system one usually considers non-
linear least square analysis. However, models are simplified versions of real life
systems and not always behave well with parameter estimations. What we did
was estimate parameter y using simple linear regression. Then, we used this
point estimate in the SIR model to estimate § and p. More specifically, we used
the scipy.integrate.ode function in the Python programming language to
simulate S(t), I(t), and R(t), with the following initial values: S(0) = country
population, 1(0) = the first observed number of cases in the country, and
R(0) = 0. Then, we called the scipy.optimize.curve_fit function for least-square
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fitting of the theoretical model solution to the observed daily number of
confirmed cases and recovered individuals. More specifically, we let
I, (t); Ro(t) be the observed confirmed cases and total recovered individuals at
time moment t, respectively. Also, we let I,(t; B;1;v); Ry (t; B; w;v) be the
predicted/simulated confirmed cases and total recovered individuals at time
moment t obtained from the SIR model using Python’s scipy.integrate.ode
function, given parameter values S; u; y. Consider the error function

Error(B; 15v) = Xi=ollo(t) = I, (&; B; 5 V)I* + [Ro () —
2
R,(&:BwY)]
where n is the total number of days from the day when the first infected case
occurred in a country to March 23, 2020. Then, given y from the linear

regression, the scipy:optimize:curve_fit function searches for positive numbers
B and u to minimize the error function.

3 Results and Discussion

Table 1 Countries in Each Cluster

Cluster Number Countries

Afghanistan, Australia, Cruise Ship, Egypt, Georgia, India, Japan,
1 14 South Korea, Malaysia, Monaco, Nigeria, Russia, Singapore, United
Arab Emirates

Albania, Armenia, Bangladesh, Brunei, Bulgaria, Chile, Colombia,
Costa Rica, Cote d’Ivoire, Croatia, Cyprus, Germany, Greece, Israel,

2 25 Lebanon, Luxembourg, Morocco, Poland, San Marino, Saudi Arabia,
Slovakia, Switzerland, Trinidad and Tobago, Ukraine, US
Azerbaijan, Belgium, Burkina Faso, Iceland, Indonesia, Italy, Jamaica,
3 10 . .
Kuwait, Senegal, Spain
4 5 Belarus, France, Hungary, Iraq, Pakistan

The countries with fewer data resulted in unrealistic doubling periods (over 10)
and/or almost zero recovery rates (less than 0.0001), these countries were
eliminated. Eliminating countries with a doubling period more than 10 resulted
in 152 countries left. On the other hand, when we eliminated countries with a
very small (< 0.0001) recovery rate, we were left with only 67 countries. The
eliminated countries were those with few data reports or with missing data for
recovered individuals. Further remaining outliers were cleared using box plot
analysis, which resulted in 54 countries left. The final box plot results for the 54
countries are shown in Figure 2.
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(a) Doubling periods of confirmed (b) Recovery rates of countries
cases of countries

Figure 2 Box plots of recovery rates and cases doubling periods.

In Figure 3, the distributions of both doubling periods and recovery rates are
shown. In particular, it can be seen that the mean doubling period for 54
countries was 3.60 (95%Cl: 3.22-3.99).
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Figure 3 Distribution of doubling periods for the confirmed cases
and recovery rates.

An elbow method summary is shown in Figure 4. Here we see that there are five
points with sum of squared distances more than 1, suggesting to consider 5
clusters. However, with 5 clusters, some of the clusters would contain very few
countries, and since the total remaining countries was only 54, we decided to set
the number of clusters to 4.
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Figure 4 Scree plot for optimal k.

The bar charts of the z-scores of the variables for each cluster are shown in
Figure 5 and the list of countries in each cluster is given in Table 1. Both
recovery rate and doubling period were found to be significant predictors, with
F(3,50) = 76.19, p < 0.001 and F(3,50) = 45.17, p < 0.001 respectively.
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average
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T T T T
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Figure 5 Scree plot for optimal k.

We see that the first cluster contained 14 countries with a high doubling period,
the second cluster contained 25 countries with a low recovery rate and a low
doubling period, the third contained 10 countries with a somewhat average
recovery rate and an average doubling period, and the last cluster contained 5
countries with a high recovery rate.

We selected one representative country, i.e., Japan, Germany, Italy, and France
from each cluster. We selected one more country as a representative of the
outliers, namely the Netherlands, which had a low case doubling period (2.08
days) as well as a low recovery period (< 0.001).

For the selected countries, least square parameter estimation using the
theoretical SIR model was carried out. The results are summarized in Table 2.
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Figure 6 Plot of the data (dotted curve) vs. SIR simulation (solid curve). The
red and blue colors correspond to infectious and recovered cases respectively.

As mentioned in the methodology section, the death rates were estimated using
linear regression, which was then substituted into the SIR model to estimate
both the transmission rate and the recovery rate. The reported mean error was
computed as the L2-norm of residuals divided by the total data points used in
the estimation. Figure 6 shows the plot of data points vs. the SIR simulation
with estimated parameter values for each representative country. The three-
hundred-day simulations of the SIR model after the start of the outbreak are
provided in the appendix.
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Table 2 Summary of Parameter Estimations with Standard Deviation in

Brackets
Parameters Japan Germany Italy France The
Netherlands
Transmission rate (8) 0.1898 0.1895 0.3481 0.2022 0.4017
(1.65e-05) (3.93e-06) (1.64e-05) (4.34e-06) (0.0003)
Recovery rate () 0.0284 0.0018 0.027 0.0061 0.0002
(1.72e-05)  (3.89e-06) (1.66e-05) (4.32e-06) (0.00029)
Death rate (1) 0.0426 0.0035 0.1202 0.042 0.0472
Ry 2.67 35.74 2.36 4.20 8.47
Case doubling period 6.71 3.84 3.28 4.22 2.08
Mean square error 7 45 190 36 45

4 Conclusion

In this study we used the SIR model of Kermack and McKendrick to estimate
COVID-19 epidemiological characteristics using Johns Hopkins University
dataset over the period from January 22 to March 22. Our approach was purely
data-driven without relying on any parameters reported before. 183 countries
were divided into 5 clusters, classified according to recovery rates and case
doubling periods, and one representative country was selected from each
cluster. The summary of parameter estimation results are given in Table 2. Here
we see that the death rate u varied from 0.0035 to 0.1202. Germany had the
lowest death rate and Italy had the highest death rate. One may expect similar
estimates within the respective clusters. The reason for such a significant
difference in death rates requires further investigation.

When it comes to parameter estimation using nonlinear epidemic models, the
recovery rate y is usually taken to be the inverse of the infectious period.
However, estimation results reveal, see Table 2, that this rate varied from
0.0018 to 0.0284 for the representative countries in four clusters. Taking the
inverse yielded a range from 35 days to 555 days, which is much longer than
the infectious period reported before, see e.g. CDC, (You et al., 2020). This
indicates that the recovery rate should not be taken as the inverse of the
infectious period, provided the dataset (JHU, 2020) is accurate. Moreover, we
noticed some inaccuracies in the dataset, e.g. one country started reporting the
number of recovered individuals after almost two months, etc. However, in such
situations the scipy.optimize.curve_fit function would overestimate the u and
since Ry = /(y + p), so the estimation of R, is not affected much. As for the
basic reproduction number R,, we had 2.36, 2.67, 4.20, 8.47, and 35.74 for
Italy, Japan, France, the Netherlands, and Germany respectively. While the first
four estimates are in line with earlier reports of R, for COVID-19, we find the
R, estimate of 35.74 for Germany very high. This is consistent with the low
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death rate in Germany of 0.0035 found, as the death rate appears in the
reciprocal of the basic reproduction formula.

One of the limitations of the study is that the SIR model is theoretical so its
forecasting of the pandemic’s progression may be misleading. However, the
model is effective in providing a qualitative picture of the pandemic and
estimating the epidemiological parameters, including the basic reproduction
number in the early stages of infection. For our five representative countries we
provided a three-hundred-day simulation in the appendix. What we found from
the simulations was that the COVID-19 pandemic is likely to start slowing
down within 100-150 days, in this case, starting from January 22. Looking at
the times series of susceptible individuals, we see that over 80% of the world
population will be affected by the pandemic. However, we note that our model
ignores any kind of preventative situation and as such it is very likely that the
total number of affected cases will be much lower. It is possible to consider
various improvements of the model, where one can include other compartments
such as exposed or quarantined individuals and consider a non-autonomous
system, where the transmission rate is controlled according to mitigation
campaigns such as social distancing, self-quarantine, mask mandates, etc.
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