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Abstract. In this study, we applied the principle of a competitive predator-prey 

system to propose a prey-predator-like model of xenophobia in Africa. The 

boundedness of the solution, the existence and stability of equilibrium states of 

the xenophobic model are discussed accordingly. As a special case, the 

coexistence state was found to be locally and globally stable based on the 

parametric conditions of effective group defense and anti-xenophobic policy 

implementation. The system was further analyzed by Sotomayor’s theory to 

show that each equilibrium point bifurcates transcritically. However, numerical 

proof showed period-doubling bifurcation, which makes the xenophobic 

situation more chaotic in Africa. Further numerical simulations support the 

analytical results with the view that tolerance, group defense and anti-

xenophobic policies are critical parameters for the coexistence of foreigners and 

xenophobes. 

Keywords: boundedness; global stability; local bifurcation; xenophobes; xenophobic-

mathematical model. 

1 Introduction 

Africa is a black continent typically known as a hotbed of infectious diseases 

and xenophobic attacks. The latter phenomenon today is not only an African 

issue but a global problem. However, South Africa in the recent past has been 

the epicenter of xenophobic attacks worldwide [1]. Xenophobia is a 

psychological state of hostility (or inequality) or fear towards non-natives or 

foreigners (immigrants) in a particular country [2][3]. It is a social vice that is 

based on the politics of competitive exclusion [4].  

Soyombo [5] discusses xenophobic conditions based on economic theory, 

where the poor and unemployed are the main drivers of xenophobia. This class 

of people is predominant in African countries. Interestingly, the lack of access 

to economic opportunities, education, and land in South Africa over the decades 

has been responsible for a high poverty index and the emergence of xenophobia 

in Africa. The first xenophobic epidemic was experienced near the late 19th 
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century. The 2019 xenophobic attack in South Africa started as a result of 

economic and political issues, because of which the xenophobes have a feeling 

(or fear) that foreigners are taking control of their economic livelihood [6]. 

Even though Wimmer [7] considers xenophobia as a tool used to reassure 

nationals of their safety in time of world crisis, the effects of xenophobia on 

individuals have brought about political and economic instability, extreme 

poverty and underdevelopment, bridged in bilateral agreements, war against 

nations and finally ending up in human deaths. Statistically speaking, the 

number of deaths related to xenophobia is estimated to have been 412 between 

May 2008 and June 2013 in Africa [1] and the recent xenophobic attacks, which 

started late August 2019, claimed at least 12 lives while thousands were 

displaced [8]. To change this ugly scenario generated by xenophobia in public 

space, bilateral agreements between inter-governments should be re-enforced as 

well as the current correctional measures such as the development of 

intervention programs to promote accountability and counter the culture of 

impurity and provision for election-monitoring mechanisms to ensure that 

officials are not elected on an anti-foreigner/anti-outsider platform, as outlined 

in [9][10].  

Xenophobia has been a world problem that started centuries ago. The 2019 

xenophobic attack on Nigerians and some other foreigners in South Africa have 

called for the need of mathematicians to examine the way this menace can be 

stopped in Africa. It seems the xenophobic epidemic has not received full 

attention in the mathematical world. Some social models provide mathematical 

modeling insights for future studies [11][12] and some mathematical models 

that explore the impacts of fear on the dynamics of prey-predator systems have 

been developed [13]-[16]. The present study sought to develop a predator-like 

model for the spread and control of xenophobia in Africa based on the predator-

prey system with fear and group defense formulated by Sasmal & Takeuchi 

[16]. In this paper, we describe xenophobes as those indigenous people who 

participate in xenophobic attacks. 

The rest of the paper is organized as follows. In Section 2 we present the 

materials and methods. General analysis of the formulated model is done in 

Section 3 and Section 4 presents the numerical results. The discussion and 

conclusion of the paper are given in Section 5. 

2 Mathematical Formulation 

The derivation of the xenophobic model is based on the principle of competitive 

exclusion of species or strains existing in an ecosystem. According to this 

principle [17], when n strains (or species) compete for the same resources in a 
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population, the strain with the largest reproduction number (super species) out-

competes the other strains and drives them to extinction.  

Using the flow-diagram of the interacting population in Figure 1, we obtain the 

differential coefficient of the variables as indicated in Eq. (1) 

The differential equation considering Figure 1 can be of the form 

 
𝑑𝑁1

𝑑𝑡
= 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑁1 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑁2 +

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑁2 𝑜𝑛 𝑁1, 

 
𝑑𝑁2

𝑑𝑡
= 𝑅𝑎𝑡𝑒 𝑜𝑓 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑁2 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑁1 +

𝑐𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑒 𝑒𝑓𝑓𝑒𝑐𝑡 𝑜𝑓 𝑁1 𝑜𝑛 𝑁2. (1)  

The classical predator-prey system in Eq. (2) for competitive interaction by 

Sasmal & Takeuchi [16] was our guide for this formulation, 

 
𝑑𝑥

𝑑𝑡
=

𝑟𝑥

1+𝑘𝛼𝑦
− 𝑑1𝑥 − 𝑑2𝑥2 −

𝛽𝑥𝑦

𝑎+𝑏𝛼𝑥+𝑥2, 

 
𝑑𝑦

𝑑𝑡
= 𝑐

𝛽𝑥𝑦

𝑎+𝑏𝛼𝑥+𝑥2 − 𝑚𝑦, (2) 

where x is the prey density, and y is the density of predators. The description of 

the parameters in Eq. (2) can be found in Table 1 [16]. 

The following assumptions and the schematic diagram are useful for this study: 

1. Indigenous people (xenophobes) and foreigners grow and compete 

logistically for the same resources. 

2. Foreigners are considered to be prey to xenophobic attacks and 

xenophobes to be predators. 

3. Xenophobes and foreigners may die naturally. 

4. Foreigners decrease in the population as a result of xenophobic attacks. 

Figure 1 Competitive interactions between foreigners and xenophobes. 
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5. The competitive effect of xenophobes on foreigners is greater than that 

of foreigners on xenophobes. 

6. Holling type II incidence with anti-xenophobic behavior is introduced 

in the population of xenophobes. 

Based on Eq. (1) with the application of Eq. (2), the mathematical model for 

xenophobic attacks can be given by 

 
𝑑𝑁1

𝑑𝑡
=

𝑟1𝑁1

1+𝑘(1−𝛼)𝑁2
−

𝑟1𝑁1
2

𝐾1
−

𝑟1𝛼12𝑁1𝑁2

𝐾1+𝑏(1−𝛼)𝑁1
− 𝜇𝑁1 − 𝑑1𝑁1, 

 
𝑑𝑁2

𝑑𝑡
=

𝑟2𝑁2

1+𝑏(1−𝛼)𝑁1
−

𝑟2𝑁2
2

𝐾2
−

𝑟2𝛼21𝑁2𝑁1

𝐾2+𝑚𝑁2
− 𝜇𝑁2 − 𝑑2𝑁2, (3) 

where N1(0) > 0 and N2(0) > 0. 

The variables and parameters of Eq. (3) are described in Tables (1) and (2) 

respectively. 

Table 1 Variables of Eq. (3) 

Variables Definition 

𝑁1(𝑡) The population of foreigners in a particular country at time t 

𝑁2(𝑡) The population of xenophobes in a particular country at time t 

Table 2 Parameters of Eq. (3) 

Parameters Definition 

𝑟1, 𝑟2 Economic growth rates of foreigners and xenophobes respectively 

𝐾1, 𝐾2 Specific carrying capacities of 𝑁1 and 𝑁2 respectively 

𝑑1, 𝑑2 Xenophobic induced death rates for 𝑁1 and 𝑁2 respectively 

𝛼12 The competitive coefficient (attacking effect) on foreigners 

𝛼21 
The reverse competitive coefficient (retaliating effect) on 

xenophobes 

𝑚 Anti-xenophobic behavior  𝑚 ∈ [0, 1] 

𝜇 Natural death rate 

𝛼 Rate of group defense against xenophobic attacks 

𝑘 Level of fear possessed by foreigners 

𝑏 Tolerance limit of xenophobes 

Note that 𝑚 = 1 implies that anti-xenophobic policy is not effective and 𝑚 =
 0 means that the policy is effective with full implementation. We non-

dimensionalize Eq. (3) using the following equations: 



 Modelling the Phenomenon of Xenophobia in Africa 265 

 

 𝑥1 =
𝑁1

𝐾1
, 𝑥2 =

𝑁2

𝐾2
, 𝛽12 = 𝛼12

𝐾1

𝐾2
, 𝛽12 = 𝛼21

𝐾2

𝐾1
, 𝑟 = 𝑟1𝑡, 𝜌 =

𝑟2

𝑟1
,   

 𝜎1 =
𝑓1

𝑟1
, 𝜎2 =

𝑓2

𝑟2
 𝑤𝑖𝑡ℎ 𝑓1 = 𝜇 + 𝑑1, 𝑓2 = 𝜇 + 𝑑2, 𝑟1, 𝑟2 ∈ (0, 1). 

Thus, Eq. (3) becomes 

 
𝑑𝑥1

𝑑𝑡
=

𝑥1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1

2 −
𝛽12𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1𝑥1,  

 
𝑑𝑥2

𝑑𝑡
=

𝜌𝑥2

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝜌𝑥2

2 − 𝜌
𝛽21𝑥2𝑥1

1+𝑚𝑥2
− 𝜌𝜎2𝑥2, (4) 

Any further analysis in this paper will be focused on the nondimensionalized 

Eq. (4). In the theorem below, we prove that the solutions of Eq. (4) are non-

negative and uniformly bounded. 

Theorem 1 The set 

 𝜒 = {(𝑥1, 𝑥2) ∈ 𝑅+
2 : 0 ≤ 𝛤 = 𝑥1 +  𝑥2 ≤

𝜉

𝜑
} 

is an attractive domain for all solutions in the interior orthant, where 𝜑 is a 

positive constant such that 

 𝜉 =
(𝑅1+𝜑)2

4
+

(𝜌𝑅2+𝜑)2

4𝜌
. 

Proof. The proof of Theorem 1 is guided by Sasmal & Takeuchi [16] and Lelu 

& Jiao [18]. Taking arbitrary 𝑥1, 𝑥2 > 0,  we get 

 (
𝑑𝑥1

𝑑𝑡
)⌋𝑥1=0 = (

𝑑𝑥2

𝑑𝑡
)⌋𝑥2=0 = 0. 

This shows that 𝑥1 = 0 and 𝑥2 = 0, are invariant manifolds respectively. 

Because of the fact that the solution of Eq. (4) is unique, we can deduce that the 

set 𝑅2 is periodically invariant. Let 𝛤 =  𝑥1(𝑡)  + 𝑥2(𝑡) and 𝜑 > 0 be a 

constant. Then, 

 
𝑑𝛤

𝑑𝑡
=

𝑥1

1+𝑘(1−𝛼)𝐾2𝑥2
+

𝜌𝑥2

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝑥1

2 −
𝛽12𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1𝑥1 − 𝜌𝑥2

2 −

𝜌
𝛽21𝑥2𝑥1

1+𝑚𝑥2
− 𝜌𝜎2𝑥2. 

Thus, 

 
𝑑𝛤

𝑑𝑡
+ 𝜑𝛤 ≤ (1 − 𝜎1 + 𝜑)𝑥1 − 𝑥1

2 + [𝜌(1 − 𝜎2) + 𝜑]𝑥2 − 𝜌𝑥2
2  

 =
(𝑅1+𝜑)2

4
− (𝑥1 −

𝑅1+𝜑

2
)

2
+

(𝜌𝑅2+𝜑)2

4𝜌
− 𝜌 (𝑥2 −

𝜌𝑅1+𝜑

2𝜌
)

2
≤

(𝑅1+𝜑)2

4
+

(𝜌𝑅2+𝜑)2

4𝜌
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 = 𝜉,   

where 𝑅1 = 1 − 𝜎1 and 𝑅2 = 1 − 𝜎2. 

Applying the theorem on differential inequality, we get 

 0 ≤ 𝛤(𝑥1(𝑡), 𝑥2(𝑡)) ≤
𝜉

𝜑
(1 − 𝑒−𝜉𝑡) + (𝑥1(0), 𝑥2(0))𝑒−𝜉𝑡.     

Taking the limit when 𝑡 →  ∞, we have 

 0 ≤ 𝛤(𝑥1(𝑡), 𝑥2(𝑡)) ≤
𝜉

𝜑
.                                                        

This completes the proof. 

3 General Analysis of the Model 

3.1 Existence of Equilibria 

Here, it can be checked that the Eq. (4) has exactly four non-negative equilibria, 

namely, 𝑋00(0, 0), 𝑋10(𝑥1, 0), 𝑋02(0, 𝑥2), and 𝑋12(𝑥1, 𝑥2), denoting the trivial 

equilibrium, xenophobic-free equilibrium, xenophobic survival equilibrium, and 

the coexistence equilibrium respectively. The equilibrium point 𝑋00(0, 0) exists 

trivially, and we can prove the existence of 𝑋10(𝑥1, 0), 𝑋02(0, 𝑥2), and 

𝑋12(𝑥1, 𝑥2) as follows: 

3.2 Existence of 𝑿𝟏𝟎(𝒙𝟏, 𝟎), 𝑿𝟎𝟐(𝟎, 𝒙𝟐), and 𝑿𝟏𝟐(𝒙𝟏, 𝒙𝟐) 

Let 𝑥1, 𝑥2 be the non-negative solutions of the equations 

 0 =
𝑥1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1

2 −
𝛽12𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1𝑥1, (5) 

 0 =
𝜌𝑥2

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝜌𝑥2

2 − 𝜌
𝛽21𝑥2𝑥1

1+𝑚𝑥2
− 𝜌𝜎2𝑥2, (6) 

 when 𝑥2 = 0 and 𝑥1  ≠  0 then Eq. (5) reduces to 

 1 − 𝑥1 − 𝜎1 = 0. 

Thus, 

 𝑋10 = (𝑥1, 0) = (𝑅1, 0), 𝑤ℎ𝑒𝑟𝑒  𝑅1 = 1 − 𝜎1. 

Similarly, when xenophobes drive foreigners away completely from their 

country (𝑥1 = 0),  then  Eq. (6) becomes 

 1 − 𝑥2 − 𝜎2 = 0. 

Hence, 
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 𝑋02 = (0, 𝑥2) = (0, 𝑅2), where 𝑅2 = 1 − 𝜎2. 

Furthermore, for the coexistence equilibrium 𝑋12 = (𝑥1, 𝑥2) when  𝑥1, 𝑥2 > 0 

and 𝑥1, 𝑥2 are solutions of the following equations 

 0 =
1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1 −

𝛽12𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1, (7) 

 0 =
1

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝑥2 −

𝛽21𝑥1

1+𝑚𝑥2
− 𝜎2, (8) 

 

For a specific case when 𝛼 =  1 and 𝑚 =  0, 𝑋12 is given as 

 𝑋12 = (
𝑅1−𝑅2𝛽12

1−𝛽12𝛽21
,

𝑅2−𝑅1𝛽21

1−𝛽12𝛽21
) 

which is shown by the phase portrait in Figure 2(a). Whereas for the general 

solution when 𝛼 ≠  1 and 𝑚 ≠  0, we have 𝑋12 = (𝑥1, 𝑥2), as displayed 

numerically in Figure 2(b). 

3.3 Local Stability Analysis 

To examine the local stability analysis of the equilibrium points, we compute 

the community matrix around each equilibrium state of Eq. (4). The community 

matrix of the model at any arbitrary state is: 

 𝐽 = (
𝑙11 −𝑙12

−𝑙21 𝑙22

), (9) 

with 

 𝑙11 =
1

1+𝑘(1−𝛼)𝐾2𝑥2
− 2𝑥1 − 𝜎1 −

𝛽12𝑥2

(1+𝑏(1−𝛼)𝑥1)2,    

 𝑙12 = 𝑥1 (
𝑘(1−𝛼)𝐾2

(1+𝑘(1−𝛼)𝐾2𝑥2)2 +
𝛽12

1+𝑏(1−𝛼)𝑥1
),                     

 𝑙21 = 𝜌𝑥2 (
𝑏(1−𝛼)𝐾1

(1+𝑏(1−𝛼)𝐾1𝑥1)2 +
𝛽21

1+𝑚𝑥2
),                          

and  

 𝑙22 =
𝜌

1+𝑏(1−𝛼)𝐾1𝑥1
− 2𝜌𝑥2 − 𝜌𝜎2 −

𝜌𝛽21𝑥1

(1+𝑚𝑥2)2 . 

The underlined theorem proves the local stability analysis of equilibria. 

Theorem 2 

(a) The trivial equilibrium point 𝑋00 = (0,0) is unstable if 𝑅1 > 0 and 

𝑅2 > 0 
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(b) The xenophobic-free equilibrium point 𝑋10 = (𝑥1, 0) is locally 

asymptotically stable if  
𝜌

1+𝑏(1−𝛼)𝐾1𝑅1
< 𝛽21𝑅1 + 𝜎2 

(c) The xenophobic survival equilibrium point 𝑋02 = (0, 𝑥2) is locally 

asymptotically stable if  
𝜌

1+𝑘(1−𝛼)𝐾2𝑅2
< 𝛽12𝑅2 + 𝜎1 

(d) The coexistence equilibrium point 𝑋12 = (𝑥1, 𝑥2) is locally 

asymptotically stable if 𝛼 =  1 and 𝑚 =  0. 

Proof. 

(a) The community matrix at 𝑋12 =  (0, 0) is given as 

 𝐽(𝑋00) = (
𝑅1 0

0 𝜌𝑅2

) 

with eigenvalues 𝜆1 = 𝑅1, 𝜆2 = 𝜌𝑅2, which is a saddle point 

(unstable), since 𝑅1 > 0, 𝑅2 > 0. 

(b) In terms of the equilibrium point 𝑋10 = (𝑥1, 0), the community matrix 

is 

 𝐽(𝑋10) = (
−𝑅1 −𝐴1

0 𝐴2

),  

where 𝐴1 = 𝑅1𝑘(1 − 𝛼)𝐾2 +
𝛽12𝑅1

1+𝑏(1−𝛼)𝑅1
, and 𝐴2 =  𝜌 (

1

1+𝑏(1−𝛼)𝐾1𝑅1
−

𝛽21𝑅1 − 𝜎2). 

The eigenvalues of  𝐽(𝑋10) are 𝜆1 = −𝑅1 𝑎𝑛𝑑  𝜆2 = 𝐴2. One can see 

that if 𝐴2 > 0, then 𝑋10(𝑥1, 0) is a saddle. If 𝐴2 > 0 ⟺
1

1+𝑏(1−𝛼)𝐾1𝑅1
< 𝛽21𝑅1 + 𝜎2 is a stable node. If 𝐴2 = 0, i. e. 𝜆2 = 0, we 

cannot draw a conclusion easily. 

(c) Jacobian matrix of the model at 𝑋02 = ( 0, 𝑥2) is given by 

 𝐽(𝑋02) = (
𝐴3 0

−𝐴4 −𝜌𝑅2

),   

where 𝐴3 =
1

1+𝑏(1−𝛼)𝐾1𝑅2
− 𝛽12𝑅2 − 𝜎1, 𝑎𝑛𝑑  𝐴4 =  𝜌𝑅2𝑏(1 − 𝛼)𝐾1 +

𝜌𝛽21𝑅2

1+𝑚𝑅2
.  



 Modelling the Phenomenon of Xenophobia in Africa 269 

 

with the eigenvalues 𝜆1 = 𝐴3 𝑎𝑛𝑑  𝜆2 =  −𝜌𝑅2. The Jacobian 𝐽(𝑋02) 

has negative eigenvalues if 𝐴3 < 0. Thus, equilibrium point 𝑋02 is 

locally asymptotically stable if 
1

1+𝑏(1−𝛼)𝐾1𝑅2
< 𝛽12𝑅2 + 𝜎1. Otherwise, 

𝐴3 > 0, we get a saddle and 𝐴3 = 0 gives rise to a situation where a 

conclusion cannot be drawn easily. 

(d) This proof follows from the work of Dubey [19] by linearizing Eq. (4), 

taking into account the transformations 

 𝑥1 = 𝑥1 + 𝑋, 𝑥2 = 𝑥2 + 𝑌. (10) 

Next, making use of the Liaponuv function, which is positive definite, 

 𝐿(𝑡) =
𝑋2

2
+

𝑌2

2
 , 

and whose derivative is taken with respect to time along the linear 

version of model equations 

 𝐿′(𝑡) = 𝑋𝑋′ + 𝑌𝑌′, (11) 

having in mind that 𝑋′ = 𝑥1
′  and 𝑌′ = 𝑥2

′ . Evaluating Eq. (11) using Eq. 

(4) and its trajectories, we get 

 𝐿′(𝑡) = (𝑥1 − 𝑥1)𝑥1 [
1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1 −

𝛽12𝑥2

1+𝑏(1−𝛼)𝑥1
−

1

1+𝑘(1−𝛼)𝐾2𝑥2
+

𝑥1 +
𝛽12𝑥2

1+𝑏(1−𝛼)𝑥1
] + (𝑥2 − 𝑥2)𝜌𝑥2 [

1

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝑥2 −

𝛽21𝑥1

1+𝑚𝑥2
−

1

1+𝑏(1−𝛼)𝐾1𝑥1
+ 𝑥2 +

𝛽21𝑥1

1+𝑚𝑥2
]  

However, when 𝛼 =  1 and 𝑚 =  0, after simplification we have 

 𝐿′(𝑡) = −𝑥1(𝑥1 − 𝑥1)
2

− 𝜌𝑥2(𝑥2 − 𝑥2)
2

− (𝑥1 − 𝑥1)(𝑥2 −

𝑥2)(𝛽12𝑥1 + 𝜌𝛽21𝑥2)  

Using the transformation given in Eq. (10) yields 

 𝐿′(𝑡) = −(𝑥1 + 𝑋)𝑋2 − 𝜌(𝑥2 + 𝑌)𝑌2 − 𝑋𝑌 (𝛽12(𝑥1 + 𝑋) +

𝜌𝛽21(𝑥2 + 𝑌))  

Undoubtedly, this shows that 𝐿(𝑡) =
𝑋2

2
+

𝑌2

2
 is a Lyapunov function 

since 𝐿′(𝑡) < 0. Thus, the proof is completed. 

Table 3 summarizes the existence and local stability criteria of 

equilibria for Eq. (4). 
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Table 3 Existence and Local Stability Criteria for Eq. (4) 

Equilibrium Existence Criteria Stability Criteria 

𝑋00 = (0,0) Exist 𝑅1 < 0, 𝑅2 < 0 

𝑋10 = (𝑅1, 0) 𝑅1 > 0 
1

1+𝑏(1−𝛼)𝐾1𝑅1
< 𝛽21𝑅1 + 𝜎2  

𝑋02 = (0, 𝑅2) 𝑅2 > 0 
1

1+𝑏(1−𝛼)𝐾1𝑅2
< 𝛽12𝑅2 + 𝜎1  

𝑋12 =

(
𝑅1−𝑅2𝛽12

1−𝛽12𝛽21
,

𝑅2−𝑅1𝛽21

1−𝛽12𝛽21
)  

𝑅2𝛽12 < 𝑅1 <
𝑅2

𝛽21
,  

𝛽12𝛽21 < 1 
𝛼 = 1, 𝑚 = 0 

3.4 Global Analysis 

The global behavior of the non-dimensionalized equations can be looked into by 

establishing the following theorems: 

Theorem 3.  Eq. (4) under the conditions 𝛼 =  1 and 𝑚 =  0 cannot exhibit 

any periodic solution in the interior of the positive quadrant of the 𝑥1, 𝑥2 plane. 

Proof.   Let 𝐷(𝑥1, 𝑥2)  =
1

𝑥1𝑥2
   be a positive Dulacs function. Clearly, 𝐷(𝑥1, 𝑥2) 

is positive in the interior of the positive quadrant of the 𝑥1, 𝑥2 plane. Let 

 𝑔1(𝑥1, 𝑥2) =
𝑥1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1

2 −
𝛽12𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1𝑥1,  

 𝑔2(𝑥1, 𝑥2) =
𝜌𝑥2

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝜌𝑥2

2 − 𝜌
𝛽21𝑥2𝑥1

1+𝑚𝑥2
− 𝜌𝜎2𝑥2.             

Then, 

𝛻(𝑔(𝑥1, 𝑥2)𝐷(𝑥1, 𝑥2)) =
𝜕

𝜕𝑥1

(𝐷𝑔1) +
𝜕

𝜕𝑥2

(𝐷𝑔2) 

 = −
𝜌

𝑥1
−

1

𝑥2
+ (

𝛽12𝑏(1−𝛼)

(1+𝑏(1−𝛼)𝐾1𝑥1)2) + (
𝜌𝛽21𝑚

(1+𝑚𝑥2)2) < 0,  

if 𝛼 =  1, 𝑚 =  0. 

From the above relation, we notice that 𝛻(𝑥1, 𝑥2) does not deviate in sign and is 

not identical to zero in the interior of the positive first quadrant of the 𝑥1, 𝑥2 

plane. Therefore, it follows by the Bendixon-Dulac criteria [20] that there is no 

closed orbit, which implies that the system has no limit cycle in the interior of 

X12 and that ends the proof. 

Theorem 4. The coexistence equilibrium point 𝑋12 for Eq. (4) is globally 

asymptotically stable with respect to all solutions in the interior of the positive 

order when 𝛼 =  1 and 𝑚 =  0. 
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Proof.  Consider the following positive definite function about 𝑋12 

 𝐿12(𝑡) = 𝑐1 (𝑥1 − 𝑥1 − 𝑥1 𝑙𝑛  
𝑥1

𝑥1
 ) + 𝑐2 (𝑥2 − 𝑥2 − 𝑥2 𝑙𝑛

𝑥2

𝑥2
 )  

as applied in Dubey [19] with 𝑐1 and 𝑐2 being positive constants to be 

determined. The derivative of 𝐿12(𝑡) with respect to time along Eq. (4) gives 

 𝐿12
′ (𝑡) = (1 −

𝑥1

𝑥1
) 𝑐1 (

𝑥1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1

2 −
𝛽12𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1
− 𝜎1𝑥1) +

(1 −
𝑥2

𝑥2
) 𝑐2 (

𝜌𝑥2

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝜌𝑥2

2 − 𝜌
𝛽21𝑥2𝑥1

1+𝑚𝑥2
− 𝜌𝜎2𝑥2).  

But at equilibrium state 

 𝜎1 =
1

1+𝑘(1−𝛼)𝐾2𝑥2
− 𝑥1 −

𝛽12𝑥2

1+𝑏(1−𝛼)𝑥1
, 

 𝜎2 =
1

1+𝑏(1−𝛼)𝐾1𝑥1
− 𝑥2 −

𝛽21𝑥1

1+𝑚𝑥2
. 

Making use of the solutions and simplifying gives 

 𝐿12
′ (𝑡) = −𝑐1(𝑥1 − 𝑥1)

2
− 𝑐2(𝑥2 − 𝑥2)

2
− 𝑐1(𝑥1 − 𝑥1)(𝑥2 −

𝑥2)(
𝑘(1−𝛼)𝐾2

(1+𝑘(1−𝛼)𝐾2𝑥2)(1+𝑘(1−𝛼)𝐾2𝑥2)
+

𝛽12

(1+𝑏(1−𝛼)𝑥1)(1+𝑏(1−𝛼)𝑥1)
) +

𝑐2𝛽21𝑚𝑥1(𝑥2−𝑥2)
2

(1+𝑚𝑥2)(1+𝑚𝑥2)
− 𝑐2(𝑥2 −

𝑥2)(𝑥1 − 𝑥1)(
𝑏(1−𝛼)𝐾1

(1+𝑏(1−𝛼)𝐾1𝑥1)(1+𝑏(1−𝛼)𝐾1𝑥1)
+

𝛽21𝑚

(1+𝑚𝑥2)(1+𝑚𝑥2)
) +

𝑐1𝛽12𝑏(1−𝛼)𝑥2(𝑥1−𝑥1)
2

(1+𝑏(1−𝛼)𝑥1)(1+𝑏(1−𝛼)𝑥1)
.  

Setting 𝛼 =  1 and 𝑚 =  0 gives 

 𝐿12
′ (𝑡) = −𝑐1(𝑥1 − 𝑥1)

2
− 𝑐2(𝑥2 − 𝑥2)

2
− (𝑥1 − 𝑥1)(𝑥2 −

𝑥2)(𝑐1𝛽12 + 𝑐2𝛽21). 

Thus, for any 𝑐1, 𝑐2 > 0, 𝐿12
′ (𝑡) ≤ 0 if 𝑥1 ≤ 𝑥1 and 𝑥2 ≤ 𝑥2 that is negative 

definite. Therefore, 𝐿12(𝑡) is a Lyaponuv function in 𝑋12 whose region contains 

the domain of attraction  𝑅+
2  and this completes the proof. 

3.5 Local Bifurcation Analysis 

In this subsection we discuss variable bifurcations of Eq. (4) and achieve 

conditions for transcritical bifurcation and saddle-node bifurcation. The proof of 

the following theorems explains it better. 

Theorem 5.  Eq. (4) has: 
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1. Transcritical bifurcation  
2. No saddle-node bifurcation 

(a) near the xenophobic-free equilibrium point 𝑋10 = (𝑥1, 0) when 

𝜎1  =  𝜎1
∗  =  1 and 𝜎2 < 1; 

(b) near xenophobic survival equilibrium point 𝑋02 = (0, 𝑥2) when 

𝜎2  =  𝜎2
∗  =  1 and 𝜎1 < 1, where 𝜎1, 𝜎2 are the bifurcation 

parameters in (a) and (b) respectively; 

(c) near the positive coexistence equilibrium point 𝑋12 = (𝑥1, 𝑥2) 

when the system parameters satisfy the restriction 𝛽
12

= 𝛽12
∗ =

𝑅1

𝑅2
. Here, 𝛽

12
 is seen as the bifurcation parameter. 

Proof 

(a) Here, we use Sotomayor’s theorem [21] to prove the existence of a 

transcitical bifurcation with the transversality condition. The Jacobian 

matrix about equilibrium 𝑋10 is given by  

 𝐽(𝑋10) = (
0 0
0 𝜌𝑅2

) = 𝐽(𝑋10)𝑇. 

Evidently, 𝐽(𝑋10) has a zero-eigenvalue denoted by 𝜆1. Let 𝑈 and 𝑊 be 

two eigenvectors respectively corresponding to the eigenvalue 𝜆1 for 

the matrices 𝐽(𝑋10)  and 𝐽(𝑋10)𝑇. After simple calculation, we have 

 𝑈 = (
𝑢1

𝑢2

) = (
1

0
), 𝑊 = (

𝑤1

𝑤2

) = (
1

0
). 

Besides that, 

 𝐹𝜎1
(𝑋10; 𝜎1

∗) = (
−𝑥1

0
)

(𝑥1=𝑥̅1)

= (
0

0
), 

 𝐷𝐹𝜎1
(𝑋10; 𝜎1

∗)𝑈 = (
−1 0

0 0
)

(𝑋10;𝜎1
∗ )

× (
1

0
) = (

−1

0
), 

 𝐷2𝐹(𝑋10; 𝜎1
∗)(𝑈, 𝑈) = (

𝑢1
2 𝜕2𝑓1

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓1

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓1

𝜕𝑥2
2

𝑢1
2 𝜕2𝑓2

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓2

𝜕𝑥2
2

)

(𝑋10;𝜎1
∗)

  

 = (
−2

0
). 

One can see that U and W satisfy 
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 𝑊𝑇𝐹𝜎1
(𝑋10; 𝜎1

∗) = 0, 

 𝑊𝑇[𝐷𝐹𝜎1
(𝑋10; 𝜎1

∗)𝑈] = −1 ≠ 0, 

 𝑊𝑇[𝐷2𝐹(𝑋10; 𝜎1
∗)(𝑈, 𝑈)] = −2 ≠ 0, 

which means that when 𝜎1
∗ = 1; 𝜎2 <  1 transcritical bifurcation occurs 

at 𝑋10. This establishes the proof of Theorem 5(a). 

(b) In a similar fashion, we use Sotomayor’s theorem [21] to prove the 

existence of transcitical bifurcation with the transversality condition 

𝜎2
∗ = 1. The Jacobian matrix around equilibrium 𝑋02 of Eq. (4) with the 

restriction 𝜎2
∗ = 1 is given by 

 𝐽(𝑋02) = (
𝑅1 0
0 0

) = 𝐽(𝑋02)𝑇 . 

Obviously, 𝐽(𝑋02) has a zero-eigenvalue denoted by 𝜆1. Let 𝑈 and 𝑊 

be two eigenvectors respectively corresponding to the eigenvalue 𝜆2 for 

the matrices 𝐽(𝑋02) and 𝐽(𝑋02)𝑇 . After a bit of algebra, we get 

 𝑈 = (
𝑢1

𝑢2

) = (
0

1
), 𝑊 = (

𝑤1

𝑤2

) = (
0

1
). 

Also, 

 𝐹𝜎2
(𝑋02; 𝜎2

∗) = (
0

−𝜌𝑥2

)
(𝑥2=𝑥̅2)

= (
0

0
), 

 𝐷𝐹𝜎2
(𝑋02; 𝜎2

∗)𝑈 = (
0 0

0 −𝜌
)

(𝑋02;𝜎2
∗ )

× (
0

1
) = (

0

−𝜌
), 

 𝐷2𝐹(𝑋02; 𝜎2
∗)(𝑈, 𝑈) = (

𝑢1
2 𝜕2𝑓1

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓1

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓1

𝜕𝑥2
2

𝑢1
2 𝜕2𝑓2

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓2

𝜕𝑥2
2

)

(𝑋02;𝜎2
∗)

 

= (
0

−2𝜌
). 

Therefore, U and W satisfy 

 𝑊𝑇𝐹𝜎2
(𝑋02; 𝜎2

∗) = 0, 

 𝑊𝑇[𝐷𝐹𝜎2
(𝑋02; 𝜎2

∗)𝑈] = −𝜌 ≠ 0, 

 𝑊𝑇[𝐷2𝐹(𝑋02; 𝜎2
∗)(𝑈, 𝑈)] = −2𝜌 ≠ 0, 
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which implies that when 𝜎2
∗ = 1, 𝜎1 < 1, transcritical bifurcation occurs 

at 𝑋02. This marks the end of the proof of Theorem 5(b). 

(c) Also, the Jacobian matrix of Eq. (4) around 𝑋12(𝑥1, 𝑥2) with the 

restriction 𝛽12
∗ =

𝑅1

𝑅2
 is given by 

 𝐽(𝑋12) = (
0 0

−𝜌𝑅2𝛽21 −𝜌𝑅2
),  𝐽(𝑋02)𝑇 = (

0 −𝜌𝑅2𝛽21

0 −𝜌𝑅2

). 

Clearly, 𝐽(𝑋12) has a zero eigenvalue 𝜆1. Assuming that U and W are to 

be the two eigenvectors corresponding to the eigenvalue 𝜆1 for the 

matrices 𝐽(𝑋12) and 𝐽(𝑋02)𝑇 respectively, after a little manipulation we 

have 

 𝑈 = (
𝑢1

𝑢2

) = (
1

−𝛽21

), 𝑊 = (
𝑤1

𝑤2

) = (
1

0
). 

Again, 

 𝐹𝛽12
(𝑋12; 𝛽12

∗ ) = (
−

𝑥1𝑥2

1+𝑏(1−𝛼)𝑥1

0
)

((𝑥1,𝑥2)=(𝑥̅1,𝑥̅2))

= (
0

0
), 

 𝐷𝐹𝛽12
(𝑋12; 𝛽12

∗ )𝑈 = (
−

𝑥2

(1+𝑏(1−𝛼)𝑥1)2 −
𝑥1

1+𝑏(1−𝛼)𝑥1

0 0
)

(𝑋02;𝜎2
∗)

× (
0

−𝛽21

) 

 = (
−𝑅1

0
), 

 𝐷2𝐹(𝑋12; 𝛽12
∗ )(𝑈, 𝑈) = (

𝑢1
2 𝜕2𝑓1

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓1

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓1

𝜕𝑥2
2

𝑢1
2 𝜕2𝑓2

𝜕𝑥1
2 + 2𝑢1𝑢2

𝜕2𝑓2

𝜕𝑥1𝜕𝑥2
+ 𝑢2

2 𝜕2𝑓2

𝜕𝑥2
2

)

(𝑋12;𝛽12
∗ )

 

= −2 (1 −
𝑅1𝛽21

𝑅2

0

). 

As in the proof of Theorems 5(a) and 5(b), we can see that 𝑈 and 𝑊 

satisfy 

 𝑊𝑇𝐹𝛽12
(𝑋12; 𝛽12

∗ ) = 0, 

 𝑊𝑇[𝐷𝐹𝛽12
(𝑋12; 𝛽12

∗ )𝑈] = −𝑅1 ≠ 0, 
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 𝑊𝑇[𝐷2𝐹(𝑋12; 𝛽12
∗ )(𝑈, 𝑈)] = −2 (1 −

𝑅1𝛽21

𝑅2
) ≠ 0. 

This shows that when  𝛽
12

∗
=

𝑅1

𝑅2
, transcritical bifurcation holds for the 

system when 𝛼 =  1 and 𝑚 =  0. This ends the proof of Theorem 5(c). 

Note that similar results as those of Theorem 5(c) are obtained at 𝛽
21

∗
=

𝑅2

𝑅1
. 

3.6 Non-Existence of Hopf Bifurcation and Limit Cycle 

Here we establish that Hopf bifurcation does not happen near a point 

𝑋12(𝑥1, 𝑥2) of Eq. (4) defined at 𝛼 =  1;  𝑚 =  0 by proving the theorem below. 

Theorem 6. Assume that 𝜌 =
𝑅1−𝑅2𝛽12

𝑅1𝛽21−𝑅2
. Then Eq. (4) does not undergo a Hopf 

bifurcation near a positive coexistence point 𝑋12(𝑥1, 𝑥2)  and 0 < 𝜌 < 𝜌∗, 

where 𝜌 is the bifurcation parameter. 

Proof. The characteristic equation of 𝐽(𝑋12) is 𝜆2 − 𝑡𝑟𝐽(𝑋12)𝜆 + 𝑑𝑒𝑡𝐽(𝑋12) =
0, and the Hopf bifurcation occurs if and only if there exists 𝜌 = 𝜌∗ such that 

(a) [𝑡𝑟𝐽(𝑋12)]|𝜌=𝜌∗ = 0; 

(b) [𝑑𝑒𝑡𝐽(𝑋12)]|𝜌=𝜌∗ > 0; 

which is equivalent to the characteristic’s equation 𝜆2
+ 𝑑𝑒𝑡𝐽(𝑋12) = 0 

whose roots are purely imaginary. 

(c) 
𝑑

𝑑𝜌
[𝑡𝑟𝐽(𝑋12)]|𝜌=𝜌∗ ≠ 0; 

based on the motivation derived from [13][14]. 

Clearly, the condition 𝑡𝑟𝐽(𝑋12) = 0 gives [𝑙11(𝑋12) + 𝑙22(𝑋12)](𝜌)|𝛼=1,𝑚=0 =
−𝑥1

∗ − 𝜌𝑥2
∗ = 0, in which 𝜌 = 𝜌∗. Again 𝑑𝑒𝑡𝐽(𝑋12) = 𝜌𝑥1

∗𝑥2
∗(1 − 𝛽12𝛽21). 

Therefore, [𝑑𝑒𝑡𝐽(𝑋12)]|𝜌=𝜌∗ = −
(𝑅1−𝑅2𝛽12)2

1−𝛽12𝛽21
< 0 since 𝛽12𝛽21 < 1. Next, we 

verify condition (𝑐) by taking the derivative of 𝑡𝑟𝐽(𝑋12) at 𝜌. Thus, 

 
𝑑

𝑑𝜌
[𝑡𝑟J(𝑋12)]|𝜌=𝜌∗ = −𝑥2

∗ = −
𝑅2−𝑅1𝛽21

1−𝛽12𝛽21
≠ 0. 

Hence, condition (c) is satisfied. However, it suggests that the system does not 

undergo a Hopf bifurcation at 𝜌 = 𝜌∗, since condition (b) is not satisfied. The 

existence of a limit cycle for the system is concluded in Theorem 3. This system 

may be discussed in a future work that considers the situations where  𝛼 =
1, 𝑚 ≠  0,  and 𝛼 ≠  1, 𝑚 ≠  0. 
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4 Numerical Simulation Results 

Numerical simulations were performed to support the analytic results and 

investigate the importance of some parameters of Eq. (4). The parameter values 

used in the simulations were as follows: 𝛽12 = 0.3 [22], 𝛽12 = 1.2, 𝐾1 = 2, 
𝐾2 = 3.6, 𝑘 = 𝑏 = 0.5 [16], 𝑚 = 𝛼 = 0.25 [16], 𝑑1 = 0.004, 𝑑2 = 0.002 and 𝜌 =

 1.5 except when stated otherwise. The choice of parameter values was for 

simulations purpose only. 

 

Figure 2 Phase portraits around the coexistence equilibrium point, 𝑋12(𝑥1, 𝑥2)  

of Model (4) at different initial values. 
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Figure 3 Bifurcation diagram of foreigners, 𝑥1(𝑡) for 𝜎1 ∈
[0, 2], 𝛽12 = 0.965 and initial values (0.1, 1). The stable domain, 

unstable domain and chaotic domain are denoted by 𝐷1, 𝐷2 and 𝐷3 

respectively. 

Figure 4 Bifurcation diagram of xenophobes, 𝑥2(𝑡) for 𝜎2 ∈
[0, 1.7], 𝛽21 = 0.65, 𝜌 = 1.5 and initial values (1, 0.9). The stable 

domain, unstable domain and chaotic domain are denoted by 

𝐷1, 𝐷2 and 𝐷3 respectively. 
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Figure 5 Plots displaying the population dynamics of foreigners 

and xenophobes when (a)𝛼 = 𝑚 = 0; (b)𝑎 = 0.8, 𝑚 = 0; 
(c)𝛼 =  0, 𝑚 =  0.8 and (d)𝛼 =  0.8, 𝑚 =  0.8 and initial 

values (0.025, 0.075). 

Figure 6 Population dynamics of foreigners and xenophobes 

when the attacking effect, 𝛽12 and retaliating effect, 𝛽21 are varied 

and other parameter values are kept constant with initial values 
(0.025, 0.075). 



 Modelling the Phenomenon of Xenophobia in Africa 279 

 

 

 

Figure 7 Population dynamics of foreigners and xenophobes for 

𝛼 ∈ [0, 0.7, 1], 𝛽12 = 0.5, 𝐾1 = 200, 𝐾2 = 300, 𝑚 = 0.1, 𝜎1 =
0.2, 𝜎2 = 0.15 and initial values (0.4, 0.9).  

Figure 8 Population dynamics of foreigners and xenophobes 

for 𝑚 ∈ [0, 0.5, 0.9], 𝛽12 = 0.5, 𝐾1 = 200, 𝐾2 = 300, 𝛼 = 1, 𝜎1 =
0.2, 𝜎2 = 0.15 and initial values (0.4, 0.9). 
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Figure 9 Population dynamics of foreigners and xenophobes 𝑘 ∈
[0, 0.25, 0.35],  𝛽12 = 0.5, 𝛽21 = 1, 𝐾1 = 200, 𝐾2 = 300, 𝑚 =
0.1, 𝜎1 = 0.2, 𝜎2 = 0.15, and initial values (0.4, 0.9). 

Figure 10 Population dynamics of foreigners and xenophobes 

𝑏 ∈ [0, 0.35, 0.65],  𝛽12 = 0.5, 𝛽21 = 1, 𝐾1 = 200, 𝐾2 = 300, 

𝛼 = 0.75, 𝜎1 = 0.2, 𝜎2 = 0.15, and initial values (0.4, 0.9). 
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Figure 11 Population dynamics of foreigners and xenophobes for 

𝛽12 ∈ [0, 0.3, 0.7], 𝛽21 = 1, 𝐾1 = 200, 𝐾2 = 300, 𝑚 = 0.1, 𝜎1 =
0.2, 𝜎2 = 0.15 and initial values (0.4, 0.9). 

Figure 12 Population dynamics of foreigners and xenophobes for 

𝛽12 ∈ [0, 0.5, 0.9], 𝛽12 = 0.3, 𝐾1 = 200, 𝐾2 = 300,   𝜎1 =
0.2, 𝜎2 = 0.15 and initial values (0.4, 0.9). 
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5 Discussion  

We have shown numerically in Figure 3 and Figure 4 that the positive 

coexistence point of the system has period-doubling bifurcation, which is an 

indication that xenophobic attacks in Africa may lead to chaotic situations if 

immediate interventions are not offered. Nevertheless, we can see in Figure 5(a) 

and Figure 5(c) that when there is no group defense by foreigners, the 

xenophobes dominate the economy and take control of their resources. 

Meanwhile, Figure 5(b) describes the economic dominance of foreigners over 

xenophobes in the presence of high group defense against xenophobia. Figure 

5(d) shows a state of coexistence between foreigners and xenophobes. This 

means both populations share stable economic prospects. In Figure 6, when the 

retaliating effect on xenophobes supercedes the attack rate (𝛽12 < 𝛽21), the 

population of foreigners grows economically while the population of 

xenophobes decreases. The converse situation is obtained for the case (𝛽12 >
𝛽21). But whenever (𝛽12 = 𝛽21), the highest economic peak for the xenophobe 

population is twice that of the foreigner population before achieving stability. 

Figure 7 shows that increasing the level of group defense encourage more 

foreigners to partake in business activities outside their country of origin and 

reduces the number of xenophobes fighting against them. Meanwhile anti-

xenophobic policy also helps to reduce the number of xenophobes and creates 

room for more participation by foreigners in the economy, as clearly illustrated 

in Figure 8. The implication of this outcome is that a good security architecture 

combined with anti-xenophobic policies will protect and defend foreigners from 

xenophobic attacks and control subsequent incidences. From Figure 9, we note 

that for xenophobes to fight freely indeed depends on the level of fear of 

foreigners. That is, more fear in foreigners reduces their population density and 

increases that of xenophobes. In Figure 10 we can see that an increase in the 

tolerance level of both foreigners and xenophobes causes them to attain a stable 

population. On the other hand, increasing 𝛽12and 𝛽21 respectively decreases the 

non-indigenous population and xenophobes, as shown in Figure 11 and Figure 

12. Therefore, it becomes pertinent for the concerned nations to sign bilateral 

engagements that will end the consequences of xenophobia in Africa and the 

world at large. Like other mathematical models, our model too has some 

shortcomings. The parameter values on xenophobic attacks are hard to come by. 

Some were adopted for the purpose of illustration from the predator-prey study 

by Sasmal & Takeuchi [16]. As such it is unrealistic to promise ideal results 

from this paper.  

6 Conclusion 

The fight against xenophobic attacks just like infectious diseases is a challenge 

in Africa and the rest of the world. In this paper, we propose a mathematical 
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model of xenophobia in Africa using the principle of competitive exclusion in a 

predator-prey system. We non-dimensionalized the model to identify the 

fraction of foreigners that are prey to xenophobic attacks and the exact 

proportion of xenophobes that advance the phenomenon. The non-

dimensionalized model is mathematically characterized by a solution that is 

uniformly bounded. The model has four forms of equilibria with four different 

cases, namely the trivial state (𝑋00), the case when non-natives are banned 

completely from a foreign country;(𝑋02), the case when xenophobes are no 

more active (𝑋10); and the case when both populations coexist in a particular 

country (𝑋12). Apart from the trivial equilibrium, which is unstable, all other 

equilibrium states have been proved to be locally and globally stable with 

respect to the parametric conditions in Theorems 2, 3 and 4. In addition, this 

study revealed under the same conditions that each non-trivial equilibrium of 

the model undergoes transcritical bifurcation in Theorem 5. We also confirmed 

by numerical simulation that the model has period-doubling bifurcation, which 

is an indicator for chaotic situation of xenophobia in Africa. So far, based on 

our results, we can conclude that tolerance and anti-xenophobic policies could 

be important parameters for controlling the xenophobic crisis in Africa. 
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