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Abstract. Schistosomiasis is a neglected tropical disease affecting communities 

surrounded by water bodies where fishing activities take place or people go to swim, 

wash and cultivate crops. It poses a great risk to the health and economic life of 

inhabitants of the area. This study was carried out to evaluate the impact of public 

health education and snail control measures on the incidence of schistosomiasis. A 

model was developed with attention given to the snail and human populations that are 

the hosts of the cercariae and miracidia respectively. The existence and stability of 

disease-free and endemic equilibrium states were established. The disease-free and 

endemic equilibrium states were shown to be locally asymptotically stable whenever the 

basic reproduction number was less than unity. Numerical simulations of the model 

were carried out to evaluate the impact of interventions (public health education and 

snail control measures) on schistosomiasis transmission. It was observed that the 

implementation of low coverage snail control with highly efficacious molluscicide and 

massive public health education will make the basic reproduction number smaller than 

unity, which implies the eradication of schistosomiasis in the population.   

Keywords: basic reproduction number; cercariae; miracidia; public health education; 

schistosomiasis; snail control.  

1 Introduction 

Schistosomiasis is a neglected tropical disease that is associated with poor 

socioeconomic conditions such as lack of sanitation and treatment of infested waters 

[1]. It affects mostly children in communities where humans frequently come in 

contact with water bodies for socioeconomic activities. Schistosomiasis poses a 

serious public health challenge in many developing countries with incidence as high 

as one in thirty [2]. According to the WHO, an average of 206 million people 

worldwide took preventive treatment in 2016, while 89 million people received 

curative treatment [2]. Globally, schistosomiasis causes 200,000 deaths every year [3]. 

Schistosomiasis has a complex life cycle that is made up of two free living stages, 

miracidia and cercaria, the intermediate host, snail and the definitive host, man. The 

larva stage of schistosomiasis occurs when cercariae penetrate the skins of humans 
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and develop into adult [4]. In a few weeks, these adult schistosomula produce eggs 

that are shed into the environment through urine and faeces by the definitive host. 

These eggs hatch in water and release miracidia, which penetrate the intermediate host 

dwelling in freshwater bodies. These miracidia develop into sporocysts inside the 

snails and asexual reproduction takes place after four weeks for the formation of 

cercariae. Shedding of these free living cercariae takes place by the infected snail, who 

swim and penetrate a new human host and the cycle continues. Schistosomiasis results 

from the host’s immune response to schistosome eggs and granulomatous reactions 

[5]. The drug of choice for the treatment of schistosomiasis is praziquantel. The 

treatment leads to discontinuation of eggs deposition in the body, which averts its 

complications [6].   

Some of the non-pharmacological interventions (NPI) advocated by the WHO include 

snail control and public health education. These NPI will complement the modern-day 

mass drug delivery programs for communities and school-age children for 

discontinuation of reinfection [7]. Snail control is the addition of molluscicides to 

water bodies that are frequently used by people and their livestock in day-to-day 

activities or for agricultural purposes [8]. Public health education strategy is about 

having adequate knowledge of the epidemiology of schistosomiasis. The majority of 

residents in endemic communities assume schistosomiasis is caused by soil-

transmitted helminths, thus revealing their inadequate knowledge of the disease [9].   

Mathematical modeling helps the understanding of the epidemiology of infectious 

diseases and also assists the decision making for public health policy formulation [10]. 

Mathematical modeling of schistosomiasis has been formulated in ordinary 

differential equations on several occasion and some researchers have developed new 

schistosomiasis models or modified existing ones using a deterministic approach [11]. 

Several models of schistosomiasis have been formulated with or without controls 

using different methods. Chiyaka & Garira [4] investigated the host-parasite dynamics 

of schistosomiasis, Ishikawa et al. [12] and Gurarie et al. [7] considered the effect of a 

mass treatment program with snail control, while Chiyaka et al. [13] observed that 

treatment eliminates the mature worms and active macrophages over a period of time 

with declining T-cell immune responses in the human body. The importance of public 

awareness campaigns was examined by Guiro et al. [14] and Yingke et al. [15], where 

Guiro et al. [14] used two general non-linear incidence functions and distributed 

delay. Diaby et al. [16] carried out a stability analysis of schistosomiasis dynamics, 

while Musa et al. [17] promoted the use of vaccination, and Ronoh et al. [18] 

considered the impact of environmental transmission in humans. Among the 

aforementioned authors, none discussed the importance of snail control and public 

health education for the dynamics of schistosomiasis. Also, there are only few works 

on modelling of schistosomiasis. Thus, the current work was aimed at evaluating the 

impact of public health education and snail control measures on schistosomiasis 

dynamics. 
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The rest of this paper is organized as follows. Section 2 presents the model 

formulation, while Section 3 provides an analysis of the model. The numerical 

simulations are in Section 4 and Section 5 contains the discussion and conclusion.   

2 Model Formulation  

The model traces the life cycle of the schistosome parasite at any time, t. The model is 

made up of human population, 𝑁𝐻(𝑡); snail population, 𝑁𝑠(𝑡); miracidia, M(𝑡); and 

cercariae, C(𝑡); at any time, t. The human population is subdivided into susceptible 

humans, 𝑆𝐻(𝑡), acute infected humans, 𝐼1𝐻(𝑡), and chronic infected humans, 𝐼2𝐻(𝑡). 
Individuals in the human population move from one class to another as their status 

changes and as the disease evolves. Susceptible humans are humans without infection 

and have the ability to contract the disease when they come in contact with cercariae 

near fresh water. They progress to acute infected humans as a result of infection at rate 

𝜆𝐻, where 𝜆𝐻 = 
𝛽𝐻𝐶(1−𝑚)

𝐶0+𝜀𝐶 
 and 𝛽𝐻 is the transmission rate for cercariae to susceptible 

humans; 𝑚 ∈ (0, 1) is the public health education control strategy to reduce the 

transmission rate; 𝐶0 is the half saturation constant of cercariae in the environment; 

and 𝜀  is the limitation of the growth velocity of the parasite. The number of 

susceptible humans increases as a result of birth/immigration at rate Λ𝐻 as well as 

acute infected humans that recover at rate e and return to the susceptible class, since 

re-infection is bound to occur as recovery does not result in permanent immunity. This 

takes place among humans in the acute infected class. 

Acute infected humans recover when they take their treatment correctly. Those that 

miss or do not complete their treatment may progress to chronic infected humans at 

rate 𝑘. Chronic infected humans, 𝐼2𝐻(𝑡), occur as a result of continuous deposition of 

parasite eggs in the human host. The human population dies naturally at rate 𝜇𝐻, while 

the acute and chronic infected human subpopulations die of the disease at rates 𝜎1𝐻, 

and 𝜎2𝐻 respectively. We assume that disease-induced death of chronic infected 

humans is greater than that of acute infected humans, that is 𝜎2𝐻 > 𝜎1𝐻, since the 

complications of the chronic stage of the disease like liver and kidney failure as well 

as cancer and ectopic pregnancies may not allow recovery from the disease. 

The acute and chronic infected humans, 𝐼1𝐻 and 𝐼2𝐻, shed eggs through their faeces 

and urine indiscriminately into the environment at rates (1 − 𝑚)𝛾1 and 𝑎(1 −𝑚)𝛾1, 

while public health education 𝑚 reduces the shedding rate 𝑎 becomes higher in the 

chronic stage. The shedding contributes to the life cycle of schistosoma. The eggs find 

their way into fresh water supplies and hatch into a free-swimming ciliated larva 

called miracidium, 𝑀. Miracidia, 𝑀, die naturally at rate 𝜇𝑀 when there is no 

intermediate host (snail) to penetrate. 
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The snail population is subdivided into susceptible snail population 𝑆𝑆(𝑡) and infected 

snail population 𝐼𝑆(𝑡), at any time t.  Recruitment into the susceptible snail class is by 

birth at rate Λ𝑆, while the exit occurs as a result of disease infection when a 

susceptible snail comes in contact with miracidia, 𝑀,  at rate 𝜆𝑆, or die naturally at rate 

𝜇𝑆, where 𝜆𝑆 = 
𝛽𝑆𝑀(1−𝛼𝑏)

𝑀0+𝜀𝑀 
, and 𝛽𝑆 is the transmission rate for miracidium to snails; 𝛼 ∈

(0,1) is snail control such the application of molluscicides or the hunting of 

snails; 𝑏 ∈ (0,1) is the efficacy of the snail control;  𝑀0 is the half saturation constant 

of miracidia; and 𝜀  is the limitation of the growth velocity of the parasite larvae. 

Snails that come in contact with water contaminated with miracidia get infected and 

progress to infected snails, 𝐼𝑆(𝑡). We assume that the infected snails die of the disease 

at rate 𝜎𝑆. The infected snails release free living/swimming larvae called cercariae at 

rate 𝛾2, of which the snail control 𝛼 reduces the shedding. The free-living larvae have 

the capacity to infect humans and die naturally at rate 𝜇𝐶 in the absence of a human 

host. The contact patterns and snail population is assumed not to be affected by 

climatic variations. We also assumed that other animals such as cattle do not 

contribute to the parasite density in the environment. Also, there is neither vertical 

transmission of the disease in humans, nor immigration of infectious humans. In 

Figure 1 Schistosomiasis flow diagram. The blue dot arrow represents the 

interaction between susceptible humans and susceptible snails with the 

cercariae and miracidia respectively, while the orange dash arrow represents the 

shedding from infected humans and infected snails in the environment. 
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addition, infectious snails do not reproduce due to castration by the miracidia and 

seasonal variations do not affect snail populations and contact patterns. Furthermore, 

re-infection is bound to occur as infection does not result in permanent immunity [18]. 

This takes place among humans in the acute infected class.  

Table 1 Model Parameters and Their Description 

Parameters Description Values (per day) Sources 

Λ𝐻 Recruitment rate for human population 8000 [4] 

Λ𝑆  Recruitment rate for snail population 200 [4] 

𝑘 
Progression rate from acute stage to chronic stage for 

human population 
0.05 Assumed 

𝜎1𝐻 Disease induced death rate for acute infected humans 0.039 [4] 

𝜎2𝐻 Disease induced death rate for chronic infected humans 0.05 Assumed 

𝑒 Recovery rate for acute infected humans 0.131 Assumed 

𝜇𝐻 Natural death rate for human population 0.0000384 [4] 

𝜇𝑆 Natural death rate for snail population 0.000569 [4] 

𝛽𝐻 Transmission rate for human population 0.406 [4] 

𝛽𝑆 Transmission rate for snail population 0.615 [4] 

𝑚 Public health education parameter [0,1] Varied 

𝜎𝑆 Disease induced death for infected snail class 0.0004012 [14] 

𝑀0 Half saturation constant of miracidia 1 × 108 [4] 

𝐶0 Half saturation constant of cercariae 9 × 107 [4] 

𝛾1 Shedding rate for infected humans 0.00232 [4] 

𝛾2 Shedding rate for infected snails 2.6 [4] 

𝑎 
Modification parameter of the shedding rate for chronic 

infected humans 
0.3 Varied 

𝛼 Snail control parameter [0,1] Varied 

𝑏 Efficacy of the snail control parameter [0,1] Varied 

𝜇𝐶 Natural death rate for cercariae 0.04 [4] 

𝜇𝑀 Natural death rate for miracidia 0.9 [4] 

𝜀  Growth velocity limitation of the pathogen 0.2 [4] 

A flow diagram of the model is presented in Figure 1 and a description of the 

parameters and their values and sources are given in Table 1.   

From the description of the dynamics of schistosomiasis and the flow diagram in 

Figure 1, the following system of differential equations is derived: 
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𝑑𝑆𝐻

𝑑𝑡
=  Ʌ𝐻 + 𝑒𝐼1𝐻  − 

𝛽𝐻𝐶(1−𝑚)

𝐶0+𝜀𝐶 
𝑆𝐻  − 𝜇𝐻𝑆𝐻 ,                

 𝑑𝐼1𝐻

𝑑𝑡
 =  

𝛽𝐻𝐶(1−𝑚)

𝐶0+𝜀𝐶 
𝑆𝐻 − 𝑒𝐼1𝐻 − k𝐼1𝐻  −  (𝜇𝐻+𝜎1𝐻)𝐼1𝐻 , 

 𝑑𝐼2𝐻

𝑑𝑡
 = k𝐼1𝐻  − (𝜇𝐻+𝜎2𝐻)𝐼2𝐻 ,                                         

𝑑𝑀

𝑑𝑡
= (1 −𝑚)𝛾1𝐼1𝐻  +  (1 −𝑚)𝛾1𝑎𝐼2𝐻  −  𝜇𝑀𝑀,      

𝑑𝑆𝑆

𝑑𝑡
 =   Ʌ𝑆 − 

𝛽𝑆𝑀(1−𝛼𝑏)

𝑀0+𝜀𝑀 
𝑆𝑆  −  𝜇𝑆𝑆𝑆,                                

 𝑑𝐼𝑆

𝑑𝑡
 =  

𝛽𝑆𝑀(1−𝛼𝑏)

𝑀0+𝜀𝑀 
𝑆𝑆  −  (𝜇𝑆+𝜎𝑆)𝐼𝑆 ,                                 

𝑑𝐶

𝑑𝑡
 = (1 − 𝛼𝑏)𝛾2𝐼𝑆  −  𝜇𝐶𝐶,                                             }

 
 
 
 
 

 
 
 
 
 

 (1) 

which is subject to initial conditions, 𝑆𝐻(0) > 0, 𝐼1𝐻(0)≥ 0, 𝐼2𝐻(0)≥ 0,𝑀(0) ≥ 0, 
𝑆𝑆(0) > 0, 𝐼𝑆(0)≥ 0 and C(0) ≥ 0. All model parameters are assumed to be positive. 

3 Model Analysis  

The basic properties of the model in Eq. (1) such as the invariant region, disease-free 

equilibrium state and its stability and basic reproduction number are discussed in this 

section.  

3.1 Invariant region 

The total human population at time 𝑡,  𝑁𝐻(𝑡), is given by   

 𝑁𝐻(𝑡) =  𝑆𝐻(𝑡) + 𝐼1𝐻(𝑡) + 𝐼2𝐻(𝑡),  (2)  

and the total snail population, 𝑁𝑆(𝑡),  is given by 

 𝑁𝑆(𝑡) =  𝑆𝑆(𝑡) + 𝐼𝑆(𝑡),  (3)  

with initial conditions 𝑁𝐻(0) =  𝑁𝐻0, 𝑁𝑆(0) =  𝑁𝑆0, C(0) = 𝐶0∗ and 𝑀(0) = 𝑀0∗. 

Theorem 1. The solutions of Eq. (1) will enter the positive invariant region, 𝐷, that is 

uniformly bounded in a proper subset  𝐷 = 𝐷𝐻 × 𝐷𝑆 × 𝐷𝑀 × 𝐷𝐶 where  𝐷𝐻 =

 {(𝑆𝐻 , 𝐼1𝐻 , 𝐼2𝐻)𝜖ℝ+
3 ∶ 𝑁𝐻(𝑡) ≤

Λ𝐻

𝜇𝐻
} is a subset of the human population, 𝐷𝑆 =

 {(𝑆𝑆, 𝐼𝑆)𝜖ℝ+
2 ∶ 𝑁𝑆(𝑡) ≤

Λ𝑆

𝜇𝑆
} is a subset of the snail population, 𝐷𝐶 = {𝐶(𝑡) ≤

 
Λ𝑆(1−𝛼)𝛾2

𝜇𝑆𝜇𝐶
} and  𝐷𝑀 = { 𝑀(𝑡) ≤

Λ𝐻𝛾1(1−𝑚)(1+𝑎)

𝜇𝐻𝜇𝑀
} are subsets of cercariae and 

miracidia in the environment respectively. 

Proof. Adding the human and snail subpopulations, we have  
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 𝑑𝑁𝐻

 𝑑𝑡
= Λ𝐻 − 𝜇𝐻𝑁𝐻 − 𝜎1𝐻𝐼1𝐻 − 𝜎2𝐻𝐼2𝐻  and   

 𝑑𝑁𝑆

 𝑑𝑡
= Λ𝑆 − 𝜇𝑆𝑁𝑆 − 𝜎𝑆𝐼𝑆 .  

Without loss of generality, we assume that the dynamics of Eq. (1) without infection 

are asymptotically stable, that is, the disease-induced death rates for acute and chronic 

humans, 𝜎1𝐻  and 𝜎2𝐻 and infected snails, 𝜎𝑆, are negligible. So that, 
 𝑑𝑁𝐻

 𝑑𝑡
 ≤  Λ𝐻 - 

𝜇𝐻𝑁𝐻  and  
 𝑑𝑁𝑆

 𝑑𝑡
 ≤  Λ𝑆 - 𝜇𝑆𝑁𝑆 .  

Applying the differential inequality theorem by Birkhoff & Rota [19] and integrating 

both sides of the equations with initial conditions 𝑁𝐻(0) =  𝑁𝐻0 and 𝑁𝑆(0) =  𝑁𝑆0, 

we have 

 N𝐻 ≤
Λ𝐻

𝜇𝐻
− (

Λ𝐻 − 𝜇𝐻𝑁𝐻0

𝜇𝐻
) 𝑒−𝜇𝐻𝑡 , (4) 

and  

 N𝑆 ≤
Λ𝑆

𝜇𝑆
− (

Λ𝑆 − 𝜇𝑆𝑁𝑆0

𝜇𝑆
) 𝑒−𝜇𝑆𝑡. (5) 

As t → ∞ in Eqs. (4) and (5), the human and snail populations N𝐻 and N𝑆 approach 

N𝐻  ≤
Λ𝐻

𝜇𝐻
  and N𝑆  ≤

Λ𝑆

𝜇𝑆
 respectively. Thus, all feasible solutions of the human and 

snail populations enter the regions 𝐷𝐻 = {(𝑆𝐻 , 𝐼1𝐻 , 𝐼2𝐻)𝜖ℝ+
3 ∶ 𝑁𝐻(𝑡) ≤

Λ𝐻

𝜇𝐻
} and 𝐷𝑆 =

 {(𝑆𝑆, 𝐼𝑆)𝜖ℝ+
2 ∶ 𝑁𝑆(𝑡) ≤

Λ𝑆

𝜇𝑆
} respectively. 

It is obvious that 𝐼1𝐻 ≤ 𝑁𝐻(𝑡) ≤
Λ𝐻

𝜇𝐻
,  𝐼2𝐻 ≤ 𝑁𝐻(𝑡) ≤

Λ𝐻

𝜇𝐻
 and 𝐼𝑆 ≤ 𝑁𝑆(𝑡) ≤

Λ𝑆

𝜇𝑆
. With 

this, we rewrite the fourth and seventh equation of Eq. (1) for the miracidia and 

cercariae in the environment as    

 
 𝑑𝑀 

 𝑑𝑡
≤ 𝛾1(1 − 𝑚)(1 + 𝑎)𝑁𝐻(𝑡) − 𝜇𝑀𝑀 ≤ 𝛾1(1 −𝑚)(1 + 𝑎)

Λ𝐻

𝜇𝐻
− 𝜇𝑀𝑀, (6) 

and  

 
  𝑑𝐶

 𝑑𝑡
≤ (1 − 𝛼𝑏)𝛾2𝑁𝑆(𝑡) − 𝜇𝐶𝐶 ≤ (1 − 𝛼𝑏)𝛾2

Λ𝑆

𝜇𝑆
− 𝜇𝐶𝐶. (7) 

Using the differential inequality theorem by Birkhoff and Rota [19] on Eqs. (6) and 

(7), the miracidia 𝑀(𝑡) and cercariae 𝐶(𝑡), with 𝑀(0) = 𝑀0∗ and 𝐶(0) = 𝐶0∗ yield   

 𝑀(𝑡) ≤
Λ𝐻𝛾1(1−𝑚)(1+𝑎)

𝜇𝐻 𝜇𝑀
− (

Λ𝐻𝛾1(1−𝑚)(1+𝑎)−𝜇𝐻 𝜇𝑀𝑀0∗

𝜇𝐻 𝜇𝑀
) 𝑒−𝜇𝑀𝑡. (8) 

and  
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 𝐶(𝑡) ≤
Λ𝑆(1−𝛼𝑏)𝛾2

𝜇𝑆 𝜇𝐶
− (

(1−𝛼)𝛾2Λ𝑆−𝜇𝑆𝜇𝐶𝐶0∗

𝜇𝑆𝜇𝐶
) 𝑒−𝜇𝐶𝑡. (9) 

Thus, the miracidia and cercariae populations, 𝑀(𝑡)  ≤   
Λ𝐻𝛾1(1−𝑚)(1+𝑎)

𝜇𝐻𝜇𝑀
  and  𝐶(𝑡) ≤

Λ𝑆(1−𝛼𝑏)𝛾2

𝜇𝑆 𝜇𝐶
  as t → ∞ in Eqs. (8) and (9) respectively.  

Hence, the feasible solutions 𝑀(𝑡) and 𝐶(𝑡) will enter the positive invariant regions, 

𝐷𝑀 = { 𝑀(𝑡) ≤
Λ𝐻𝛾1(1−𝑚)(1+𝑎)

𝜇𝐻𝜇𝑀
} and 𝐷𝐶 = {𝐶(𝑡) ≤  

Λ𝑆(1−𝛼𝑏)𝛾2

𝜇𝑆𝜇𝐶
}. This completes the 

proof.  

3.2 Existence and Stability of Disease-free Equilibrium State    

3.2.1 Existence of the Disease-free Equilibrium State 

The disease-free equilibrium state occurs at the state in which there is no infection, 

that is,  𝐼1𝐻 = 𝐼2𝐻 = 𝐼𝑆 = C = M = 0.  Solving for the solutions of the system at 

equilibrium state, we have the disease-free equilibrium state, 𝐸0, given as 

𝐸0=(
Λ𝐻

𝜇𝐻
, 0, 0, 0,

Λ𝑆

𝜇𝑆
, 0, 0). To carry out the local stability of the DFE, we first compute 

the basic reproduction number, 𝑅0. 

3.2.2 Basic Reproduction Number, 𝑹𝟎  

The basic reproduction number, 𝑅0 , is the number of new cases reproduced in a 

wholly susceptible population when an infective individual is introduced into the 

population [20]. The important parameters as well as the transmission potentials of an 

infectious disease are emphasized by 𝑅0 [21]. When 𝑅0 < 1 it means that the disease 

will die out in the population, while 𝑅0 > 1 implies persistence of the disease in the 

population. 𝑅0  is computed using the next generation matrix approach by Van den 

Driessche & Watmough [20] at the disease-free equilibrium state, 𝐸0 . The next 

generation matrix comprises of two parts: 𝐹 and 𝑉, where 𝐹 = [
𝜕𝐹𝑖(𝐸0)

𝜕𝑥𝑗
] and 𝑉 =

[
𝜕𝑉𝑖(𝐸0)

𝜕𝑥𝑗
]. The functions, 𝐹𝑖 and 𝑉𝑖, are the new infections and the transfers of 

infections from one compartment to another respectively. 𝑅0 is the dominant 

eigenvalue or the spectral radius of the matrix, 𝐹𝑉−1 with the associated matrix 𝐹 and 

matrix 𝑉 as the Jacobian matrices of 𝐹𝑖 and 𝑉𝑖 at 𝐸0 [20]. The next generation 

approach is about the infected compartments, 𝐼1𝐻, 𝐼2𝐻, 𝑀, 𝐼𝑆 and 𝐶. 

The Jacobian matrices of 𝐹𝑖 and 𝑉𝑖 with respect to the infected state variables at 𝐸0 are 

given by  
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 𝐹 =

(

 
 
 
 

0 0 0 0
𝑆𝐻
0𝛽𝐻(1−𝑚)

𝐶0

0 0 0 0 0
0 0 0 0 0

0 0
𝑆𝑠
0𝛽𝑆(1−𝛼𝑏)

𝑀0
0 0

0 0 0 0 0 )

 
 
 
 

 

and 

 𝑉 =

(

 
 

𝑒 + k + 𝜇𝐻 + 𝜎1𝐻 0 0 0 0
−𝑘 𝜇𝐻 + 𝜎2𝐻 0 0 0

−(1 −𝑚)𝛾1 −(1 −𝑚)𝑎𝛾1  𝜇𝑀 0 0

0 0 0 𝜇𝑆 + 𝜎𝑆 0
0 0 0 −(1 − 𝛼𝑏)𝛾2 𝜇𝐶)

 
 

. 

The basic reproduction number, 𝑅0, which is the maximum positive eigenvalue of the 

matrix, 𝐹𝑉−1, is given as 

 𝑅0 = √𝑅0𝑆𝑅0𝐻 = √ 
Λ𝑆Λ𝐻𝛽𝑆𝛽𝐻𝛾2𝛾1 (𝑔+𝑎𝑘)(1−𝑚)

2 (1−𝛼𝑏) 2

(𝑒 +k+𝜇𝐻+𝜎1𝐻)(𝜇𝐻+𝜎2𝐻)(𝜇𝑆+𝜎𝑆)𝐶0𝑀0𝜇𝐶𝜇𝑀 𝜇𝐻𝜇𝑆
 (10) 

where  

  

{
  
 

  
 

𝑅0𝐻𝑆 = 𝑅0𝐻𝐴 + 𝑅0𝐻𝐶  ,

𝑅0𝑆 =
Λ𝑆𝛽𝑆𝛾2(1−𝛼𝑏) 

2

(𝜇𝑆+𝜎𝑆)𝜇𝑀𝜇𝑆𝑀0
 ,

𝑅0𝐻𝐴 =
Λ𝐻𝛽𝐻𝛾1𝑔(1−𝑚)

2 

(𝑒 +k+𝜇𝐻+𝜎1𝐻)(𝜇𝐻+𝜎2𝐻)𝐶0𝜇𝐻𝜇𝐶
 ,

𝑅0𝐻𝐶 = 
Λ𝐻𝛽𝐻𝛾1𝑎𝑘(1−𝑚)

2 

(𝑒 +k+𝜇𝐻+𝜎1𝐻)(𝜇𝐻+𝜎2𝐻)𝐶0𝜇𝐻𝜇𝐶
 .

 (11) 

The reproduction numbers 𝑅0𝑆 and 𝑅0𝐻 are the reproduction numbers that the snails 

and humans contribute through their respective shedding of miracidia and cercariae in 

the environment, while 𝑅0𝐻𝐴 and 𝑅0𝐻𝐶 are the reproduction numbers that the acute 

and chronic infected humans contributed by shedding miracidia in the environment 

respectively. Thus, for the disease to be controlled in the environment, the basic 

reproduction number, 𝑅0, should be less than unity, that is, 𝑅0 < 1, which means that  

𝑅0𝐻𝐴, 𝑅0𝐻𝐶 <
1

𝑅0𝑆
 . This implies that the transmission rates for the human and snail 

populations satisfy the following inequalities: 𝛽𝐻
∗ <

(𝑒 +k  + 𝜇𝐻+𝜎1𝐻)(𝜇𝐻+𝜎2𝐻)𝜇𝐻 𝜇𝑀𝐶0

Λ𝐻𝛾1(𝜇𝐻+𝜎2𝐻+𝑘𝑎)(1−𝑚)
2  

and 𝛽𝑆
∗ <

(𝜇𝑆+𝜎𝑆 )𝜇𝑆𝜇𝐶 𝑀0

Λ𝑆𝛾2(1−𝛼)
2 

 . 
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3.2.3 Local stability of disease-free equilibrium 

Local stability of the disease-free equilibrium is established using linearization, which 

is computes using the Jacobian matrix at disease-free equilibrium. We state the 

following theorem.  

Theorem 2.  The disease-free equilibrium, 𝐸0, is locally asymptotically stable 

whenever 𝑅0 < 1 and unstable if  𝑅0 > 1.  

Proof. Using linearization method for the model in Eq. (1), the Jacobian matrix at the 

DFE, E0, is given as    

J(E0) = 

(

 
 
 
 

−𝜇𝐻 𝑒 0 0 0 0 −𝐸
0 −𝑓 0 0 0 0 𝐸
0 𝑘 −𝑔 0 0 0 0
0 𝛾1(1 −𝑚) 𝑎𝛾1(1 − 𝑚) −𝜇𝑀 0 0 0
0 0 0 −𝐿 −𝜇𝑆 0 0
0 0 0 𝐿 0 −ℎ 0
0 0 0 0 0 𝛾2(1 − 𝛼𝑏) −𝜇𝐶)

 
 
 
 

 (12) 

where 

 𝑓 = 𝑒 + k + 𝜇𝐻 + 𝜎1𝐻, 𝑔 = 𝜇𝐻 + 𝜎2𝐻,  ℎ = 𝜇𝑆 + 𝜎𝑆,  

 𝐸 =
𝑆𝐻
0𝛽𝐻(1−𝑚)

𝐶0
, 𝐿 =

𝑆𝑠
0𝛽𝑆(1−𝛼𝑏)

𝑀0
.  

The eigenvalues of the Jacobian matrix, 𝐽(𝐸0) are  −𝜇𝑆, −𝜇𝑆  and the roots of the 

characteristic equation  

 𝜆5 + 𝐴1 𝜆
4 + 𝐴2𝜆

3 + 𝐴3𝜆
2 + 𝐴4𝜆

4 + 𝐴5 = 0  (13) 

where 

 𝐴1 = 𝑓 + 𝜇𝑀 +  g +  h + 𝜇𝐶  ,  

 𝐴2 = 𝑓𝑔 + 𝑓ℎ + 𝑓𝜇𝐶 + 𝑓𝜇𝑀 + 𝑔ℎ + 𝑔𝜇𝐶 + 𝑔𝜇𝑀 + ℎ𝜇𝐶 + ℎ𝜇𝑀 + 𝜇𝐶𝜇𝑀,  

 𝐴3 = 𝑓𝑔ℎ + 𝑓𝑔𝜇𝐶 + 𝑓𝑔𝜇𝑀 + 𝑓ℎ𝜇𝐶 + 𝑓ℎ𝜇𝑀 + 𝑓𝜇𝐶𝜇𝑀+𝑔ℎ𝜇𝐶 + 𝑔ℎ𝜇𝑀 +
𝑔𝜇𝐶𝜇𝑀 + ℎ𝜇𝐶𝜇𝑀,   

 𝐴4 = (1 − 𝑅0𝐻𝐶𝑅0𝑆)𝑓ℎ𝜇𝑀𝜇𝐶  + 𝑓𝑔ℎ𝜇𝐶 + 𝑓𝑔ℎ𝜇𝑀 + 𝑓𝑔𝜇𝑀𝜇𝐶 +  𝑔𝜇𝐶𝜇𝑀,  

 𝐴5 = 𝑓𝑔ℎ𝜇𝑀𝜇𝐶(1 − 𝑅0
2).  

Using the Routh-Hurwitz criterion, the roots of the characteristic Eq. (13) has negative 

real parts if the following inequalities are satisfied: i. A1 > 0, A2 > 0, A3 > 0, A4 > 0, 

A5 > 0,  ii.  A1A2 – A3 > 0, iii.  A3 (A1A2 – A3) - A4𝐴1
2

   > 0,  iv. 2A1A4 – A2𝐴1
2 + A2A3 
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- A5 > 0. The inequalities ii, iii and iv are satisfied, provided 𝐴𝑖 > 0 ( i =  1, 2, 3, 4, 5) 
whenever R0 < 1. This is supported by the approach in Heffernan et al. [23]. Hence, 

the Jacobian matrix Eq. (13) has negative real eigenvalues if R0 < 1. Therefore, a local 

asymptotical stability exists for the disease-free equilibrium state whenever R0 < 1.  

3.3 The Endemic Equilibrium State   

The endemic equilibrium state, E, is the equilibrium state when there is infection in 

the population, that is, the infected variables are not equal to zero. Simultaneously 

solving the model in Eq. (1) at equilibrium state and simplifying yields the endemic 

equilibrium  𝐸𝑒
 = 𝑆𝐻

𝑒 , 𝐼1𝐻
𝑒 , 𝐼2𝐻

𝑒 ,𝑀 
𝑒 , 𝑆𝑆

𝑒 , 𝐼𝑆
𝑒 , 𝐶 

𝑒), where  

 𝑆𝐻
𝑒 =

𝐻Λ𝐻𝛾1(𝑎𝑘+𝑔)−(𝑘+𝜇𝐻+𝜎1𝐻)𝑓𝑔ℎ𝐶0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0
2−1)

𝜇𝐻𝛾1(𝑎𝑘+𝑔)𝐻
, 

 𝐼1𝐻
𝑒 =

𝑓𝑔ℎC0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0
2−1)

𝛾1(𝑔+𝑎𝑘)𝐻
, 𝐼2𝐻

𝑒 =
𝑘𝑓𝑔ℎC0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0

2−1)

𝛾1(𝑔+𝑎𝑘)𝑔𝐻
, 

 𝑀 
𝑒 =

𝑓𝑔ℎC0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0
2−1)

𝑔𝐻𝜇𝑀
,  𝑆𝑆

𝑒 =
𝑄Λ𝑆𝛾2−𝑓𝑔ℎ𝐶0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0

2−1)

𝜇𝑆𝛾2𝑄
,

 𝐼𝑆
𝑒 =

𝑓𝑔ℎC0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0
2−1)

 ℎ𝛾2𝑄
,  𝐶 

𝑒 =
𝑓𝑔ℎC0𝑀0𝜇𝐶𝜇𝑀𝜇𝐻𝜇𝑆(𝑅0

2−1)

 ℎ𝑄𝜇𝐶
   

with  

𝐻 = (𝑘 + 𝜇𝐻 + 𝜎1𝐻)𝛽𝑆Λ𝑆𝛽𝐻𝛾2 + 𝑓Λ𝑆𝛽𝑆𝛾2𝜇𝐻𝜀 + 𝑓ℎ𝜀𝐶0𝜇𝐶𝜇𝐻𝜇𝑆 + 𝑓ℎ𝐶0𝛽𝑆𝜇𝐶𝜇𝐻    

𝑄 = (𝑎𝑘 + 𝑔)𝛽𝐻Λ𝐻𝛾1(𝜇𝑆 + 𝛽𝑆) + 𝑓𝑔𝜀𝑀0𝜇𝐻𝜇𝑀𝜇𝑆 + (𝑘 + 𝜇𝐻 + 𝜎1𝐻)𝑔𝑀0𝛽𝐻𝜇𝑀𝜇𝑆
}.  

This shows that an endemic equilibrium state 𝐸 
𝑒 exists whenever 𝑅0 > 1. 

3.3.1 Local stability of endemic equilibrium  

The center manifold theory by Castillo-Chavez & Song [24] is used to establish the 

stability of the endemic equilibrium by proving the existence of forward bifurcation. 

The existence of forward bifurcation means that the disease-free and endemic 

equilibrium states are locally asymptotically stable if  𝑅0 < 1 and 𝑅0 > 1 respectively 

[22].  

Using the center manifold theory [24], a forward bifurcation occurs at bifurcation 

parameter 𝜙 = 0 if the coefficient constants 𝑝 < 0 and 𝑞 > 0, otherwise there is 

backward bifurcation.  

Solving for 𝑝 and 𝑞, let 𝛽𝑆 be the bifurcation parameter at 𝑅0 = 1 such that  

 𝛽𝑆
∗  =  

𝑓𝑔ℎ𝜇𝐻𝜇𝑀𝜇𝐶𝜇𝑆

Λ𝑆Λ𝐻𝛽𝐻 𝛾2𝛾1 (𝑔+𝑎𝑘)(1−𝑚)
2 (1−𝛼𝑏) 2
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which implies that the Jacobian matrix in Eq. (12) has a simple zero eigenvalue and 

negative eigenvalues. This is proven in Theorem 2 using Routh-Hurwitz criterion and 

Heffernan et al.[23]. The right and left eigenvectors, 𝑤𝑖𝑠 and 𝑣𝑘𝑠, associated with the 

Jacobian matrix Eq. (12) at 𝑅0 = 1 are given by 𝒘 = (𝑤1, 𝑤2, 𝑤3, 𝑤4, 𝑤5, 𝑤6, 𝑤7) and 

𝒗 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝑣6, 𝑣7) where 

 𝑤1  =  −
(k+𝜇𝐻+𝜎1𝐻)

𝜇𝐻
𝑤2,  𝑤2  =  𝑤2 > 0, 𝑤3  =  

𝑘

𝑔
𝑤2,  

 𝑤4  =  
𝛾1(1−𝑚)(𝑔+𝑎𝑘)

𝜇𝑀
𝑤2,  𝑤5  =  

𝐿𝛾1(𝑚−1)(𝑔+𝑎𝑘)

𝜇𝑀𝜇𝑆
𝑤2, 

 𝑤6  =  
𝐿𝛾1(1−𝑚)(𝑔+𝑎𝑘)

ℎ𝜇𝑀
𝑤2, 𝑤7  =  

𝑓

𝐸
𝑤2 , 

 𝑣1  =  0, 𝑣2  =  𝑣2  >  0,  

 𝑣3  =  
𝑎ℎ𝐸𝛾1𝛾2(1−𝑚)(1−𝛼𝑏)

𝑔𝜇𝑀𝜇𝐶
𝑣2, 𝑣4  =  

𝐸𝛾2(1−𝛼𝑏)

𝜇𝑀𝜇𝐶
𝑣2,  𝑣5  =  0, 

 𝑣6  =  
𝐸𝛾2(1−𝛼𝑏)

 ℎ𝜇𝐶
𝑣2, 𝑣7  =  

𝐸 

 𝜇𝐶
𝑣2.  

Representing   𝑆𝐻 = 𝑥1, 𝐼1𝐻 = 𝑥2, 𝐼2𝐻 = 𝑥3, 𝑀 = 𝑥4, 𝑆𝑆 = 𝑥5, 𝐼𝑆 = 𝑥6, 𝐶 = 𝑥7 in Eq. (1), 

we have non-zero second partial derivatives at DFE, 𝐸0, given by 
𝜕2𝑓2

𝜕𝑥1𝜕𝑥7
=

𝛽𝐻(1−𝑚)𝑆𝐻
0

𝐶0
,
𝜕2𝑓2

𝜕𝑥7
2 =

−2𝜀𝛽𝐻Λ𝐻(1−𝑚)𝑆𝐻
0

𝜇𝐻𝐶0
2 ,  

𝜕2𝑓6

𝜕𝑥4𝜕𝑥5
  =

𝛽𝑆(1−𝛼𝑏)𝑆𝑆
0

𝑀0
,  
𝜕2𝑓6

𝜕𝑥4
2  =

−2𝜀𝛽𝑆Λ𝑆(1−𝛼𝑏)𝑆𝑆
0

𝜇𝑆𝑀0
2  , 

𝜕2𝑓2

𝜕𝑥7𝜕𝜙
=

𝜀Λ𝐻(1−𝑚)𝑆𝐻
0

𝜇𝐻𝐶0
2 

 , 
𝜕2𝑓6

𝜕𝑥4𝜕𝜙
=

𝜀Λ𝑆(1−𝛼𝑏)𝑆𝑆
0

𝜇𝑆𝑀0
2  .  

The coefficient constants, 𝑝 and 𝑞, are given by 

 𝑝 = 𝑣2 (𝑤1𝑤7
𝜕2𝑓2

 𝜕𝑥1𝜕𝑥7
+ 𝑤7

2 𝜕
2𝑓2

𝜕𝑥7
2 +𝑤4𝑤5

𝜕2𝑓6

 𝜕𝑥45
+ 𝑤4

2 𝜕
2𝑓6

𝜕𝑥4
2 ) 

 = −𝑣2𝑤2
2(1 −𝑚) [

𝑓𝛽𝐻𝑆𝐻
0

 𝐸𝐶0
(  
(𝑘+𝜇𝐻+𝜎1𝐻)𝐶0+2𝜀𝜇𝐻Λ𝐻

𝜇𝐻𝐶0
) +  𝐸𝛾2𝛽𝑆𝑆𝑆

0(1 −

𝑚)(1 − 𝛼𝑏)2(𝑔 + 𝑎𝑘)2𝛾1
2 (

𝑀0+2𝜀Λ𝑆𝜇𝑀

𝜇𝑀𝑀0
)  ] < 0,  

 𝑞 = 𝑣2𝑤7
𝜕2𝑓2

 𝜕𝑥7𝜕𝜙
+ 𝑣6𝑤4

𝜕2𝑓6

𝜕𝑥4𝜕𝜙
 

 = 𝑣2𝑤2(1 −𝑚)𝜀 [
𝑓Λ𝐻𝑆𝐻

0

𝐸𝜇𝐻𝐶0
+
(1−𝛼𝑏)2(𝑔+𝑎𝑘)𝛾1 Λ𝑆𝑆𝑆

0

ℎ𝜇𝐶𝜇𝑀𝜇𝑆𝑀0
2 ]  > 0.  

We have the coefficients 𝑝 < 0 and 𝑞 > 0 since 𝑚, 𝑏, 𝛼 ∈ (0,1). The central manifold 

theorem implies that a forward bifurcation exists at 𝑅0 = 1 and 𝛽𝑆 = 𝛽𝑆
∗. Hence, we 

can state the following theorem. 
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Theorem 6.  The endemic equilibrium point 𝐸𝑒 of Eq. (1) is locally asymptotically 

stable when 𝑅0 > 1.   

4 Numerical Simulations  

The effects of snail control and public health education on the basic reproduction 

number, 𝑅0, is presented in Figure 2. System in Eq. (1) is solved numerically using the 

4th-order Runge-Kutta’s method and the solutions for the infected state variables are 

shown graphically in Figure 3. It shows the dynamics of each of the infected 

compartments. The parameter values used in the simulation were taken from Table 1.    

5 Discussion   

In Figure 2(a), the two control measures are implemented simultaneously and the 

basic reproduction number, 𝑅0, lies at their point of intersection. The basic 

reproduction number, 𝑅0, is less than unity under two conditions: when the public 

health education implementation is high (𝑚 = 0.8) and the snail control is low (𝛼 =
0.3) on the one hand, and when public health education implementation is moderate 

(𝑚 = 0.6) and snail control is massive (𝛼 = 0.8) on the other hand. Each of these has 

the potential of controlling the spread of schistosomiasis in the population. However, 

we advocate combined implementation of massive public health education and low 

level of snail control because it is more cost effective. This is important because it will 

avoid expensive and negative impacts that massive snail control will have on 
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Figure 2 Contour plot for the basic reproduction number, 𝑅0, as (a) a function of 

snail control (𝛼) and public health education (𝑚), (b) a function of  snail control (𝛼) 
and the efficacy of the snail control (𝑏). Here, the parameter values used are in the 

simulation were taken from Table 1. 
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biodiversity. Figure 2(b) assesses the efficacy of snail control (molluscicide). From the 

figure, the efficacy of snail control must be very high (𝑏 ≥ 0.9) for the basic 

reproduction number to be less than unity. This implies that snail control works 

alongside public health education only if molluscicide application highly efficacious. 

In other words, even though the snail control coverage can work when it is low, as can 

be seen in Figure 2(a), the snail control must be highly efficacious in order to be able 

to halt the transmission of schistosomiasis.   

Figure 3(a) and Figure 3(b) show the impacts of the control measures on the acutely 

and chronically infected human populations respectively under varying values of the 

control parameters. The behavior of the graphs (Figure 3(a) and Figure 3(b)) are 

similar in both instances. For instance, the basic reproduction number is less than 

unity (𝑅0 = 0.432, 𝑅0 = 0.853 ) in each graph when there is massive coverage of 

public health education (𝑚 = 0.8) and the snail control is either 0.7 or 0.3 with an 

efficacy of 0.9. In Figure 3(c), the impact of the control parameters on the infected 

snail population with different values of control parameters is shown. Again, it can be 

seen that the basic reproduction number is less than unity (𝑅0 = 0.432, 𝑅0 = 0.853) 
when public health education is 0.8 and snail control is either 0.7 or 0.3 with an 

efficacy of 0.9. Similar patterns can be observed in Figure 3(d) and Figure 3(e) where 

we considered the effect of the implementation of the control parameters on the 

concentrations of miracidia and cercariae in the environment respectively.  

The findings in Figure 3(a) and Figure 3(b) imply that the number of people infected 

in the community will be reduced and ultimately lead to the control of schistosomiasis 

when there is combined implementation of massive public health education and either 

high or low coverage of environments infested with snails with highly efficacious 

molluscicide. Furthermore, the spread of schistosomiasis will also be halted when the 

concentrations of the infective stages of larvae (miracidia and cercariae) in the 

environment that infect snails and humans are reduced, as shown in Figure 3(d) and 

Figure 3(e) respectively. Thus, fewer snails and humans will be infected as the 

concentrations of miracidia and cercariae are reduced following the combined 

implementation of public health education and highly efficacious snail control.  

A significant finding in this work is the pivotal role of public health education of the 

affected population in controlling the spread of schistosomiasis. This is because as 

more people become knowledgeable about the transmission of the disease, they will 

take measures to prevent being infected. Another significant finding is that a moderate 

coverage of the environment where snails live with highly efficacious molluscicide 

will reduce the transmission of the disease. We advocate the implementation of low 

coverage with highly efficacious molluscicide and massive public health education 

because it will lessen the negative effects of molluscicide on the biological role of 

snails in the ecosystem.  
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The findings in this work are in agreement with the recommendation by the WHO that 

public education and snail control should be implemented in order to achieve the 

control of schistosomiasis in affected communities. It will also aid public health 

professionals and policy makers in formulating control measures to reduce the 

transmission of the disease in the endemic population. Therefore, it is advocated that 

government agencies and non-governmental organizations should ensure that massive 

public health education and highly efficacious snail control (molluscicide) are 

implemented concurrently in order to halt the transmission of schistosomiasis among 

affected populations

6 Conclusion 

A mathematical model for the transmission dynamics of schistosomiasis was 

formulated in this work. The model was divided into human and snail sub-populations 

and their sheddings, miracidia and cercariae. Non-pharmacological interventions 

(NPIs) such as public health education and snail control were taken into consideration 

in this study. The basic reproduction number, 𝑅0, was computed and used to show its 

importance in achieving local stability of the disease-free equilibrium state when 𝑅0 <
1. The existence and stability of the endemic equilibrium state are established when 

𝑅0 > 1. The stability of the endemic equilibrium was determined using the center 

manifold theory to prove forward bifurcation. Through numerical simulations it was 

observed that creating massive awareness of schistosomiasis among communities and 

implementation of widespread snail control in the environment with highly efficacious 

molluscicide will minimize the number of persons infected in the population. 

However, spraying of molluscicide in the environment (water bodies) on a massive 

scale may pose serious problem to biodiversity with huge cost implications. Therefore, 

it is recommended that the focus should be on implementing massive public health 

education and low-coverage snail control in endemic communities since this will also 

lead to the eradication of the disease.  
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