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Abstract. The magnetic characteristics of fine sediment samples from the Solo
Basin are reported in this paper. Magnetic fine sediment was identified by
magnetic susceptibility mapping based on sampling of 182 points. Then, a depth
analysis (on 7 selected sampling points) was performed using X-ray fluorescence
spectrometry, which showed an iron oxide content of up to 55.42%, while X-ray
diffractometry confirmed magnetite minerals with crystallite size <100 nm.
Further, the vibrating sample magnetometry results verified the magnetic
characteristics under a single-domain configuration. The characteristic magnetic
susceptibility map showed that there is a lithogenic effect on sediment in the Solo
Basin. In addition, anthropogenic activities seem to play a pivotal role in
distributing magnetic materials.
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1 Introduction

The Solo Basin is located in the central depression zone of Java, Indonesia. It is
an active sedimentary basin with a fluvial environment, receiving sediment
supply from adjacent active volcanoes (including Merapi, Merbabu, Lawu, and
Old Lawu volcanoes) and the Kendeng Zone (Figure 1). Moreover, the Solo
Basin is known to have been formed in the Late Pleistocene to Holocene and it
consists of Alluvium (Qa), Older Alluvium (Qt), Merapi Volcanic Rock (Qvm),
and Lawu Volcanic Rock (Qvl) sediment. Alluvium sediment usually consists of
loose clay, silt, sand, or gravel that has undergone a sedimentation process at the
bottom of the river. Merapi volcanic rock is a rock that was released by the
process of volcanism. The process of volcanism in question is a mountain
eruption. The eruption releases pyroclastic materials. These can be divided into
two types, namely materials from pyroclastic deposit and from pyroclastic flow.
Pyroclastic deposit is a pyroclastic deposition process found somewhere either
around or far from the mountain. Pyroclastic flow comes out of the mouth of the
volcano. The Solo Basin, which covers an area of 16,000 km?, is filled with water
originating from the longest and largest river in Java, Bengawan Solo River,
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which originates from the Sewu mountains in the west to the south and stretches
to the Java Sea and has a length of £600 km [1-4].

In addition, there is one of the world’s most important archaeological sites, the
Sangiran Dome, which is the main stratigraphic window for Pleistocene deposits
in the Solo Basin [5-7]. The Sangiran Dome is formed from four formations,
namely the Puren Formation, the Sangiran Formation, the Bapang Formation, and
the Pohjajar Formation. The Pohjajar Formation is the youngest among them. The
oldest formation is the Puren Formation. The Puren Formation is squeezed by the
Sangiran Formation and it can be divided into three sections, namely, lower,
middle, and upper. All sections are filled with volcanic material originating from
Mount Lawu, Mount Merbabu, and Mount Merapi. Nowadays, the presence of
these volcanoes supports the existence of the Solo Basin due to parent rock that
undergoes a weathering process and is carried away by transport media such as
water and wind. Further, a final process of sedimentation will occur in the basin
zone [8]. Among various magnetic minerals produced by magnetic rocks,
magnetites include minerals that are easy to store and resistant to weathering [9-
11]. Sediment in the Solo Basin comes from erosion processes originating from
the Merapi, Merbabu, and Lawu volcanoes, the Kendeng Zone, and the Sangiran
Dome [2,3,12]. Moreover, the presence of metallic iron oxides indicates that
lithogenic processes contribute to the magnetic mineral formation in the sediment
[13-15].

JAVA SEA

Figure 1 A Physiography of Java Island. The Solo Zone is formed by a modern
volcanic belt extending in a west-east direction in the middle of Java Island [16]. B Solo
Basin (research location) — including the Sangiran Dome — bordering the Kendeng Zone
to the north, a hilly area composed of deep-sea sediment [7]. C Simplified from a
geological map of the Surakarta—Giritontro Quadrangles. The Solo Basin was formed
in the Late Pleistocene to Holocene and consists of Alluvium (Qa), Older Alluvium
(Qt), Merapi Volcanic Rocks (Qvm) and Lawu Volcanic Rocks (Qvl) sediment [17].
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Fine deposits from the lithogenic process include sulfides and iron oxides such
as magnetites [18-20]. Therefore, the source of the sediment is crucial for
understanding the evolutionary process of an area [20]. Notably, the type of
volcano defines the magnetic minerals contained in the rock and sediment [21].
Magnetic minerals are very dependent on the metal concentration contained in
the sample. The more metal the samples they contain, the more magnetic they
are. Vice versa, the lower the metal concentration in the rock, the less magnetic
the minerals. The presence of ferromagnetic magnetites can be studied using
magnetic susceptibility measurements [22-24]. A higher magnetic susceptibility
value of a material indicates that the material only accepts an external magnetic
field with great difficulty. Differences in lithographic conditions indicate
differences in rock magnetic characteristics associated with differences in rock
recrystallization processes [23].

Magnetic studies of rocks and analysis of their magnetic characteristics have
developed rapidly and especially the magnetic susceptibility of rocks has now
become one of the fundamental characteristics of rocks [25-46]. Initially,
magnetic characteristics were identified from the source of the magnetic rock.
From a theoretical viewpoint, it is known that magnetic minerals are the result of
solid-solution processes of titanomagnetite, ilmenohematite, and pseudobrookite
[39]. Therefore, the process of rock formation is an important factor that must be
considered. The relationship between the direction of magnetic anisotropy and
the orientation of crystal formation, especially the formation of single crystals,
has been confirmed [25]. In contrast, the orientation of magnetic anisotropy
indicates the direction of the lava flow in the volcano [32]. The hydration or
dehydration process partially changes titanian clinohumite to ilmenite
(+magnetite) [28]. Furthermore, weather and transport processes are crucial in
distributing magnetic minerals [19,36]. Lithogenic and anthropogenic factors
also play a role in the distribution of fine sediment [26]. It has also been reported
that both technological activity [27] and contamination play a role in the
evolution of rock magnetic zones [28,46,24].

Here, the identification of magnetic minerals, which support lithogenic,
pedogenic, and anthropogenic origins, through susceptibility measurement was
the easiest procedure [32]. Moreover, the ratio of the susceptibility measurements
of two frequencies, namely low and high frequencies, is sufficient to characterize
the reversal-magnetization mode of the magnetic mineral being measured [33].
Lithogenic magnetite particles are present as pseudo/multi-domains with large-
enough particle sizes, while pedogenic fine-grained particles are present as single
domains or superparamagnetic particles [37]. Therefore, the identification of
magnetic minerals can give an indication of the period of rock formation as well
as the environmental quality due to anthropogenic activities. Meanwhile, the
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representation of magnetic properties may be expressed from the magnitude of
the susceptibility measurement in a certain area.

In this study, we studied the magnetic properties and geochemical characteristics
of fine sediment samples from the Solo Basin. The element or metal oxide content
of the sediment was evaluated to confirm the presence of magnetic minerals as a
source of modification of the measured magnetic susceptibility magnitude.
Magnetic susceptibility magnitude distribution mapping was performed to
represent the magnetic properties of the fine sediment as well as the parent rock
formation in the Solo Basin.

2 Materials and Methods
2.1  Mineral Content Analysis

Identification of magnetic property characteristics was carried out on sediment
samples from the Solo Basin. The samples came from debris of volcanic material
originating from Merapi volcano, Merbabu volcano, and Lawu volcano.
Representative samples were taken based on different topographical structures
and land uses, so they could represent the entire research site.

The obtained sediment samples were dried using an oven at 110°C for 48 hours.
Furthermore, the samples were mashed by ball milling for 3 hours to produce fine
granules [11]. Thereafter, the sample was filtered to separate coarse grains from
fine grains. The obtained sediment samples were then separated between non-
magnetic and magnetic minerals using a permanent magnet [8,47]. X-ray
fluorescence (XRF) was used to determine the contents of the sediment.
Furthermore, Fourier transform infrared (FTIR) spectroscopy was used to
evaluate the appearance of hydrocarbon and oxide bonds, especially metal-oxide
bonds. X-ray diffractometry (XRD) was used to analyze the crystalline structure
following identification of the types of minerals in the fine sediment samples.
Vibrating sample magnetometry (VSM) at room temperature was used to identify
the magnetic properties of the fine sediment samples [9,15,48-50].

2.2  Magnetic Properties: Magnetic Susceptibility Mapping

Direct measurements were taken in the field using a susceptibility cappameter
with code KT-5. This was done for the process of collecting samples for further
testing. The frequency used was 10 kHz with a sensitivity of 1x10° and
measuring ranges from -999 to 9999x10°2 Sl [21,49]. Figure 2 shows a map of
the magnetic susceptibility research location with a total of 184 measurement
points. The interval between points was 500 meters. For each individual sampling
point, the magnetic susceptibility was measured for 15 repetitions. The blue dots
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are the sediment sampling points selected for further physical property
characterization.

Map of the magnetic
susceptibility measurement
sediment sampling

Legend
@ Magnetic susceptibility measurement
® Sediment sampling

Figure 2 Map of surface sediment magnetic susceptibility measurements in the
Solo Basin area and sediment sampling locations for further physical property
characterization.

3 Results and Discussion

3.1 Solo Basin Sedimentation

The sampling location was within the limits of 110°45'15"E-110°45'35"E and
7°36'00"S—7°56'00"S. Figure 1B shows topographic and cross-sectional contour
maps of the Solo Basin, with Mount Lawu (3,265 masl) and Mount Merapi (2,911
masl) bounding the east and west sides, respectively. On the north side, there is
the Kendeng Zone and the Sagiran Dome, which have been disrupted since the
end of the Pleistocene [7,12]. Figure 1C shows most of the geological formations
of the Solo Basin formed by alluvium composed of clay, mud, silt, sand, gravel,
pebble, and cobble. Viewed from several sides, the northern part is dominated by
old alluvium formed from conglomerate rock, sandstone, silt, and clay. The west
to east sides have volcanic breccia, lava, and tufa rock formations, which
originate from the volcanoes of Merapi and Lawu. [16,17]. Thus, the magnetic
sediment that occurs in the Solo Basin should be supported by volcanic parent
rock.
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Figure 3 Sedimentation flow pattern of the Solo Basin (no scale).

Regarding the above topographic profile, sedimentation should be more
concentrated in the lower areas. Moreover, sedimentation flow patterns, which
indicate the magnetic mineral content at different slope positions, can be
estimated [14,46].

Figure 3 shows the sedimentation flow pattern of Solo Basin. The flow pattern is
toward the lower east side and the Bengawan Solo River (indicated by a blue
line). The north-northeast region has a higher topographic structure than the other
regions. Meanwhile, the south-east region has a lower topography than the other
regions. Thus, the south—east region has large sedimentation compared with the
other regions. The southern region is included in the category of land prone to
flooding (flood plain) because there is fluvial sediment from the Bengawan Solo
River [2,4,51].

3.2 Analysis of the Sediment Content of Solo Basin Samples

The content analysis of sediment samples at the surface and a depth of 30 cm was
performed using XRF characterization. The identified minerals are presented in
Table 1, where the concentrations are expressed in percentage (%). The various
sediment contents cannot be separated from the parent material, which has
undergone weathering and sedimentation. The oxide bond content in Table 1
corresponds to the oxide bond content found in the Merapi volcano. In the study
of weathering of the pyroclastic deposits of the Merapi volcano, oxide bonds are
also found in the sediments from the Solo Basin, namely, Fe-O, Si-O, Al-0O, Ca—
O, Ti-O, K-0O, P-0O, and Mn-O, where these materials are compositions of
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andesite and basaltic rocks [52]. Meanwhile, the pyroclastic material of the
Merapi volcano in the 2010 eruption was dominated by the mineral plagioclases

[53].
Tabel 1 (a) Composition of sediment samples taken from the surface.
Compound Compound concentration at location (%)
no.41 no.55 no.61 no.77 no.95 no.171 no.177
Fe-O 4493 3812 3335 3210 4328 51.04 46.10
Si-O 28.70 31.20 3450 33.00 3050 28.10 30.80
Al-0O 9.10 960 1100 970 12.00 9.30 9.90
Ca-O 878 13.60 1150 1650 6.46 3.69 5.99
Ti-O 4.28 3.85 2.69 3.02 491 491 3.84
K-O 1.29 1.55 1.95 1.56 1.16 0.62 0.96
Mn-O 0.59 0.50 0.45 0.50 0.45 0.46 0.46
Eu-O 0.51 0.40 0.49 0.45 0.46 0.48 0.48
P-O 0.73 - 0.56 1.00 0.61 0.53 0.56
V-0 0.27 0.27 0.17 0.18 0.29 0.35 0.24
Re-O 0.27 0.27 0.25 0.07 0.20 0.20 0.20
Pb-O - 0.26 - - - - -
Sr-0 0.20 - 0.25 0.25 - - -
Hg-O - - - 0.17 - - -
Rb-O 0.16 0.10 - - 0.14 0.16 0.15
Cr-O 0.10 0.08 0.12 0.09 0.08 0.09
Zn-0O 0.08 0.06 0.13 0.16 0.04 0.04 0.07
Mo-O - 0.08 2.90 - - - -
Cu-O 0.07 0.06 0.09 0.09 0.06 - 0.07
Br - 0.06 - - - - -

Research conducted in the Bengawan Solo River found that the dominant
contents of the sediment were Fe-0, Si-O, Ti-0, Al-0, Ca-0, and P-O [9]. The
Bengawan Solo River headwaters are at the foot of the Merapi and Southern
volcanoes [2,3]. Thus, the sediment in the Solo Basin is compatible with the
volcanic materials of the Merapi and Lawu volcanoes and sediment in the
Bengawan Solo River.

In the transport stage of eroded volcanic materials from the Merapi and Lawu
volcanoes to the Solo Basin, water is the dominant transport medium. The water
source can be rainwater or river flows. The rate of erosion is proportional to the
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increase in rainfall intensity and land slope steepness [51,54]. The largest river
flow that transports materials from upstream to the Solo Basin is the Bengawan
Solo River.

Table 1 (b) Composition of sediment samples taken from a depth of 30 cm.

Compound concentration at location (%)
no.41 no.55 no.61 no.77 no.95 no.l1l71 no.177
Fe-O 4452 4522  43.04 4484 4233 55.42 40.00
Si-O 29.90 2880 32.60 30.90 30.80 23.80 36.30

Compound

Al-0 9.10 10.00 10.00 10.00 11.00 9.20 12.00
Ca-O 9.07 7.52 731 700 881 2.49 5.32
Ti-O 4.17 4.27 400 461  4.26 6.00 3.76
K-O 1.34 1.13 1.14 0.82 0.89 0.47 0.72
P-O 0.75 - - - 0.62 0.52 -
Mn-O 0.53 0.48 0.46 0.52 0.45 0.49 0.44
Eu-O 0.45 0.47 047 043 045 0.53 0.42
V-0 0.28 0.28 029 033 029 - 0.25
Re-O 0.28 0.20 022 023 0.26 0.20 0.20

Rb-O 0.15 0.15 014 016 015 0.18 0.13
Cr-0 0.09 0.86 0.08 0.07 0.07 0.10 0.08
Zn-0 0.09 0.27 010 0.09 0.5 0.06 0.04
Cu-O 0.07 0.08 0.08 0.06 0.06 0.05 0.05

3.3 Analysis of Oxide Groups in Solo Basin Sediment Samples

Figure 4 shows the FTIR curves of fine sediment samples taken from the surface
and a depth of 30 cm. There is no significant difference between the FTIR
patterns in the surface and 30-cm depth samples. The presence of metal oxides is
predicted from the absorption curve that appears in the wavenumber range k =
372-464 cm™. The wavenumber values of the two variations indicate the general
characteristics of metallic bond vibrations (Fe—O). This is in accordance with
previous studies, in which Fe—O bond vibration occurred around the wavenumber
range of 461-475 cm [52] and metallic bond vibration (Fe—O) occurred at an
absorption wavelength of 377 cm™[48]. Thus, the sediment samples, both taken
from the surface and a depth of 30 cm, have characteristic magnetic properties.
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Figure 4 Results of FTIR characterization of sediment samples taken from (a)
the surface and (b) 30-cm depth.

3.4  Analysis of Crystal Structure of Solo Basin Sediment Samples

Figures 5(a) and (b) show the patterns obtained from XRD characterization of the
surface and the 30-cm depth samples. The XRD plots of the surface and 30-cm
depth samples are relatively the same. The XRD pattern results are suitable for
RRUFF ID R060191, namely, magnetite (FesO4). In addition, some XRD patterns
show conformity with anorthite (Ca(Al:Si20s)), albite (Na(AlSizOs)), and
cristobalite (SiOy).

The obtained results agree with previous research, in which sediment originating
from the parent volcanic material of the Merapi volcano contained anorthite and
albite minerals, which are plagioclases minerals [53]. Researching the Old Lawu
volcano [56] found several minerals, including albite and cristobalite. Cristobalite
minerals were also found in the Merapi volcano, which were classified as
plagioclases of crystalline minerals [52]. Plagioclases are the main minerals that
comprise the Merapi volcano rock [8,56]. Magnetite minerals, which are not
significantly affected by weathering were also found in Merapi volcano and
Bengawan Solo River sediment samples [9,16].

To determine the distribution of particle sizes, assuming the fine sediments have
particle sizes in the order of nanometers, the crystallite size is proportional to the
average particle size of the fine sediments of the Solo Basin. Using the Debye—

Scherrer equation, D = Bc]?s 5 [49], and calculations at the strongest peak, the

crystallite size D is summarized in Table 2.
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Figure 5 XRD patterns of fine sediment samples taken from (a) the surface and
(b) 30-cm depth.

Table 2  Calculation of crystallite size D for sediment samples taken from the
surface and a depth of 30 cm.

Location D (nm) surface D (nm) 30-cm depth
no. 41 141.31 £ 0.63 46.21 + 0.23
no. 55 96.76 + 0.65 103.94 £ 0.43
no.61 69.29 £ 0.31 83.22+0.36
no. 77 104.05 + 0.43 104.04 £ 0.43
no. 95 104.01 £ 0.43 17.33+£0.16
no. 171 83.34 £ 0.36 53.01+0.27
no. 177 92.15+0.53 112.37 £ 0.64

For all seven selected sampling points, the distribution of crystallite size D in the
surface and 30-cm depth samples did not show a significant difference, i.e., it
ranged from 17.33 to 104.05 nm. The crystallite size determines the appearance
of the magnetic characteristics, especially regarding the reversal magnetization

mode.
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Figure 6 Hysteresis curves and normalized magnetizations of fine sediment
samples taken from (a, b) the surface and (c, d) 30-cm depth.

Figure 6 shows the hysteresis curve and normalized magnetization at room
temperature for fine sediment samples taken from the surface and 30-cm
depth. The curves have an almost symmetric reverse order when applied to
the magnetic field or when the magnetic field is removed. The hysteresis
curves in Figures 6 (a) and (c) have a narrow area, which indicates the energy
required for the magnetization process. The narrow area of the hysteresis
curves indicates the presence of soft magnetic materials from the Solo Basin’s
deposit, namely, magnetites, as discussed above. Typical coercive values in
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the range of 100 to 130 Oe for both the surface and the 30-cm depth samples
further confirm that the magnetite mineral distribution is insensitive to
weather changes [57].

Figures 6 (b) and (d) show the magnetization curve from the demagnetized state
to the saturated magnetization state. When the magnetic field H is greater than
4000 Oe, a saturation state of magnetization is reached, i.e., the minimum
magnetic field required to reach the magnetite saturation state. Further, all
samples show the same magnetization pattern: the magnitude of magnetization
suddenly or spontaneously reaching a saturation state. This indicates a single
domain (SD) is realized for the entire sample [46,58,22]. This result is also
supported by the nonzero magnetization in the initial state, namely, the zero field,
H = 0. This can be explained as follows. From a theoretical perspective, the
magnetic anisotropy and particle size of a material determine the magnetization
realization type, either SD or multidomain. For nanoparticles, the particle size
can be represented by the crystallite size. Calculations with the XRD data
confirmed that all samples had a maximum crystallite size of ~100 nm, which is
the limit size of SD realization.

3.6 Analysis of the Distribution of Magnetic Susceptibility
Magnitudes in the Solo Basin
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Figure 7 Distribution map of magnetic susceptibility () for the Solo Basin
surface.
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Figure 7 shows a distribution map of the magnetic susceptibility (y) of the surface
sediment in the Solo Basin. From the figure, the northern area has a lower
susceptibility magnitude, (0.90-3.80) x 102 Sl, than the southern area of the Solo
Basin, (3.90-6.50) x 102 SI. This correlates with the area’s topography. The XRF
results confirmed that Fe—O (magnetite) was more commonly found in areas with
a low topography. The measured value of high magnetic susceptibility indicates
the presence of more magnetic sources or high magnetizing strength. However,
in areas with a relatively low topography, low magnetic susceptibility was found,
i.e., less than 3.50 x 1072 SI. These areas are known to have a relatively larger
human population than others. These results confirm the anthropogenic support
for the distribution of magnetic fine sediment in the Solo Basin area. We
compared the pyroclastic flow data from the eruption of Mount Lawu with data
from studies carried out on fine sediment carried out along the Bengawan Solo
River. The magnetic susceptibility values had the same characteristics, ranging
from 74.40-5,262.10 x 10 m®/kg measured with Barthington MS2 with sensor
B (mass) [59].

3.7 Scanning Electron Microscope Analysis

B [ W

Figure 8 Scanning electron microscope (SEM) morphological forms, in
sequence from code no. 41, no. 55, no. 61 and no. 77. a,c,d) Phases from lithogenic
to autogenic; b) autogenic grain.
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There are four different item forms, in sequence from a) Code no. 41; b) Code
no.55; c) Code no.61; d) Code no.77. The four types of grain obtained can be
divided into two types of grain, autogenic and lithogenic. Autogenic is
sediment that is influenced by the activities of living things, such as burning
and dumping industrial waste, while lithogenic is the formation of purely
natural sediment such as weathering on rocks due to rain and river water flow.
Autogenic grains have very different shapes compared to lithogenic grains.
There is a phase change in the form of imperfect granules, or it could be said
that there are many autogenic processes that have an influence along the
Bengawan Solo River, resulting in the shape of the granules becoming uneven.
The shapes of grains found in the environment are very diverse, ranging from
long, cubic, circular to completely irregular. In the samples taken this time,
the grains dominantly had circular shapes. Circular-shaped items indicate that
the samples taken were formed by anthropogenic processes that may occur
due to the burning of fossils from motorized vehicles, fly ash, and roadside
sediment. The size of the magnetic grains obtained ranged from 20 to 100 pm.
This size is included in the fine grain category, referring to samples that have
been studied previously in roadside dust [60], flying dust [61], and soil [62].

4 Conclusion

In this paper, a study of the magnetic characteristics of fine sediments from the
Solo Basin was discussed. The presence of fine magnetic sediment was identified
by magnetic susceptibility mapping. Further, an XRF analysis was performed,
which showed an iron oxide content of up to 55.42%, whereas XRD confirmed
the presence of magnetite minerals with crystallite size < 100 nm. The VSM
results verified the magnetic characteristics in the presence of an SD magnetic
configuration in the fine sediment from the Solo Basin. The magnetic
susceptibility map showed that there is a lithogenic effect on sediment in the Solo
Basin. In addition, anthropogenic activities play a key role in distributing
magnetic materials.
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