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Abstract. In this paper we discuss the structure of Orlicz spaces and weak Orlicz
spaces on R™. We obtain some necessary and sufficient conditions for the
inclusion property of these spaces. One of the keys is to compute the norm of the
characteristic functions of the balls in R™.
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1 Introduction

Orlicz spaces were introduced by Birnbaum and Orlicz in 1931 [1]. Let
@:[0,0) = [0, ) be a Young function, that is, ® is convex, left-continuous,
@®(0) =0, and lim;_,,, @ (t) = o0. Given a measure space (X, dx), we define
the Orlicz space Lg (X) to be the set of measurable functions f: X — R such that

jxqa(a| f (x) [)dx < o0

for some a > 0. The space Lg (X) is a Banach space equipped with the norm

. f
| f 1l )= 1nf{b > O:jﬁb(%)dx < 1}

(see [2,3]). Note that, if ®(t):=tP for some p=>1 and X:= R", then
Ley(X) = L,(R™), the Lebesgue space of p-th integrable functions on R™ [4].
Thus, Orlicz spaces can be viewed as a generalization of Lebesgue spaces.

Several authors have made important observations about Orlicz spaces (see [2-
8], etc.). Here we are interested in the inclusion property of these spaces. In [8],
Welland proved the following inclusion property: Let X be of finite measure,
and @, ¥ be two Young functions. If there is € > 0 such that ®(t) < W(Ct) for
every t > 0, then L, (X) € Ly (X). Accordingly, if X is of finite measure, ®, ¥
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are two Young functions, and there is C > 0 such that ‘P(%) < P(t) < WY(Ct)

for every t > 0, then we have Lg (X) = Ly(X). A refinement of this result may
be found in [5], which states that Lg,(X) € Ly/(X) if only if there are C > 0 and
T > 0 such that ®(t) < W(Ct) for every t = T. Related results can be found in
[6,9,10]. Motivated by these results, the purpose of this work is to get the
inclusion property of Orlicz spaces Lg(R™) and extend the results to weak
Orlicz spaces WLg (R™) (see [11-14]). (Here X: = R™ has an infinite measure.)

The rest of this paper is organized as follows. The main results are presented in
Sections 2 and 3. In Section 2, we state the inclusion property of  Orlicz
spaces Ly (R™) as Theorem 2.5, which contains a necessary and sufficient
condition for the inclusion property to hold. An analogous result for the weak
Orlicz spaces wLg (R™) is stated as Theorem 3.3.

To prove the results, we pay attention to the characteristic functions of balls in
R™ and use the inverse function of ®, which is given by ®~1(s): = inf{r >
0: ®(r) > s}. The reader will find the following lemma useful.

Lemma 1.1 Suppose that @ is a Young function and ®~1(s) =inf{r >
0: ®(r) > s}. We have

(1) ®=1(0) = 0.

(2) @7 1(sy) < D71(sy) fors; < s,.

(3) (P I(s)) <s <P HP(s)) for0 < s < 0.

(4) Let € > 0. Then &, (t) < @,(Ct) if only if COTL(t) = d31(¢t), for
every t > 0.

(5) Let € > 0. Then @,(t) < CD,(t) if only if ®71(Ct) = P;1(¢t), for
everyt = 0.

Proof. The proof of parts (1)-(3) can be found in [15]. Now we will prove (4)
and (5).

(4) Let € > 0. We will prove @,(t) < ®,(Ct) if only if CoO71(t) = ®3(0),
for every t = 0.

Take an arbitrary C > 0 such that ®,(t) < ®,(Ct) for every t = 0. Let
®71(t) =inf A; where A; =inf{r > 0:®,(r) >t}, and write B, = {r =
0: ®,(Cr) > t}. Observe that

inf B, =inf{r > 0: ®,(Cr) >t}
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—inf{>>0: D, (x) >t}
C
1
:Emf{x 20:D,(x)>t}

1 __
:E(I)zl(t)

for x = Cr. For an arbitrary r € A;, we have ®,(Cr) = ®,(r) > t, and thus it
follows that r € B;. Hence we conclude that A; € B;. Accordingly, we obtain

®;1(t) = inf By < inf A, = ®T1(D).

Now, suppose that CP71(t) = ®;1(t), for C > 0 and every t = 0. Observe
that, by Lemma 1.1 (3) we have

D, (P, (1)
Cc

t
q)l(E) <O ( )

@ (P,(1)

<@,(C )

=D,(0,'(,(1)
<O, (1).
As a result, we have @, (g) < D, (t) or D4 (t) < D,(CH).

(5) Let € > 0. We will prove ®,(t) < CP,(t) if only if ®71(Ct) = ®31(t),
forevery t > 0.

Take an arbitrary C > 0 such that @,(t) < CP,(t) for every ¢ = 0. Let
®71(Ct) = inf A, where A, = inf{r = 0: ®,(r) > Ct}, and write B, = {r >
0: ®,(r) > t}. Observe that, for r € A, we have CP,(t) = P, (r) > Ct, so that
T € B,. Hence we conclude that A, € B,. Accordingly, we obtain ®51(t) =
inf B, < inf A, = ®71(Ct).

Now, suppose that ®71(Ct) = ®51(t), for C > 0 and every t = 0. Observe
that, by Lemma 1.1 (3) we have

D, (1) <D (P, (D,(1))
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<@, (@, (C, (1))
<CO,(1).
As aresult, we have @4 (t) < CD,(t).

More lemmas (and their proofs) will be presented in the next sections.

2 Inclusion Property of Orlicz Spaces

Let us first recall several Lemmas below.

Lemma 2.1 If @ is a Young function, then ®(at) < a®(t) for t > 0 and
0<ac<l.

Lemma 2.2 [2] Let @ be a Young function and f € Logrny. If 0 <Il f Il &y <
oo, then

[of L0 ]y,

Tl ..

Furthermore, Il f Il wm< 1ifonlyif [0, @ (If (x))dx < 1.

Corollary 2.3 Let ®,¥ be Young functions. If there exists C > 0 such that
@(t) < W(Ct) for t >0, then Ly(R™) S Le(R™) with I fll,,wmy<C I

f Ly mn for every f € Ly(R™).
Proof. Suppose that f € Ly (IR™). Observe that

f( C|If(
I(DCJT oz [ C|||f|| o= e o
® Ly (R") Lo (R") L o)
By the definition of Il f Il ,®n), we have Il f ll &)< C Il f ll ). This
proves that Ly (R™) S Lg (R™), as desired.

Remark. From Corollary 2.3, we note that if ® < W, then Ly (R") S Lo (R™)
with || f Il ,mmy<Il f Il wny for every f € Ly(R™). As we shall see below,
the converse of this statement also holds. We need the following lemma.

Lemma 2.4 [7] Let ® be a Young function, a € R™, and r > 0. Then

v S where |B(a, )| denotes the volume of B(a, ).
1B(an)]

I X8(ar) lLo@m= 7
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Theorem 2.5 Let &, W be Young functions. Then the following statements are
equivalent:

(1) d(t) < W¥(Ct) forevery t > 0.

(2) Ly(R"™) € Lo(R™).

(3) Forevery f € Ly(R™), we have || f ll,,wny< C Il f Iy @wn)-
Proof. We have seen that (1) implies (2). Next, since (Ly(R"), Ly (R™)) is a
Banach pair, it follows from [16, Lemma 3.3] that (2) and (3) are equivalent. It

thus remains to show that (3) implies (1). Now assume that (3) holds. By
Lemma 2.4, we have

1 C

—:” ZB(a,r) ||L®(RH)S C ” ZB(a,r) “L.P(JR"):— 5
B(a,r)| B(a.r)|

), for every a € R",r > 0. By Lemma 1.1 (4),

1 1
>yp-1
|B(a,r)|)1 - (IB(‘LEN
we obtain (D(|B(a,7')|) = LIJ(|B(a,1”

D(t) < W(Ct) forevery t > 0.

or CO™1(

)I)' Since r > 0 is arbitrary, we conclude that

2.1 A Special Case

One may ask whether from inclusion relations between Orlicz spaces we may
deduce some known fact of those in Lebesgue spaces. The answer is
affirmative; we need the following lemma for this purpose.

Lemma 2.6 Let ®,, ®,, and @5 be Young functions such that ®;(t)®51(t) <
®31(t) forevery t > 0. If f € Ly, (R™) and g € Lo, (R™), then fg € Lg, (R™)
with

” fg ”L%(R“)S 2 ” f |||_®1(Rn)” g |||_®2(Rﬂ) .

Proof. Let s,t > 0. Without loss of generality, suppose that @, (s) < ®,(t). By
Lemma 1.1 (3), we obtain

st<@ (@, (s)) D' (D, (1)) <@ (D, (1)) @' (@, (1)) <@ (D, (1)).

Hence ®;(st) < @53(P31(D,(1))) < P,(t) < P,(t) + P4(s). From Lemma
2.1 we have
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J.(D |f(x)g(x)| dx<l.[d) |f(x)g(x)|
120, Ol ey ) 20 (P 19, (o)

R"

On the other hand, by Lemma 2.2 we obtain

JCI>3 |f(x)g(x)| <J' dx+ch>2 —|g(x)| dx <2
E N IIfII Lo (R) sothgll

Lz 19 o) Lo ()

whenever f € Ly, (R™) and g € Ly, (R™). By using the definition of ||
fg IIL¢3(Rn), we have || fg ||L¢3(Rn)S 210 f "chl(lR%")" g "chz(R")’ as desired.

Corollary 2.7 Let X: = B(a,ry) < R" for some a € R™ and r, > 0. If &, D,
are two Young functions and there is a Young function @ such that

D' (O (1) <D;'(1)
forevery t > 0, then Ly, (X) € Lo, (X) With

2
||f ”%JX)S'_______f____llf ”%AX)

-1

(I B(a,r, )I)
for f € Lo, (X).

Proof. Let f € Ly, (X). By Lemma 2.4 and choosing g: = Xg(a,r,), We obtain

2

1T Zogan Iy, 0= 2 1 Zogan) ool T, ()= —— Il %)
N
(I) -
[|B ar |J

This shows that Lg,, (X) S Lg, (X).

Corollary 2.8 Let X: = B(a,1rp) forsomea € R"andr, > 0. I1f 1 <p, <p; <
o, then L, (X) € Ly, (X).

pP1p2
Proof. Let ®q(t):=tP1,d,(t):=tP2, and P(t):=tr1r2 (t > 0). Since

1<p, <p; <o, we have 2222 > 1. Thus, @,, ®,, and @ are three Young

P1—D2
functions. Observe that, using the definition of ® ! and Lemma 1.1, we have
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1 1 PP,

D' (1) =t", D) () =t>,and @' (t) =t P* .

1 Ppi1-b2 1

Moreover, ®7L(£)P~1(t) = tpit P12 = tpz = P;1(t), and so it follows from
Corollary 2.7 that || f "LPZ(X)S Il f "Lpl(X)’ and therefore L, (X) <

Ly, (X).

Remark. Of course we can prove the inclusion of property of Lebesgue spaces
on a finite measure space directly via Holder’s inequality. What we showed
here is that we can obtain the result through the lens of Orlicz spaces.

1
IB(a.To)I)

o-1(

3 Inclusion Property of Weak Orlicz Spaces

First, we recall the definition of weak Orlicz spaces [14]. Let ® be a Young
function. We define the weak Orlicz spaces wlLgs(R™) to be the set of
measurable functions f: R"™ — R such that || f Il ®n)< o, where

I f Moy = inf{b > 0:sup 1o @ (©)[{x € R L > 43y < 1},

Remark. Note that |Ill,y,rn) defines a quasi-norm in wlLqe(R™), and that
(WLe (R™), lIlly Lo (rm)) forms a quasi-Banach space (see [11,12]).

The relation between weak Orlicz spaces and (strong) Orlicz spaces is clear, as
presented in the following theorem.

Theorem 3.1 [12,17] Let ® be a Young function. Then L4 (R™) € wLg(R™)
With I| £ Il ®m<I f L, wm) fOr every f € Lo (R™).

Proof. The proof of this theorem can be found in [12,17]. We rewrite the proof
here for convenience.

Given f € Lo(R™), let A, ={b>0:sup ®(t)[{xeR":

>0
Bow:=1{b>0: [ ® (L) ax <1}, Then Il f lyyp@m= inf A, and
Il f llywm)= inf Bg,,,. Observe that, for arbitrary b € Bg,,, and t >0, we
have

>t}|<1} and

()
b

n f f
®(t)|{XER :%>t} |£J.(><5Rnif::)>t}q)(| E)X)|jdx
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sj of TN gy <1,
R b

Since t > 0 is arbitrary, we have sup ;59 ® (t)|{x € Rn:lf(%)l >t} <1,
and BCID_W c ACD,W' Hence, f € Wch Wlth " f "WL¢(]Rn)S" f "Lq;(]Rn)'

Remark. As the strong and weak Orlicz spaces contain the strong and weak
Lebesgue spaces respectively, the inclusion in the above theorem is proper. See
[18] for a counterexample.

In addition to Lemma 2.4, we have the following lemma for the characteristic
functions of balls in weak Orlicz spaces.

Lemma 3.2 [13] Let ® be a Young function, a € R™, and r > 0 be arbitrary.
Then we have Il xg(ar) lwLg®m)= !

— 1 .
" (5@

Now we come to the inclusion property of weak Orlicz spaces.

Theorem 3.3 Let ®, W be Young functions. Then the following statements are
equivalent:

(1) &(t) <W¥(Ct) foreveryt > 0.
(2) wLy(R™) € wlLge (R™).
(3) Forevery f € wLy(R™), we have Il f llyy1,wm)< C Il f llwry@wm-

Proof. Assume that (1) holds, and let f € wLy(R™). Put

Apw ={b>0:sup 5o (D]{x € R: D> 1 <1
and

Ay ={b>0:5up 150 (COlx € RS 1 <1

=(b>0sup oo ¥ ()lix e RIS 3 <13,

for s=Ct. Then || f ||Wk (Rn)zinf A,, and || Cf I, (Rn):inf A, . Observe that,
for arbitrary b € Ay, and t > 0, we have

O(B)|{x € R”:V(Tx)' >t} < W(CH)|{x € R":V(Tx)' >t} < 1.
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Thus, sup 5P (H)|{x € ]R{":@ >t}| < 1. Hence it follows that b €
Ag v, and so we conclude that Ay, € Ag . Accordingly, we obtain

I f lwiemwmy= inf Agw < inf Ay, = C Il f llyiymwny,
which also proves that wLy (R™) € wLg(R™).
As mentioned in [10, Appendix G], we are aware that [16, Lemma 3.3] still
holds for quasi-Banach spaces, and so (2) and (3) are equivalent.

Assume now that (3) holds. By Lemma 3.2, we have
1 C

N :” ZB(a,rU) ”wL(,,(]R")S C “ ZB(a,rU) |I\NLV(R”):—
-1 1 -1 1
Q| —— Y| ——
B(a.r,)| B(a.r,)|
or
q)—l 1 > lp—l 1
¢ (IB(a,ro)I) - (IB(a.Vo)I)’
for arbitrary a € R™ and 1y > 0. By Lemma 1.1, we have
1
) v .
(IB(a.Vo)I)_ (IB(a.To)I)

Since a € R" and 1, > 0 are arbitrary, we conclude that ®(t) < W(Ct) for
every t > 0.

4 Concluding Remarks

We have proved the inclusion property of (strong) Orlicz spaces and of weak
Orlicz spaces. Both proofs use the norm of the characteristic functions of the
balls in R™. As our final conclusion, we have the following corollary which
states that the inclusion property of (strong) Orlicz spaces are equivalent to that
of weak Orlicz spaces, and both can be observed just by comparing the
associated Young functions. To be precise, if @, ¥ are two Young functions,
then the following statements are equivalent:

(1) &(t) < W(Ct) forevery t > 0.

(2) Ly(R™) € Lo(R™).

(3) Forevery f € Ly(R™), we have Il f ll,rry< C Il f Nl ywm)-
(4) wLy(R™) € wlLe(R™).

(5) Forevery f € wLy(R™), we have || f L, wm)<Il f llwLy@mm)-
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